Adaptive distributed optimization algorithms for Euler–Lagrange systems

This paper investigates the distributed optimization problem of a group of Euler–Lagrange (EL) systems subject to unavailable inertial parameters. A local cost function is assigned to each agent and the sum of all the local cost functions is considered as the global one. Under widely used assumption...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automatica (Oxford) Ročník 119; s. 109060
Hlavní autoři: Zou, Yao, Meng, Ziyang, Hong, Yiguang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2020
Témata:
ISSN:0005-1098, 1873-2836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper investigates the distributed optimization problem of a group of Euler–Lagrange (EL) systems subject to unavailable inertial parameters. A local cost function is assigned to each agent and the sum of all the local cost functions is considered as the global one. Under widely used assumptions, an adaptive distributed algorithm is proposed such that all the agent states converge to the specified point minimizing the global cost function in a cooperative manner. In particular, by introducing a novel auxiliary system with adaptive gains, the proposed optimization algorithm is privacy-preserving such that no actual state of any agent is necessary for other agents. Moreover, the proposed optimization algorithm is fully distributed in the sense that the optimization objective is achieved without knowledge of global graph information, explicit global cost function as well as strongly convex and Lipschitz constants associated with all local cost functions. Numerical simulations are illustrated to validate the theoretical results.
AbstractList This paper investigates the distributed optimization problem of a group of Euler–Lagrange (EL) systems subject to unavailable inertial parameters. A local cost function is assigned to each agent and the sum of all the local cost functions is considered as the global one. Under widely used assumptions, an adaptive distributed algorithm is proposed such that all the agent states converge to the specified point minimizing the global cost function in a cooperative manner. In particular, by introducing a novel auxiliary system with adaptive gains, the proposed optimization algorithm is privacy-preserving such that no actual state of any agent is necessary for other agents. Moreover, the proposed optimization algorithm is fully distributed in the sense that the optimization objective is achieved without knowledge of global graph information, explicit global cost function as well as strongly convex and Lipschitz constants associated with all local cost functions. Numerical simulations are illustrated to validate the theoretical results.
ArticleNumber 109060
Author Hong, Yiguang
Meng, Ziyang
Zou, Yao
Author_xml – sequence: 1
  givenname: Yao
  surname: Zou
  fullname: Zou, Yao
  email: zouyao@ustb.edu.cn
  organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, PR China
– sequence: 2
  givenname: Ziyang
  surname: Meng
  fullname: Meng, Ziyang
  email: ziyangmeng@mail.tsinghua.edu.cn
  organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, PR China
– sequence: 3
  givenname: Yiguang
  surname: Hong
  fullname: Hong, Yiguang
  email: yghong@iss.ac.cn
  organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, PR China
BookMark eNqNkM1KAzEURoNUsK2-w7zA1PzMpJmNUEvVQsGNrkMmuVNTZiYlSQt15Tv4hj6JqRUEN7q63O_yHbhnhAa96wGhjOAJwYRfbyZqF12notVqQjE9xhXm-AwNiZiynArGB2iIMS7zdBEXaBTCJq0FEXSIljOjttHuITM2RG_rXQSTuRR19jVBXZ-pdu28jS9dyBrns8WuBf_x9r5Sa6_6NWThECJ04RKdN6oNcPU9x-j5bvE0f8hXj_fL-WyVa0ZEzJuqgCknDFRtylrUDdeM45LTstIKF7WpK16AIFRw4ExDXZmpUgVNHa5Fw9gYiRNXexeCh0Zuve2UP0iC5VGJ3MgfJfKoRJ6UpOrNr6q28evJ6JVt_wO4PQEgPbi34GXQFnoNxnrQURpn_4Z8AqLsiTM
