EpicPred: predicting phenotypes driven by epitope-binding TCRs using attention-based multiple instance learning
Motivation Correctly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association to some phenotype and accordingly develop T-cell mediated immunotherapy treatments. Although the importance of the CDR3 region in TCRs for epi...
Uloženo v:
| Vydáno v: | Bioinformatics (Oxford, England) Ročník 41; číslo 3 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Oxford University Press
04.03.2025
|
| Témata: | |
| ISSN: | 1367-4811, 1367-4803, 1367-4811 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Motivation
Correctly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association to some phenotype and accordingly develop T-cell mediated immunotherapy treatments. Although the importance of the CDR3 region in TCRs for epitope recognition is well recognized, methods for profiling their interactions in association to a certain disease or phenotype remains less studied. We developed EpicPred to identify phenotype-specific TCR–epitope interactions. EpicPred first predicts and removes unlikely TCR–epitope interactions to reduce false positives using the Open-set Recognition (OSR). Subsequently, multiple instance learning was used to identify TCR–epitope interactions specific to a cancer type or severity levels of COVID-19 infected patients.
Results
From six public TCR databases, 244 552 TCR sequences and 105 unique epitopes were used to predict epitope-binding TCRs and to filter out non-epitope-binding TCRs using the OSR method. The predicted interactions were used to further predict the phenotype groups in two cancer and four COVID-19 TCR-seq datasets of both bulk and single-cell resolution. EpicPred outperformed the competing methods in predicting the phenotypes, achieving an average AUROC of 0.80 ± 0.07.
Availability and implementation
The EpicPred Software is available at https://github.com/jaeminjj/EpicPred. |
|---|---|
| AbstractList | Correctly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association to some phenotype and accordingly develop T-cell mediated immunotherapy treatments. Although the importance of the CDR3 region in TCRs for epitope recognition is well recognized, methods for profiling their interactions in association to a certain disease or phenotype remains less studied. We developed EpicPred to identify phenotype-specific TCR-epitope interactions. EpicPred first predicts and removes unlikely TCR-epitope interactions to reduce false positives using the Open-set Recognition (OSR). Subsequently, multiple instance learning was used to identify TCR-epitope interactions specific to a cancer type or severity levels of COVID-19 infected patients.MOTIVATIONCorrectly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association to some phenotype and accordingly develop T-cell mediated immunotherapy treatments. Although the importance of the CDR3 region in TCRs for epitope recognition is well recognized, methods for profiling their interactions in association to a certain disease or phenotype remains less studied. We developed EpicPred to identify phenotype-specific TCR-epitope interactions. EpicPred first predicts and removes unlikely TCR-epitope interactions to reduce false positives using the Open-set Recognition (OSR). Subsequently, multiple instance learning was used to identify TCR-epitope interactions specific to a cancer type or severity levels of COVID-19 infected patients.From six public TCR databases, 244 552 TCR sequences and 105 unique epitopes were used to predict epitope-binding TCRs and to filter out non-epitope-binding TCRs using the OSR method. The predicted interactions were used to further predict the phenotype groups in two cancer and four COVID-19 TCR-seq datasets of both bulk and single-cell resolution. EpicPred outperformed the competing methods in predicting the phenotypes, achieving an average AUROC of 0.80 ± 0.07.RESULTSFrom six public TCR databases, 244 552 TCR sequences and 105 unique epitopes were used to predict epitope-binding TCRs and to filter out non-epitope-binding TCRs using the OSR method. The predicted interactions were used to further predict the phenotype groups in two cancer and four COVID-19 TCR-seq datasets of both bulk and single-cell resolution. EpicPred outperformed the competing methods in predicting the phenotypes, achieving an average AUROC of 0.80 ± 0.07.The EpicPred Software is available at https://github.com/jaeminjj/EpicPred.AVAILABILITY AND IMPLEMENTATIONThe EpicPred Software is available at https://github.com/jaeminjj/EpicPred. Correctly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association to some phenotype and accordingly develop T-cell mediated immunotherapy treatments. Although the importance of the CDR3 region in TCRs for epitope recognition is well recognized, methods for profiling their interactions in association to a certain disease or phenotype remains less studied. We developed EpicPred to identify phenotype-specific TCR-epitope interactions. EpicPred first predicts and removes unlikely TCR-epitope interactions to reduce false positives using the Open-set Recognition (OSR). Subsequently, multiple instance learning was used to identify TCR-epitope interactions specific to a cancer type or severity levels of COVID-19 infected patients. From six public TCR databases, 244 552 TCR sequences and 105 unique epitopes were used to predict epitope-binding TCRs and to filter out non-epitope-binding TCRs using the OSR method. The predicted interactions were used to further predict the phenotype groups in two cancer and four COVID-19 TCR-seq datasets of both bulk and single-cell resolution. EpicPred outperformed the competing methods in predicting the phenotypes, achieving an average AUROC of 0.80 ± 0.07. The EpicPred Software is available at https://github.com/jaeminjj/EpicPred. Motivation Correctly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association to some phenotype and accordingly develop T-cell mediated immunotherapy treatments. Although the importance of the CDR3 region in TCRs for epitope recognition is well recognized, methods for profiling their interactions in association to a certain disease or phenotype remains less studied. We developed EpicPred to identify phenotype-specific TCR–epitope interactions. EpicPred first predicts and removes unlikely TCR–epitope interactions to reduce false positives using the Open-set Recognition (OSR). Subsequently, multiple instance learning was used to identify TCR–epitope interactions specific to a cancer type or severity levels of COVID-19 infected patients. Results From six public TCR databases, 244 552 TCR sequences and 105 unique epitopes were used to predict epitope-binding TCRs and to filter out non-epitope-binding TCRs using the OSR method. The predicted interactions were used to further predict the phenotype groups in two cancer and four COVID-19 TCR-seq datasets of both bulk and single-cell resolution. EpicPred outperformed the competing methods in predicting the phenotypes, achieving an average AUROC of 0.80 ± 0.07. Availability and implementation The EpicPred Software is available at https://github.com/jaeminjj/EpicPred. |
| Author | Kim, Sang Cheol Lee, Sangam Kim, Kwangsoo Yu, Suwan Jo, Hye-Yeong Jung, Inuk Jeon, Jaemin |
| Author_xml | – sequence: 1 givenname: Jaemin surname: Jeon fullname: Jeon, Jaemin – sequence: 2 givenname: Suwan surname: Yu fullname: Yu, Suwan – sequence: 3 givenname: Sangam orcidid: 0009-0000-2479-7606 surname: Lee fullname: Lee, Sangam – sequence: 4 givenname: Sang Cheol surname: Kim fullname: Kim, Sang Cheol email: kwangsookim@snu.ac.kr – sequence: 5 givenname: Hye-Yeong surname: Jo fullname: Jo, Hye-Yeong – sequence: 6 givenname: Inuk orcidid: 0000-0003-0675-4244 surname: Jung fullname: Jung, Inuk email: inukjung@knu.ac.kr – sequence: 7 givenname: Kwangsoo orcidid: 0000-0002-4586-5062 surname: Kim fullname: Kim, Kwangsoo email: kwangsookim@snu.ac.kr |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39982404$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1r3DAQhkVJaT7avxB87MWNtJJlqZdSlvQDAi0lPYuRPE5UbEmV5MD--3jZbUhuvUgD87zvDPOek5MQAxJyyegHRjW_sj76MMY8Q_WuXNkKI1X0FTljXPatUIydPKtPyXkpfyilHe3kG3LKtVYbQcUZidfJu58Zh49NWl_vqg93TbrHEOsuYWmG7B8wNHbXYPI1JmytD8Meut3-Ks1S9iXUiqH6GFoLBYdmXqbq04SND6VCcNhMCDms6FvyeoSp4Lvjf0F-f7m-3X5rb358_b79fNM6zjRtmQMlwAqUvbQ9WEeZ5EIJu3FSja7XXS9QbzQbHHR2ALHplVaguBTABbf8gnw6-KbFzji4db0Mk0nZz5B3JoI3LzvB35u7-GAYU72WHV0d3h8dcvy7YKlm9sXhNEHAuBTDmdRMMS7Eil4-H_Y05d-ZV0AeAJdjKRnHJ4RRs8_TvMzTHPNchewgjEv6X80jOemtuw |
| Cites_doi | 10.1038/s41467-021-21879-w 10.1038/nri2057 10.1093/bioinformatics/btz921 10.1016/j.cell.2020.10.037 10.1016/j.imavis.2023.104862 10.3389/fgene.2022.860510 10.1073/pnas.1504276112 10.1093/bioinformatics/btx286 10.1186/s12859-022-05012-2 10.1093/bioinformatics/btad743 10.1093/nar/gkx760 10.1126/science.ade2574 10.1515/jpm-2020-0280 10.3389/fimmu.2023.1190844 10.1126/scitranslmed.abd3595 10.1038/s41467-024-47461-8 10.1084/jem.20200652 10.3389/fimmu.2020.565096 10.1073/pnas.2024202118 10.1038/s41591-021-01329-2 10.1016/j.immuni.2020.05.002 10.1126/scitranslmed.aaz3738 10.1093/nar/gkaa796 10.1038/s42003-023-04447-4 10.1093/nar/gky1006 10.1890/13-0133.1 10.1093/bioinformatics/btz614 10.1007/978-3-031-04025-2_6 10.1371/journal.pcbi.1008814 10.1093/nar/gky964 10.1109/TPAMI.2021.3095381 10.5483/BMBRep.2022.55.9.077 10.1093/bioinformatics/btac788 10.1016/j.virusres.2021.198464 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025. Published by Oxford University Press. 2025 The Author(s) 2025. Published by Oxford University Press. |
| Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press. 2025 – notice: The Author(s) 2025. Published by Oxford University Press. |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1093/bioinformatics/btaf080 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1367-4811 |
| ExternalDocumentID | PMC11879650 39982404 10_1093_bioinformatics_btaf080 10.1093/bioinformatics/btaf080 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Research Foundation of Korea – fundername: Korea National Institute of Health grantid: 2024-ER-0801-01 – fundername: Korea government grantid: RS-2024-00414964 – fundername: ; – fundername: ; grantid: 2024-ER-0801-01 – fundername: ; grantid: RS-2024-00414964 |
| GroupedDBID | --- -E4 -~X .-4 .2P .DC .GJ .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEFU ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQPQ AGQXC AGSYK AHMBA AHXPO AI. AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN AQDSO ARIXL ASPBG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RIG RNI RNS ROL RPM RUSNO RW1 RXO RZF RZO SV3 TEORI TJP TLC TOX TR2 VH1 W8F WOQ X7H YAYTL YKOAZ YXANX ZGI ZKX ~91 ~KM AAYXX CITATION ROX CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c3190-1ca84ab4e676b7abc0163484b2c68fc79574e9291dca5bda427898a8364a343b3 |
| IEDL.DBID | TOX |
| ISSN | 1367-4811 1367-4803 |
| IngestDate | Thu Aug 21 18:27:13 EDT 2025 Fri Jul 11 11:01:26 EDT 2025 Mon Jul 21 05:19:00 EDT 2025 Sat Nov 29 08:17:13 EST 2025 Mon Jun 30 08:34:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3190-1ca84ab4e676b7abc0163484b2c68fc79574e9291dca5bda427898a8364a343b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-4586-5062 0009-0000-2479-7606 0000-0003-0675-4244 |
| OpenAccessLink | https://dx.doi.org/10.1093/bioinformatics/btaf080 |
| PMID | 39982404 |
| PQID | 3169181344 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11879650 proquest_miscellaneous_3169181344 pubmed_primary_39982404 crossref_primary_10_1093_bioinformatics_btaf080 oup_primary_10_1093_bioinformatics_btaf080 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Mar-04 |
| PublicationDateYYYYMMDD | 2025-03-04 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-Mar-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioinformatics (Oxford, England) |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2025 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Chao (2025030711570340700_btaf080-B5) 2014; 84 Vabret (2025030711570340700_btaf080-B31) 2020; 52 Jokinen (2025030711570340700_btaf080-B12) 2021; 17 Korpela (2025030711570340700_btaf080-B14) 2023; 39 Park (2025030711570340700_btaf080-B21) 2023; 6 Zhou (2025030711570340700_btaf080-B39) Beshnova (2025030711570340700_btaf080-B3) 2020; 12 Sidhom (2025030711570340700_btaf080-B26) 2021; 12 Makatsariya (2025030711570340700_btaf080-B19) 2020; 48 Ilse (2025030711570340700_btaf080-B9) 2018 Xu (2025030711570340700_btaf080-B36) 2022; 13 Jo (2025030711570340700_btaf080-B10) 2022; 55 Chen (2025030711570340700_btaf080-B6) 2021; 49 Tickotsky (2025030711570340700_btaf080-B30) 2017; 33 Barnes (2025030711570340700_btaf080-B2) 2020; 217 Vareto (2025030711570340700_btaf080-B32) 2024; 141 Ravishankar (2025030711570340700_btaf080-B24) 2015; 112 Shugay (2025030711570340700_btaf080-B25) 2018; 46 Policard (2025030711570340700_btaf080-B23) 2021; 301 Wu (2025030711570340700_btaf080-B34) Liu (2025030711570340700_btaf080-B18) Stephenson (2025030711570340700_btaf080-B27) 2021; 27 Jokinen (2025030711570340700_btaf080-B11) 2023; 39 Kim (2025030711570340700_btaf080-B13) 2022; 23 Zhang (2025030711570340700_btaf080-B37) 2020; 36 Lin (2025030711570340700_btaf080-B17) 2023; 379 Athar (2025030711570340700_btaf080-B1) 2019; 47 Carlberg (2025030711570340700_btaf080-B4) 2022 Lan (2025030711570340700_btaf080-B15) 2020 Paul (2025030711570340700_btaf080-B22) 2021; 13 Zhang (2025030711570340700_btaf080-B38) 2021; 118 Lee (2025030711570340700_btaf080-B16) 2020; 11 Elnaggar (2025030711570340700_btaf080-B8) 2021; 44 Su (2025030711570340700_btaf080-B28) 2020; 183 Vita (2025030711570340700_btaf080-B33) 2019; 47 Tareen (2025030711570340700_btaf080-B29) 2020; 36 Xu (2025030711570340700_btaf080-B35) 2023; 14 Newman (2025030711570340700_btaf080-B20) 2007; 7 Croce (2025030711570340700_btaf080-B7) 2024; 15 |
| References_xml | – volume: 12 start-page: 1605 year: 2021 ident: 2025030711570340700_btaf080-B26 article-title: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires publication-title: Nat Commun doi: 10.1038/s41467-021-21879-w – volume: 7 start-page: 279 year: 2007 ident: 2025030711570340700_btaf080-B20 article-title: Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens publication-title: Nat Rev Immunol doi: 10.1038/nri2057 – volume: 36 start-page: 2272 year: 2020 ident: 2025030711570340700_btaf080-B29 article-title: Logomaker: beautiful sequence logos in python publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz921 – volume: 183 start-page: 1479 year: 2020 ident: 2025030711570340700_btaf080-B28 article-title: Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19 publication-title: Cell doi: 10.1016/j.cell.2020.10.037 – volume: 141 start-page: 104862 year: 2024 ident: 2025030711570340700_btaf080-B32 article-title: Open-set face recognition with maximal entropy and objectosphere loss publication-title: Image Vis Comput doi: 10.1016/j.imavis.2023.104862 – volume: 13 start-page: 860510 year: 2022 ident: 2025030711570340700_btaf080-B36 article-title: DeepLION: deep multi-instance learning improves the prediction of cancer-associated T cell receptors for accurate cancer detection publication-title: Front Genet doi: 10.3389/fgene.2022.860510 – volume: 112 start-page: 10774 year: 2015 ident: 2025030711570340700_btaf080-B24 article-title: The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1504276112 – volume: 33 start-page: 2924 year: 2017 ident: 2025030711570340700_btaf080-B30 article-title: McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx286 – volume: 23 start-page: 469 year: 2022 ident: 2025030711570340700_btaf080-B13 article-title: Multiple instance neural networks based on sparse attention for cancer detection using T-cell receptor sequences publication-title: BMC Bioinformatics doi: 10.1186/s12859-022-05012-2 – volume: 39 start-page: btad743 year: 2023 ident: 2025030711570340700_btaf080-B14 article-title: EPIC-TRACE: predicting TCR binding to unseen epitopes using attention and contextualized embeddings publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad743 – volume: 46 start-page: D419 year: 2018 ident: 2025030711570340700_btaf080-B25 article-title: VDJdb: a curated database of T-cell receptor sequences with known antigen specificity publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx760 – volume: 379 start-page: 1123 year: 2023 ident: 2025030711570340700_btaf080-B17 article-title: Evolutionary-scale prediction of atomic-level protein structure with a language model publication-title: Science doi: 10.1126/science.ade2574 – volume: 48 start-page: 985 year: 2020 ident: 2025030711570340700_btaf080-B19 article-title: COVID-19, neutrophil extracellular traps and vascular complications in obstetric practice publication-title: J Perinat Med doi: 10.1515/jpm-2020-0280 – start-page: 507 ident: 2025030711570340700_btaf080-B18 – volume: 14 start-page: 1190844 year: 2023 ident: 2025030711570340700_btaf080-B35 article-title: T cell receptor β repertoires in patients with COVID-19 reveal disease severity signatures publication-title: Front Immunol doi: 10.3389/fimmu.2023.1190844 – volume: 13 start-page: eabd3595 year: 2021 ident: 2025030711570340700_btaf080-B22 article-title: TCR β chain-directed bispecific antibodies for the treatment of T cell cancers publication-title: Sci Transl Med doi: 10.1126/scitranslmed.abd3595 – volume: 15 start-page: 3211 year: 2024 ident: 2025030711570340700_btaf080-B7 article-title: Deep learning predictions of TCR-epitope interactions reveal epitope-specific chains in dual alpha T cells publication-title: Nat Commun doi: 10.1038/s41467-024-47461-8 – volume: 217 year: 2020 ident: 2025030711570340700_btaf080-B2 article-title: Targeting potential drivers of COVID-19: neutrophil extracellular traps publication-title: J Exp Med doi: 10.1084/jem.20200652 – volume: 11 start-page: 565096 year: 2020 ident: 2025030711570340700_btaf080-B16 article-title: Predicting cross-reactivity and antigen specificity of T cell receptors publication-title: Front Immunol doi: 10.3389/fimmu.2020.565096 – volume: 118 start-page: e2024202118 year: 2021 ident: 2025030711570340700_btaf080-B38 article-title: The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-I publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2024202118 – start-page: 2127 year: 2018 ident: 2025030711570340700_btaf080-B9 – start-page: 194 ident: 2025030711570340700_btaf080-B34 – volume: 27 start-page: 904 year: 2021 ident: 2025030711570340700_btaf080-B27 article-title: Single-cell multi-omics analysis of the immune response in COVID-19 publication-title: Nat Med doi: 10.1038/s41591-021-01329-2 – volume: 52 start-page: 910 year: 2020 ident: 2025030711570340700_btaf080-B31 article-title: Immunology of COVID-19: current state of the science publication-title: Immunity doi: 10.1016/j.immuni.2020.05.002 – volume: 12 start-page: eaaz3738 year: 2020 ident: 2025030711570340700_btaf080-B3 article-title: De novo prediction of cancer-associated t cell receptors for noninvasive cancer detection publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaz3738 – volume: 49 start-page: D468 year: 2021 ident: 2025030711570340700_btaf080-B6 article-title: TCRdb: a comprehensive database for T-cell receptor sequences with powerful search function publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa796 – volume: 6 start-page: 76 year: 2023 ident: 2025030711570340700_btaf080-B21 article-title: Machine learning identifies T cell receptor repertoire signatures associated with COVID-19 severity publication-title: Commun Biol doi: 10.1038/s42003-023-04447-4 – volume: 47 start-page: D339 year: 2019 ident: 2025030711570340700_btaf080-B33 article-title: The immune epitope database (IEDB): 2018 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1006 – volume: 84 start-page: 45 year: 2014 ident: 2025030711570340700_btaf080-B5 article-title: Rarefaction and extrapolation with hill numbers: a framework for sampling and estimation in species diversity studies publication-title: Ecol Monogr doi: 10.1890/13-0133.1 – start-page: 3036 year: 2020 ident: 2025030711570340700_btaf080-B15 – volume: 36 start-page: 897 year: 2020 ident: 2025030711570340700_btaf080-B37 article-title: PIRD: pan immune repertoire database publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz614 – start-page: 89 volume-title: Molecular Immunology: How Science Works year: 2022 ident: 2025030711570340700_btaf080-B4 doi: 10.1007/978-3-031-04025-2_6 – volume: 17 start-page: e1008814 year: 2021 ident: 2025030711570340700_btaf080-B12 article-title: Predicting recognition between T cell receptors and epitopes with TCRGP publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1008814 – ident: 2025030711570340700_btaf080-B39 – volume: 47 start-page: D711 year: 2019 ident: 2025030711570340700_btaf080-B1 article-title: Arrayexpress update—from bulk to single-cell expression data publication-title: Nucleic Acids Res doi: 10.1093/nar/gky964 – volume: 44 start-page: 7112 year: 2021 ident: 2025030711570340700_btaf080-B8 article-title: ProtTrans: toward understanding the language of life through self-supervised learning publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2021.3095381 – volume: 55 start-page: 465 year: 2022 ident: 2025030711570340700_btaf080-B10 article-title: Establishment of the large-scale longitudinal multi-omics dataset in COVID-19 patients: data profile and biospecimen publication-title: BMB Rep doi: 10.5483/BMBRep.2022.55.9.077 – volume: 39 start-page: btac788 year: 2023 ident: 2025030711570340700_btaf080-B11 article-title: TCRconv: predicting recognition between T cell receptors and epitopes using contextualized motifs publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac788 – volume: 301 start-page: 198464 year: 2021 ident: 2025030711570340700_btaf080-B23 article-title: Immune characterization and profiles of SARS-CoV-2 infected patients reveals potential host therapeutic targets and SARS-CoV-2 oncogenesis mechanism publication-title: Virus Res doi: 10.1016/j.virusres.2021.198464 |
| SSID | ssj0005056 |
| Score | 2.4747157 |
| Snippet | Motivation
Correctly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association... Correctly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association to some... |
| SourceID | pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| SubjectTerms | Computational Biology - methods COVID-19 - immunology COVID-19 - virology Epitopes - immunology Epitopes, T-Lymphocyte - immunology Epitopes, T-Lymphocyte - metabolism Humans Machine Learning Multiple-Instance Learning Algorithms Neoplasms - immunology Original Paper Phenotype Receptors, Antigen, T-Cell - chemistry Receptors, Antigen, T-Cell - genetics Receptors, Antigen, T-Cell - immunology Receptors, Antigen, T-Cell - metabolism SARS-CoV-2 - immunology Software |
| Title | EpicPred: predicting phenotypes driven by epitope-binding TCRs using attention-based multiple instance learning |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39982404 https://www.proquest.com/docview/3169181344 https://pubmed.ncbi.nlm.nih.gov/PMC11879650 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals [open access] customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SpYFcmqR5bZouKvQUMFuvZEnurYQNPYR0CVvYm9HLG19s490E8u-r8WOzDhSanCULoZE0nzXffAPwzXAnHDM8YJanAZMuDlSafg9iFVqpLUutrtX1b8XdnVws4tkOhF0uzOsQfkzHOitaEVEULh7rtUo9zPG3bhhJrFkw_714IXV4f97lAf_z054L6qW1baHL1yTJLa9zc_CO-R7CxxZikp_NnjiCHZd_gr2m6OTzMRTTMjOzytkfpKwwTIPEZ4JUrwLfY1fEVngDEv1MXOnPe-nw7xldHJlf368IMuWXBGU5a6JkgH7Qko6YSLIabxpH2noUyxP4czOdX_8K2rILgaGYWB4aJZnSzHHBtVDaeFRImWR6YrhMjYgjwZxHVaE1KtJWYbGOWCpJOVOUUU1PYZAXuTsHYhV3sbAKJWcYl1xrbj0AclFIhYwiO4RxZ4mkbNQ1kiYqTpP-MibtMg7hyhvsvzt_7eya-FODoRCVu-JxlVDUCJIhZWwIZ42dN2N6yCY9zvEtsrcDNh1QkbvfkmcPtTJ3XbvdY96Lt8zyM-xPsKgwEtvYJQzW1aP7Ah_M0zpbVSPYFQs5qp8KRvVe_wtRpAlv |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EpicPred%3A+predicting+phenotypes+driven+by+epitope-binding+TCRs+using+attention-based+multiple+instance+learning&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Jeon%2C+Jaemin&rft.au=Yu%2C+Suwan&rft.au=Lee%2C+Sangam&rft.au=Kim%2C+Sang+Cheol&rft.date=2025-03-04&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=41&rft.issue=3&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf080&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btaf080 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon |