Big data analysis and cloud computing for smart transportation system integration

Big data and cloud computing are becoming more critical in transportation systems as these technologies develop. Transportation companies can recognize and forecast potential traffic problems and offer appropriate responses. To avoid hindering mobility, one might use predictive analytics to assess t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 84; číslo 29; s. 35073 - 35090
Hlavní autoři: Ali, Mohammed Hasan, Jaber, Mustafa Musa, Abd, Sura Khalil, Alkhayyat, Ahmed, Albaghdadi, Mustafa Fahem
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.09.2025
Springer Nature B.V
Témata:
ISSN:1573-7721, 1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Big data and cloud computing are becoming more critical in transportation systems as these technologies develop. Transportation companies can recognize and forecast potential traffic problems and offer appropriate responses. To avoid hindering mobility, one might use predictive analytics to assess the effect of various development initiatives and suggest a viable alternative. Due to automobiles’ flexibility and rapid changes in their environment, creating an effective communication system for vehicular networks is tough. An intelligent transportation system with big data analytics and cloud computing (STS-BCC) is the goal of this research work. Data mining is used to anticipate traffic conditions using a machine learning method. The cloud platform provides a secure storage service and processing unit to aid traffic forecasting. The experimental analysis finds the prediction accuracy of 97.45% and proves the efficient integration of big data analytics and cloud computing technologies.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1573-7721
1380-7501
1573-7721
DOI:10.1007/s11042-022-13700-7