CitedBy_id crossref_primary_10_1109_TAC_2023_3335797
crossref_primary_10_1016_j_jfranklin_2023_09_012
crossref_primary_10_1109_TCSI_2022_3221097
crossref_primary_10_1016_j_automatica_2022_110259
crossref_primary_10_1109_TSMC_2021_3138109
crossref_primary_10_1109_TCYB_2021_3128051
crossref_primary_10_1109_TII_2025_3574441
crossref_primary_10_1109_TCNS_2024_3371550
crossref_primary_10_1007_s11768_022_00111_0
crossref_primary_10_1109_TSMC_2023_3300354
crossref_primary_10_1109_TNNLS_2021_3130173
crossref_primary_10_1109_ACCESS_2024_3486080
crossref_primary_10_1109_TAC_2022_3194100
crossref_primary_10_1002_asjc_3361
crossref_primary_10_1016_j_ast_2022_108019
crossref_primary_10_1038_s41598_025_86683_8
crossref_primary_10_1109_TSMC_2024_3373560
crossref_primary_10_1109_TCYB_2023_3347653
crossref_primary_10_1109_TAC_2022_3152727
crossref_primary_10_12677_aam_2024_137306
crossref_primary_10_1109_JIOT_2025_3566366
crossref_primary_10_1109_TAC_2024_3492952
crossref_primary_10_1109_TCSII_2023_3294388
crossref_primary_10_1016_j_automatica_2021_110113
crossref_primary_10_1109_TITS_2023_3330995
crossref_primary_10_1016_j_automatica_2024_111882
crossref_primary_10_1016_j_automatica_2023_111245
crossref_primary_10_1109_JSYST_2024_3417255
crossref_primary_10_1109_TAC_2023_3301957
crossref_primary_10_1109_TSMC_2023_3247456
crossref_primary_10_1002_acs_3784
crossref_primary_10_1007_s11071_025_11175_3
crossref_primary_10_1016_j_automatica_2022_110829
crossref_primary_10_1109_TAC_2024_3394128
crossref_primary_10_1109_TNSE_2022_3225409
crossref_primary_10_1109_ACCESS_2022_3191909
crossref_primary_10_1109_TCYB_2024_3485230
crossref_primary_10_1109_TSMC_2024_3405453
crossref_primary_10_1002_asjc_3220
crossref_primary_10_1002_asjc_3064
crossref_primary_10_1080_00207721_2025_2528633
crossref_primary_10_1109_TCSII_2021_3140141
crossref_primary_10_1016_j_ins_2023_119116
crossref_primary_10_1109_TCSII_2021_3089609
crossref_primary_10_1016_j_chaos_2023_114375
crossref_primary_10_1016_j_automatica_2023_111339
crossref_primary_10_1109_TCNS_2023_3338245
crossref_primary_10_1016_j_jfranklin_2021_08_033
crossref_primary_10_1109_TFUZZ_2024_3441008
crossref_primary_10_1016_j_jfranklin_2023_07_031
crossref_primary_10_1002_rnc_7258
crossref_primary_10_1109_TCYB_2025_3566155
crossref_primary_10_1016_j_automatica_2025_112580
Cites_doi 10.1142/S230138501640001X
10.1109/TWC.2015.2402672
10.1109/TAC.2008.2009515
10.1109/TAC.2015.2504728
10.1016/j.automatica.2017.01.004
10.1109/TCOMM.2017.2715176
10.1109/TAC.2017.2750103
10.1109/CDC.2011.6161503
10.1002/rnc.3535
10.1109/TAC.2017.2669321
10.1109/TAC.2016.2604324
10.1002/rnc.3170
10.1016/j.automatica.2016.05.014
10.1016/j.automatica.2015.11.014
10.1109/TAC.2012.2184199
10.1016/j.automatica.2017.07.010
10.1109/TSMC.2016.2531649
10.1109/TSMCB.2010.2095497
10.1109/TAC.2015.2504962
10.1109/TAC.2016.2593899
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.automatica.2020.109060
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2836
ExternalDocumentID 10_1016_j_automatica_2020_109060
S0005109820302582
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2016YFB05009002
  funderid: http://dx.doi.org/10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 61873140; 61833009; 61733018; 61703229; U19B2029
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Institute for Guo Qiang of Tsinghua University, PR China
  grantid: 2019GQG1023
  funderid: http://dx.doi.org/10.13039/501100004147
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-f94e7613eabd5b8bf6c36056259ca04bdb964e81286e63ceb9d7aa427616c8f33
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551496400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0005-1098
IngestDate Sat Nov 29 07:32:54 EST 2025
Tue Nov 18 22:34:58 EST 2025
Fri Feb 23 02:46:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Distributed optimization
Gain adaptation
Euler–Lagrange system
Distributed algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-f94e7613eabd5b8bf6c36056259ca04bdb964e81286e63ceb9d7aa427616c8f33
ParticipantIDs crossref_primary_10_1016_j_automatica_2020_109060
crossref_citationtrail_10_1016_j_automatica_2020_109060
elsevier_sciencedirect_doi_10_1016_j_automatica_2020_109060
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Automatica (Oxford)
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cai, Huang (b1) 2016; 61
Deng, Hong (b3) 2016; 4
Wang, J., & Elia, N. (2011). A control perspective for centralized and distributed convex optimization. In
Chen, Lewis (b2) 2011; 41
Lin, Ren, Farrell (b8) 2017; 52
Lou, Hong, Xie, Shi, Johansson (b10) 2016; 61
Rockafellar (b18) 2005
Rockafellar (b17) 1972
Xue, Li, Nahrstedt (b22) 2016; 5
Zhang, Deng, Hong (b24) 2017; 79
Klotz, Cheng, Warren (b6) 2016; 26
Li, Ding, Sun, Li (b7) 2018; 63
Meng, Yang, Shi, Dimarogonas, Hong, Johansson (b12) 2017; 84
Zhao, Liu, Wen, Chen (b27) 2017; 62
Zhang, Lou, Hong, Xie (b25) 2015; 14
Ding, Li (b4) 2016; 72
Lin, Ren, Song (b9) 2016; 65
Rahili, Ren (b16) 2017; 62
Yang, Liu, Wang (b23) 2017; 47
Khalil (b5) 2002
Zhao, Duan, Wen (b26) 2015; 25
Nedic, Ozdaglar (b14) 2009; 54
Tang, Ren, Han (b20) 2017; 65
(pp. 3800–3805).
Spong, Hutchinson, Vidyasagar (b19) 2006
Lu, Tang (b11) 2012; 57
Nedic, Liu (b13) 2018; 1
Ortega, Loría, Nicklasson, Sira-Ramírez (b15) 1998
Lin (10.1016/j.automatica.2020.109060_b8) 2017; 52
Lou (10.1016/j.automatica.2020.109060_b10) 2016; 61
Ding (10.1016/j.automatica.2020.109060_b4) 2016; 72
Rockafellar (10.1016/j.automatica.2020.109060_b18) 2005
Nedic (10.1016/j.automatica.2020.109060_b13) 2018; 1
Klotz (10.1016/j.automatica.2020.109060_b6) 2016; 26
Zhang (10.1016/j.automatica.2020.109060_b24) 2017; 79
Li (10.1016/j.automatica.2020.109060_b7) 2018; 63
Zhang (10.1016/j.automatica.2020.109060_b25) 2015; 14
Lin (10.1016/j.automatica.2020.109060_b9) 2016; 65
Xue (10.1016/j.automatica.2020.109060_b22) 2016; 5
Rockafellar (10.1016/j.automatica.2020.109060_b17) 1972
Deng (10.1016/j.automatica.2020.109060_b3) 2016; 4
Spong (10.1016/j.automatica.2020.109060_b19) 2006
Nedic (10.1016/j.automatica.2020.109060_b14) 2009; 54
Meng (10.1016/j.automatica.2020.109060_b12) 2017; 84
Chen (10.1016/j.automatica.2020.109060_b2) 2011; 41
Ortega (10.1016/j.automatica.2020.109060_b15) 1998
Zhao (10.1016/j.automatica.2020.109060_b26) 2015; 25
Rahili (10.1016/j.automatica.2020.109060_b16) 2017; 62
Cai (10.1016/j.automatica.2020.109060_b1) 2016; 61
10.1016/j.automatica.2020.109060_b21
Yang (10.1016/j.automatica.2020.109060_b23) 2017; 47
Zhao (10.1016/j.automatica.2020.109060_b27) 2017; 62
Lu (10.1016/j.automatica.2020.109060_b11) 2012; 57
Tang (10.1016/j.automatica.2020.109060_b20) 2017; 65
Khalil (10.1016/j.automatica.2020.109060_b5) 2002
References_xml – year: 2002
  ident: b5
  article-title: Nonlinear systems
– volume: 26
  start-page: 3791
  year: 2016
  end-page: 3805
  ident: b6
  article-title: Robust containment control in a leader-follower network of uncertain Euler-Lagrange systems
  publication-title: International Journal of Robust and Nonlinear Control
– volume: 65
  start-page: 120
  year: 2016
  end-page: 131
  ident: b9
  article-title: Distributed optimization for control
  publication-title: Automatica
– volume: 47
  start-page: 717
  year: 2017
  end-page: 728
  ident: b23
  article-title: Distributed optimization based on a multiagent system in the presence of communication delays
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 84
  start-page: 109
  year: 2017
  end-page: 116
  ident: b12
  article-title: Targeted agreement of multiple Lagrangian systems
  publication-title: Automatica
– volume: 54
  start-page: 48
  year: 2009
  end-page: 61
  ident: b14
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Transactions on Automatic Control
– volume: 5
  start-page: 347
  year: 2016
  end-page: 364
  ident: b22
  article-title: Optimal resource allocation in wireless Ad Hoc networks: A price-based approach
  publication-title: IEEE Transactions on Mobile Computing
– volume: 14
  start-page: 3131
  year: 2015
  end-page: 3142
  ident: b25
  article-title: Distributed projection-based algorithms for source localization in wireless sensor networks
  publication-title: IEEE Transactions on Wireless Communication
– volume: 62
  start-page: 1590
  year: 2017
  end-page: 1605
  ident: b16
  article-title: Distributed continuous-time convex optimization with time-varying cost functions
  publication-title: IEEE Transactions on Automatic Control
– reference: Wang, J., & Elia, N. (2011). A control perspective for centralized and distributed convex optimization. In
– volume: 1
  start-page: 77
  year: 2018
  end-page: 103
  ident: b13
  article-title: Distributed multi-agent optimization subject to nonidentical constraints and communication delays
  publication-title: Annual Review of Control, Robotics, and Autonomous Systems
– volume: 62
  start-page: 3602
  year: 2017
  end-page: 3609
  ident: b27
  article-title: Distributed optimization for linear multiagent systems: Edge- and node-based adaptive designs
  publication-title: IEEE Transactions on Automatic Control
– volume: 4
  start-page: 5
  year: 2016
  end-page: 13
  ident: b3
  article-title: Multi-agent optimization design for autonomous Lagrangian systems
  publication-title: Unmanned Systems
– year: 2005
  ident: b18
  article-title: Nonlinear programming: Theory and algorithms
– year: 1972
  ident: b17
  article-title: Convex analysis
– volume: 65
  start-page: 4065
  year: 2017
  end-page: 4079
  ident: b20
  article-title: Distributed power optimization for security-aware multi-channel full-duplex communications: A variational inequality framework
  publication-title: IEEE Transactions on Communications
– volume: 25
  start-page: 1688
  year: 2015
  end-page: 1703
  ident: b26
  article-title: Distributed finite-time tracking of multiple Euler-Lagrange systems without velocity measurements
  publication-title: International Journal of Robust and Nonlinear Control
– volume: 72
  start-page: 46
  year: 2016
  end-page: 52
  ident: b4
  article-title: Distributed adaptive consensus control of nonlinear output-feedback systems on directed graphs
  publication-title: Automatica
– year: 1998
  ident: b15
  article-title: Passivity-based control of Euler-Lagrange systems
– volume: 57
  start-page: 2348
  year: 2012
  end-page: 2354
  ident: b11
  article-title: Zero-gradient-sum algorithms for distributed convex optimization: The continuous-time case
  publication-title: IEEE Transactions on Automatic Control
– volume: 61
  start-page: 3152
  year: 2016
  end-page: 3157
  ident: b1
  article-title: The leader-following consensus for multiple uncertain Euler-Lagrange systems with an adaptive distributed observer
  publication-title: IEEE Transactions on Automatic Control
– reference: (pp. 3800–3805).
– volume: 63
  start-page: 1434
  year: 2018
  end-page: 1441
  ident: b7
  article-title: Distributed adaptive convex optimization on directed graphs via continuous-time algorithms
  publication-title: IEEE Transactions on Automatic Control
– volume: 41
  start-page: 805
  year: 2011
  end-page: 816
  ident: b2
  article-title: Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics
– volume: 52
  start-page: 2239
  year: 2017
  end-page: 2253
  ident: b8
  article-title: Distributed continuous-time optimization: Nonuniform gradient gains, finite-time convergence, and convex constraint set
  publication-title: IEEE Transactions on Automatic Control
– volume: 61
  start-page: 2920
  year: 2016
  end-page: 2935
  ident: b10
  article-title: Nash equilibrium computation in subnetwork zero-sum games with switching communications
  publication-title: IEEE Transactions on Automatic Control
– year: 2006
  ident: b19
  article-title: Robot dynamics and control
– volume: 79
  start-page: 207
  year: 2017
  end-page: 213
  ident: b24
  article-title: Distributed optimal coordination for multiple heterogeneous Euler-Lagrangian systems
  publication-title: Automatica
– year: 2005
  ident: 10.1016/j.automatica.2020.109060_b18
– volume: 4
  start-page: 5
  issue: 1
  year: 2016
  ident: 10.1016/j.automatica.2020.109060_b3
  article-title: Multi-agent optimization design for autonomous Lagrangian systems
  publication-title: Unmanned Systems
  doi: 10.1142/S230138501640001X
– volume: 14
  start-page: 3131
  issue: 6
  year: 2015
  ident: 10.1016/j.automatica.2020.109060_b25
  article-title: Distributed projection-based algorithms for source localization in wireless sensor networks
  publication-title: IEEE Transactions on Wireless Communication
  doi: 10.1109/TWC.2015.2402672
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  ident: 10.1016/j.automatica.2020.109060_b14
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2008.2009515
– volume: 61
  start-page: 3152
  issue: 10
  year: 2016
  ident: 10.1016/j.automatica.2020.109060_b1
  article-title: The leader-following consensus for multiple uncertain Euler-Lagrange systems with an adaptive distributed observer
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2015.2504728
– volume: 5
  start-page: 347
  issue: 4
  year: 2016
  ident: 10.1016/j.automatica.2020.109060_b22
  article-title: Optimal resource allocation in wireless Ad Hoc networks: A price-based approach
  publication-title: IEEE Transactions on Mobile Computing
– volume: 79
  start-page: 207
  year: 2017
  ident: 10.1016/j.automatica.2020.109060_b24
  article-title: Distributed optimal coordination for multiple heterogeneous Euler-Lagrangian systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.01.004
– volume: 65
  start-page: 4065
  issue: 9
  year: 2017
  ident: 10.1016/j.automatica.2020.109060_b20
  article-title: Distributed power optimization for security-aware multi-channel full-duplex communications: A variational inequality framework
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOMM.2017.2715176
– volume: 63
  start-page: 1434
  issue: 5
  year: 2018
  ident: 10.1016/j.automatica.2020.109060_b7
  article-title: Distributed adaptive convex optimization on directed graphs via continuous-time algorithms
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2017.2750103
– year: 2006
  ident: 10.1016/j.automatica.2020.109060_b19
– ident: 10.1016/j.automatica.2020.109060_b21
  doi: 10.1109/CDC.2011.6161503
– volume: 26
  start-page: 3791
  issue: 17
  year: 2016
  ident: 10.1016/j.automatica.2020.109060_b6
  article-title: Robust containment control in a leader-follower network of uncertain Euler-Lagrange systems
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.3535
– volume: 62
  start-page: 3602
  issue: 7
  year: 2017
  ident: 10.1016/j.automatica.2020.109060_b27
  article-title: Distributed optimization for linear multiagent systems: Edge- and node-based adaptive designs
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2017.2669321
– year: 1998
  ident: 10.1016/j.automatica.2020.109060_b15
– volume: 52
  start-page: 2239
  issue: 5
  year: 2017
  ident: 10.1016/j.automatica.2020.109060_b8
  article-title: Distributed continuous-time optimization: Nonuniform gradient gains, finite-time convergence, and convex constraint set
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2604324
– year: 2002
  ident: 10.1016/j.automatica.2020.109060_b5
– volume: 25
  start-page: 1688
  issue: 11
  year: 2015
  ident: 10.1016/j.automatica.2020.109060_b26
  article-title: Distributed finite-time tracking of multiple Euler-Lagrange systems without velocity measurements
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.3170
– volume: 72
  start-page: 46
  year: 2016
  ident: 10.1016/j.automatica.2020.109060_b4
  article-title: Distributed adaptive consensus control of nonlinear output-feedback systems on directed graphs
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.05.014
– volume: 65
  start-page: 120
  year: 2016
  ident: 10.1016/j.automatica.2020.109060_b9
  article-title: Distributed optimization for control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.11.014
– volume: 57
  start-page: 2348
  issue: 9
  year: 2012
  ident: 10.1016/j.automatica.2020.109060_b11
  article-title: Zero-gradient-sum algorithms for distributed convex optimization: The continuous-time case
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2012.2184199
– volume: 1
  start-page: 77
  year: 2018
  ident: 10.1016/j.automatica.2020.109060_b13
  article-title: Distributed multi-agent optimization subject to nonidentical constraints and communication delays
  publication-title: Annual Review of Control, Robotics, and Autonomous Systems
– volume: 84
  start-page: 109
  year: 2017
  ident: 10.1016/j.automatica.2020.109060_b12
  article-title: Targeted agreement of multiple Lagrangian systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.07.010
– volume: 47
  start-page: 717
  issue: 5
  year: 2017
  ident: 10.1016/j.automatica.2020.109060_b23
  article-title: Distributed optimization based on a multiagent system in the presence of communication delays
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2016.2531649
– volume: 41
  start-page: 805
  issue: 3
  year: 2011
  ident: 10.1016/j.automatica.2020.109060_b2
  article-title: Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics
  doi: 10.1109/TSMCB.2010.2095497
– volume: 61
  start-page: 2920
  issue: 10
  year: 2016
  ident: 10.1016/j.automatica.2020.109060_b10
  article-title: Nash equilibrium computation in subnetwork zero-sum games with switching communications
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2015.2504962
– year: 1972
  ident: 10.1016/j.automatica.2020.109060_b17
– volume: 62
  start-page: 1590
  issue: 4
  year: 2017
  ident: 10.1016/j.automatica.2020.109060_b16
  article-title: Distributed continuous-time convex optimization with time-varying cost functions
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2593899
SSID ssj0004182
Score 2.5571558
Snippet This paper investigates the distributed optimization problem of a group of Euler–Lagrange (EL) systems subject to unavailable inertial parameters. A local cost...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109060
SubjectTerms Distributed algorithm
Distributed optimization
Euler–Lagrange system
Gain adaptation
Title Adaptive distributed optimization algorithms for Euler–Lagrange systems
URI https://dx.doi.org/10.1016/j.automatica.2020.109060
Volume 119
WOSCitedRecordID wos000551496400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8NAFB7cDnoQV9zJwZtEmmay4alIRUXEg0r1EiYzk9qiSWkTqTf_g__QX-KbJYsLuICXUF55k-V9vHkzfPM9hHatBvMJzGQmx4Sb2GbM9B0amCy2uBXb8K8kY16feefnfqcTXGgS-0i2E_CSxB-Pg8G_hhpsEGxxdPYX4S4HBQP8hqDDFcIO1x8FvsXIQPKBmNDEFe2soKZMwfSgj1zukftuOuxld0qLYa-di9OAmvRgn5HuUBw40BrPo3r12sqzVEq8EqlSOlbE-HIr4TbNZUYnaRlGrlLJbe-J6ClSUnWV9abXzQuz3niAVWbBrKqSqRAxVU2ky2SqE6BKh4L1qdoFfMrUatOgL3g6-sn3xU32K5f34tgfJq2SSliw1PphNVIoRgrVSJNouuk5ASS86dZJu3NaHZq1fCUlr99C07wU-e_rp_q6dqnVI5cLaF4vJIyWAsAimuDJEpqryUsuo5MCCkYNCkYdCkYFBQOCaUgovD6_FCAwNAhW0NVR-_Lw2NStM0wKSToz4wBzDyo1TiLmRH4Uu9R2G3KxS0kDRywKXMyhuPNd7tqURwHzCMFN8HGpH9v2KppK0oSvISNiDe56mDdjp4kjUd_GFBbpDGMPlsrUWUde8VFCqnXlRXuT-_C70Kwjq_QcKG2VH_gcFN891DWiqv1CANa33ht_uOMmmq3Qv4WmsmHOt9EMfcx6o-GORtUbB56O6Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+distributed+optimization+algorithms+for+Euler%E2%80%93Lagrange+systems&rft.jtitle=Automatica+%28Oxford%29&rft.au=Zou%2C+Yao&rft.au=Meng%2C+Ziyang&rft.au=Hong%2C+Yiguang&rft.date=2020-09-01&rft.issn=0005-1098&rft.volume=119&rft.spage=109060&rft_id=info:doi/10.1016%2Fj.automatica.2020.109060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2020_109060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon