Adaptive distributed optimization algorithms for Euler–Lagrange systems
This paper investigates the distributed optimization problem of a group of Euler–Lagrange (EL) systems subject to unavailable inertial parameters. A local cost function is assigned to each agent and the sum of all the local cost functions is considered as the global one. Under widely used assumption...
Uloženo v:
| Vydáno v: | Automatica (Oxford) Ročník 119; s. 109060 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.09.2020
|
| Témata: | |
| ISSN: | 0005-1098, 1873-2836 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper investigates the distributed optimization problem of a group of Euler–Lagrange (EL) systems subject to unavailable inertial parameters. A local cost function is assigned to each agent and the sum of all the local cost functions is considered as the global one. Under widely used assumptions, an adaptive distributed algorithm is proposed such that all the agent states converge to the specified point minimizing the global cost function in a cooperative manner. In particular, by introducing a novel auxiliary system with adaptive gains, the proposed optimization algorithm is privacy-preserving such that no actual state of any agent is necessary for other agents. Moreover, the proposed optimization algorithm is fully distributed in the sense that the optimization objective is achieved without knowledge of global graph information, explicit global cost function as well as strongly convex and Lipschitz constants associated with all local cost functions. Numerical simulations are illustrated to validate the theoretical results. |
|---|---|
| AbstractList | This paper investigates the distributed optimization problem of a group of Euler–Lagrange (EL) systems subject to unavailable inertial parameters. A local cost function is assigned to each agent and the sum of all the local cost functions is considered as the global one. Under widely used assumptions, an adaptive distributed algorithm is proposed such that all the agent states converge to the specified point minimizing the global cost function in a cooperative manner. In particular, by introducing a novel auxiliary system with adaptive gains, the proposed optimization algorithm is privacy-preserving such that no actual state of any agent is necessary for other agents. Moreover, the proposed optimization algorithm is fully distributed in the sense that the optimization objective is achieved without knowledge of global graph information, explicit global cost function as well as strongly convex and Lipschitz constants associated with all local cost functions. Numerical simulations are illustrated to validate the theoretical results. |
| ArticleNumber | 109060 |
| Author | Hong, Yiguang Meng, Ziyang Zou, Yao |
| Author_xml | – sequence: 1 givenname: Yao surname: Zou fullname: Zou, Yao email: zouyao@ustb.edu.cn organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, PR China – sequence: 2 givenname: Ziyang surname: Meng fullname: Meng, Ziyang email: ziyangmeng@mail.tsinghua.edu.cn organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, PR China – sequence: 3 givenname: Yiguang surname: Hong fullname: Hong, Yiguang email: yghong@iss.ac.cn organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, PR China |
| BookMark | eNqNkM1KAzEURoNUsK2-w7zA1PzMpJmNUEvVQsGNrkMmuVNTZiYlSQt15Tv4hj6JqRUEN7q63O_yHbhnhAa96wGhjOAJwYRfbyZqF12notVqQjE9xhXm-AwNiZiynArGB2iIMS7zdBEXaBTCJq0FEXSIljOjttHuITM2RG_rXQSTuRR19jVBXZ-pdu28jS9dyBrns8WuBf_x9r5Sa6_6NWThECJ04RKdN6oNcPU9x-j5bvE0f8hXj_fL-WyVa0ZEzJuqgCknDFRtylrUDdeM45LTstIKF7WpK16AIFRw4ExDXZmpUgVNHa5Fw9gYiRNXexeCh0Zuve2UP0iC5VGJ3MgfJfKoRJ6UpOrNr6q28evJ6JVt_wO4PQEgPbi34GXQFnoNxnrQURpn_4Z8AqLsiTM |
| CitedBy_id | crossref_primary_10_1109_TAC_2023_3335797 crossref_primary_10_1016_j_jfranklin_2023_09_012 crossref_primary_10_1109_TCSI_2022_3221097 crossref_primary_10_1016_j_automatica_2022_110259 crossref_primary_10_1109_TSMC_2021_3138109 crossref_primary_10_1109_TCYB_2021_3128051 crossref_primary_10_1109_TII_2025_3574441 crossref_primary_10_1109_TCNS_2024_3371550 crossref_primary_10_1007_s11768_022_00111_0 crossref_primary_10_1109_TSMC_2023_3300354 crossref_primary_10_1109_TNNLS_2021_3130173 crossref_primary_10_1109_ACCESS_2024_3486080 crossref_primary_10_1109_TAC_2022_3194100 crossref_primary_10_1002_asjc_3361 crossref_primary_10_1016_j_ast_2022_108019 crossref_primary_10_1038_s41598_025_86683_8 crossref_primary_10_1109_TSMC_2024_3373560 crossref_primary_10_1109_TCYB_2023_3347653 crossref_primary_10_1109_TAC_2022_3152727 crossref_primary_10_12677_aam_2024_137306 crossref_primary_10_1109_JIOT_2025_3566366 crossref_primary_10_1109_TAC_2024_3492952 crossref_primary_10_1109_TCSII_2023_3294388 crossref_primary_10_1016_j_automatica_2021_110113 crossref_primary_10_1109_TITS_2023_3330995 crossref_primary_10_1016_j_automatica_2024_111882 crossref_primary_10_1016_j_automatica_2023_111245 crossref_primary_10_1109_JSYST_2024_3417255 crossref_primary_10_1109_TAC_2023_3301957 crossref_primary_10_1109_TSMC_2023_3247456 crossref_primary_10_1002_acs_3784 crossref_primary_10_1007_s11071_025_11175_3 crossref_primary_10_1016_j_automatica_2022_110829 crossref_primary_10_1109_TAC_2024_3394128 crossref_primary_10_1109_TNSE_2022_3225409 crossref_primary_10_1109_ACCESS_2022_3191909 crossref_primary_10_1109_TCYB_2024_3485230 crossref_primary_10_1109_TSMC_2024_3405453 crossref_primary_10_1002_asjc_3220 crossref_primary_10_1002_asjc_3064 crossref_primary_10_1080_00207721_2025_2528633 crossref_primary_10_1109_TCSII_2021_3140141 crossref_primary_10_1016_j_ins_2023_119116 crossref_primary_10_1109_TCSII_2021_3089609 crossref_primary_10_1016_j_chaos_2023_114375 crossref_primary_10_1016_j_automatica_2023_111339 crossref_primary_10_1109_TCNS_2023_3338245 crossref_primary_10_1016_j_jfranklin_2021_08_033 crossref_primary_10_1109_TFUZZ_2024_3441008 crossref_primary_10_1016_j_jfranklin_2023_07_031 crossref_primary_10_1002_rnc_7258 crossref_primary_10_1109_TCYB_2025_3566155 crossref_primary_10_1016_j_automatica_2025_112580 |
| Cites_doi | 10.1142/S230138501640001X 10.1109/TWC.2015.2402672 10.1109/TAC.2008.2009515 10.1109/TAC.2015.2504728 10.1016/j.automatica.2017.01.004 10.1109/TCOMM.2017.2715176 10.1109/TAC.2017.2750103 10.1109/CDC.2011.6161503 10.1002/rnc.3535 10.1109/TAC.2017.2669321 10.1109/TAC.2016.2604324 10.1002/rnc.3170 10.1016/j.automatica.2016.05.014 10.1016/j.automatica.2015.11.014 10.1109/TAC.2012.2184199 10.1016/j.automatica.2017.07.010 10.1109/TSMC.2016.2531649 10.1109/TSMCB.2010.2095497 10.1109/TAC.2015.2504962 10.1109/TAC.2016.2593899 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.automatica.2020.109060 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2836 |
| ExternalDocumentID | 10_1016_j_automatica_2020_109060 S0005109820302582 |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2016YFB05009002 funderid: http://dx.doi.org/10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 61873140; 61833009; 61733018; 61703229; U19B2029 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Institute for Guo Qiang of Tsinghua University, PR China grantid: 2019GQG1023 funderid: http://dx.doi.org/10.13039/501100004147 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XFK XPP ZMT ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c318t-f94e7613eabd5b8bf6c36056259ca04bdb964e81286e63ceb9d7aa427616c8f33 |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551496400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0005-1098 |
| IngestDate | Sat Nov 29 07:32:54 EST 2025 Tue Nov 18 22:34:58 EST 2025 Fri Feb 23 02:46:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Distributed optimization Gain adaptation Euler–Lagrange system Distributed algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c318t-f94e7613eabd5b8bf6c36056259ca04bdb964e81286e63ceb9d7aa427616c8f33 |
| ParticipantIDs | crossref_primary_10_1016_j_automatica_2020_109060 crossref_citationtrail_10_1016_j_automatica_2020_109060 elsevier_sciencedirect_doi_10_1016_j_automatica_2020_109060 |
| PublicationCentury | 2000 |
| PublicationDate | September 2020 2020-09-00 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Automatica (Oxford) |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Cai, Huang (b1) 2016; 61 Deng, Hong (b3) 2016; 4 Wang, J., & Elia, N. (2011). A control perspective for centralized and distributed convex optimization. In Chen, Lewis (b2) 2011; 41 Lin, Ren, Farrell (b8) 2017; 52 Lou, Hong, Xie, Shi, Johansson (b10) 2016; 61 Rockafellar (b18) 2005 Rockafellar (b17) 1972 Xue, Li, Nahrstedt (b22) 2016; 5 Zhang, Deng, Hong (b24) 2017; 79 Klotz, Cheng, Warren (b6) 2016; 26 Li, Ding, Sun, Li (b7) 2018; 63 Meng, Yang, Shi, Dimarogonas, Hong, Johansson (b12) 2017; 84 Zhao, Liu, Wen, Chen (b27) 2017; 62 Zhang, Lou, Hong, Xie (b25) 2015; 14 Ding, Li (b4) 2016; 72 Lin, Ren, Song (b9) 2016; 65 Rahili, Ren (b16) 2017; 62 Yang, Liu, Wang (b23) 2017; 47 Khalil (b5) 2002 Zhao, Duan, Wen (b26) 2015; 25 Nedic, Ozdaglar (b14) 2009; 54 Tang, Ren, Han (b20) 2017; 65 (pp. 3800–3805). Spong, Hutchinson, Vidyasagar (b19) 2006 Lu, Tang (b11) 2012; 57 Nedic, Liu (b13) 2018; 1 Ortega, Loría, Nicklasson, Sira-Ramírez (b15) 1998 Lin (10.1016/j.automatica.2020.109060_b8) 2017; 52 Lou (10.1016/j.automatica.2020.109060_b10) 2016; 61 Ding (10.1016/j.automatica.2020.109060_b4) 2016; 72 Rockafellar (10.1016/j.automatica.2020.109060_b18) 2005 Nedic (10.1016/j.automatica.2020.109060_b13) 2018; 1 Klotz (10.1016/j.automatica.2020.109060_b6) 2016; 26 Zhang (10.1016/j.automatica.2020.109060_b24) 2017; 79 Li (10.1016/j.automatica.2020.109060_b7) 2018; 63 Zhang (10.1016/j.automatica.2020.109060_b25) 2015; 14 Lin (10.1016/j.automatica.2020.109060_b9) 2016; 65 Xue (10.1016/j.automatica.2020.109060_b22) 2016; 5 Rockafellar (10.1016/j.automatica.2020.109060_b17) 1972 Deng (10.1016/j.automatica.2020.109060_b3) 2016; 4 Spong (10.1016/j.automatica.2020.109060_b19) 2006 Nedic (10.1016/j.automatica.2020.109060_b14) 2009; 54 Meng (10.1016/j.automatica.2020.109060_b12) 2017; 84 Chen (10.1016/j.automatica.2020.109060_b2) 2011; 41 Ortega (10.1016/j.automatica.2020.109060_b15) 1998 Zhao (10.1016/j.automatica.2020.109060_b26) 2015; 25 Rahili (10.1016/j.automatica.2020.109060_b16) 2017; 62 Cai (10.1016/j.automatica.2020.109060_b1) 2016; 61 10.1016/j.automatica.2020.109060_b21 Yang (10.1016/j.automatica.2020.109060_b23) 2017; 47 Zhao (10.1016/j.automatica.2020.109060_b27) 2017; 62 Lu (10.1016/j.automatica.2020.109060_b11) 2012; 57 Tang (10.1016/j.automatica.2020.109060_b20) 2017; 65 Khalil (10.1016/j.automatica.2020.109060_b5) 2002 |
| References_xml | – year: 2002 ident: b5 article-title: Nonlinear systems – volume: 26 start-page: 3791 year: 2016 end-page: 3805 ident: b6 article-title: Robust containment control in a leader-follower network of uncertain Euler-Lagrange systems publication-title: International Journal of Robust and Nonlinear Control – volume: 65 start-page: 120 year: 2016 end-page: 131 ident: b9 article-title: Distributed optimization for control publication-title: Automatica – volume: 47 start-page: 717 year: 2017 end-page: 728 ident: b23 article-title: Distributed optimization based on a multiagent system in the presence of communication delays publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 84 start-page: 109 year: 2017 end-page: 116 ident: b12 article-title: Targeted agreement of multiple Lagrangian systems publication-title: Automatica – volume: 54 start-page: 48 year: 2009 end-page: 61 ident: b14 article-title: Distributed subgradient methods for multi-agent optimization publication-title: IEEE Transactions on Automatic Control – volume: 5 start-page: 347 year: 2016 end-page: 364 ident: b22 article-title: Optimal resource allocation in wireless Ad Hoc networks: A price-based approach publication-title: IEEE Transactions on Mobile Computing – volume: 14 start-page: 3131 year: 2015 end-page: 3142 ident: b25 article-title: Distributed projection-based algorithms for source localization in wireless sensor networks publication-title: IEEE Transactions on Wireless Communication – volume: 62 start-page: 1590 year: 2017 end-page: 1605 ident: b16 article-title: Distributed continuous-time convex optimization with time-varying cost functions publication-title: IEEE Transactions on Automatic Control – reference: Wang, J., & Elia, N. (2011). A control perspective for centralized and distributed convex optimization. In – volume: 1 start-page: 77 year: 2018 end-page: 103 ident: b13 article-title: Distributed multi-agent optimization subject to nonidentical constraints and communication delays publication-title: Annual Review of Control, Robotics, and Autonomous Systems – volume: 62 start-page: 3602 year: 2017 end-page: 3609 ident: b27 article-title: Distributed optimization for linear multiagent systems: Edge- and node-based adaptive designs publication-title: IEEE Transactions on Automatic Control – volume: 4 start-page: 5 year: 2016 end-page: 13 ident: b3 article-title: Multi-agent optimization design for autonomous Lagrangian systems publication-title: Unmanned Systems – year: 2005 ident: b18 article-title: Nonlinear programming: Theory and algorithms – year: 1972 ident: b17 article-title: Convex analysis – volume: 65 start-page: 4065 year: 2017 end-page: 4079 ident: b20 article-title: Distributed power optimization for security-aware multi-channel full-duplex communications: A variational inequality framework publication-title: IEEE Transactions on Communications – volume: 25 start-page: 1688 year: 2015 end-page: 1703 ident: b26 article-title: Distributed finite-time tracking of multiple Euler-Lagrange systems without velocity measurements publication-title: International Journal of Robust and Nonlinear Control – volume: 72 start-page: 46 year: 2016 end-page: 52 ident: b4 article-title: Distributed adaptive consensus control of nonlinear output-feedback systems on directed graphs publication-title: Automatica – year: 1998 ident: b15 article-title: Passivity-based control of Euler-Lagrange systems – volume: 57 start-page: 2348 year: 2012 end-page: 2354 ident: b11 article-title: Zero-gradient-sum algorithms for distributed convex optimization: The continuous-time case publication-title: IEEE Transactions on Automatic Control – volume: 61 start-page: 3152 year: 2016 end-page: 3157 ident: b1 article-title: The leader-following consensus for multiple uncertain Euler-Lagrange systems with an adaptive distributed observer publication-title: IEEE Transactions on Automatic Control – reference: (pp. 3800–3805). – volume: 63 start-page: 1434 year: 2018 end-page: 1441 ident: b7 article-title: Distributed adaptive convex optimization on directed graphs via continuous-time algorithms publication-title: IEEE Transactions on Automatic Control – volume: 41 start-page: 805 year: 2011 end-page: 816 ident: b2 article-title: Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics – volume: 52 start-page: 2239 year: 2017 end-page: 2253 ident: b8 article-title: Distributed continuous-time optimization: Nonuniform gradient gains, finite-time convergence, and convex constraint set publication-title: IEEE Transactions on Automatic Control – volume: 61 start-page: 2920 year: 2016 end-page: 2935 ident: b10 article-title: Nash equilibrium computation in subnetwork zero-sum games with switching communications publication-title: IEEE Transactions on Automatic Control – year: 2006 ident: b19 article-title: Robot dynamics and control – volume: 79 start-page: 207 year: 2017 end-page: 213 ident: b24 article-title: Distributed optimal coordination for multiple heterogeneous Euler-Lagrangian systems publication-title: Automatica – year: 2005 ident: 10.1016/j.automatica.2020.109060_b18 – volume: 4 start-page: 5 issue: 1 year: 2016 ident: 10.1016/j.automatica.2020.109060_b3 article-title: Multi-agent optimization design for autonomous Lagrangian systems publication-title: Unmanned Systems doi: 10.1142/S230138501640001X – volume: 14 start-page: 3131 issue: 6 year: 2015 ident: 10.1016/j.automatica.2020.109060_b25 article-title: Distributed projection-based algorithms for source localization in wireless sensor networks publication-title: IEEE Transactions on Wireless Communication doi: 10.1109/TWC.2015.2402672 – volume: 54 start-page: 48 issue: 1 year: 2009 ident: 10.1016/j.automatica.2020.109060_b14 article-title: Distributed subgradient methods for multi-agent optimization publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2008.2009515 – volume: 61 start-page: 3152 issue: 10 year: 2016 ident: 10.1016/j.automatica.2020.109060_b1 article-title: The leader-following consensus for multiple uncertain Euler-Lagrange systems with an adaptive distributed observer publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2015.2504728 – volume: 5 start-page: 347 issue: 4 year: 2016 ident: 10.1016/j.automatica.2020.109060_b22 article-title: Optimal resource allocation in wireless Ad Hoc networks: A price-based approach publication-title: IEEE Transactions on Mobile Computing – volume: 79 start-page: 207 year: 2017 ident: 10.1016/j.automatica.2020.109060_b24 article-title: Distributed optimal coordination for multiple heterogeneous Euler-Lagrangian systems publication-title: Automatica doi: 10.1016/j.automatica.2017.01.004 – volume: 65 start-page: 4065 issue: 9 year: 2017 ident: 10.1016/j.automatica.2020.109060_b20 article-title: Distributed power optimization for security-aware multi-channel full-duplex communications: A variational inequality framework publication-title: IEEE Transactions on Communications doi: 10.1109/TCOMM.2017.2715176 – volume: 63 start-page: 1434 issue: 5 year: 2018 ident: 10.1016/j.automatica.2020.109060_b7 article-title: Distributed adaptive convex optimization on directed graphs via continuous-time algorithms publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2017.2750103 – year: 2006 ident: 10.1016/j.automatica.2020.109060_b19 – ident: 10.1016/j.automatica.2020.109060_b21 doi: 10.1109/CDC.2011.6161503 – volume: 26 start-page: 3791 issue: 17 year: 2016 ident: 10.1016/j.automatica.2020.109060_b6 article-title: Robust containment control in a leader-follower network of uncertain Euler-Lagrange systems publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.3535 – volume: 62 start-page: 3602 issue: 7 year: 2017 ident: 10.1016/j.automatica.2020.109060_b27 article-title: Distributed optimization for linear multiagent systems: Edge- and node-based adaptive designs publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2017.2669321 – year: 1998 ident: 10.1016/j.automatica.2020.109060_b15 – volume: 52 start-page: 2239 issue: 5 year: 2017 ident: 10.1016/j.automatica.2020.109060_b8 article-title: Distributed continuous-time optimization: Nonuniform gradient gains, finite-time convergence, and convex constraint set publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2604324 – year: 2002 ident: 10.1016/j.automatica.2020.109060_b5 – volume: 25 start-page: 1688 issue: 11 year: 2015 ident: 10.1016/j.automatica.2020.109060_b26 article-title: Distributed finite-time tracking of multiple Euler-Lagrange systems without velocity measurements publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.3170 – volume: 72 start-page: 46 year: 2016 ident: 10.1016/j.automatica.2020.109060_b4 article-title: Distributed adaptive consensus control of nonlinear output-feedback systems on directed graphs publication-title: Automatica doi: 10.1016/j.automatica.2016.05.014 – volume: 65 start-page: 120 year: 2016 ident: 10.1016/j.automatica.2020.109060_b9 article-title: Distributed optimization for control publication-title: Automatica doi: 10.1016/j.automatica.2015.11.014 – volume: 57 start-page: 2348 issue: 9 year: 2012 ident: 10.1016/j.automatica.2020.109060_b11 article-title: Zero-gradient-sum algorithms for distributed convex optimization: The continuous-time case publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2012.2184199 – volume: 1 start-page: 77 year: 2018 ident: 10.1016/j.automatica.2020.109060_b13 article-title: Distributed multi-agent optimization subject to nonidentical constraints and communication delays publication-title: Annual Review of Control, Robotics, and Autonomous Systems – volume: 84 start-page: 109 year: 2017 ident: 10.1016/j.automatica.2020.109060_b12 article-title: Targeted agreement of multiple Lagrangian systems publication-title: Automatica doi: 10.1016/j.automatica.2017.07.010 – volume: 47 start-page: 717 issue: 5 year: 2017 ident: 10.1016/j.automatica.2020.109060_b23 article-title: Distributed optimization based on a multiagent system in the presence of communication delays publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2016.2531649 – volume: 41 start-page: 805 issue: 3 year: 2011 ident: 10.1016/j.automatica.2020.109060_b2 article-title: Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics doi: 10.1109/TSMCB.2010.2095497 – volume: 61 start-page: 2920 issue: 10 year: 2016 ident: 10.1016/j.automatica.2020.109060_b10 article-title: Nash equilibrium computation in subnetwork zero-sum games with switching communications publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2015.2504962 – year: 1972 ident: 10.1016/j.automatica.2020.109060_b17 – volume: 62 start-page: 1590 issue: 4 year: 2017 ident: 10.1016/j.automatica.2020.109060_b16 article-title: Distributed continuous-time convex optimization with time-varying cost functions publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2593899 |
| SSID | ssj0004182 |
| Score | 2.5571558 |
| Snippet | This paper investigates the distributed optimization problem of a group of Euler–Lagrange (EL) systems subject to unavailable inertial parameters. A local cost... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109060 |
| SubjectTerms | Distributed algorithm Distributed optimization Euler–Lagrange system Gain adaptation |
| Title | Adaptive distributed optimization algorithms for Euler–Lagrange systems |
| URI | https://dx.doi.org/10.1016/j.automatica.2020.109060 |
| Volume | 119 |
| WOSCitedRecordID | wos000551496400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-2836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8NAFB7cDnoQV9zJwZtEmmay4alIRUXEg0r1EiYzk9qiSWkTqTf_g__QX-KbJYsLuICXUF55k-V9vHkzfPM9hHatBvMJzGQmx4Sb2GbM9B0amCy2uBXb8K8kY16feefnfqcTXGgS-0i2E_CSxB-Pg8G_hhpsEGxxdPYX4S4HBQP8hqDDFcIO1x8FvsXIQPKBmNDEFe2soKZMwfSgj1zukftuOuxld0qLYa-di9OAmvRgn5HuUBw40BrPo3r12sqzVEq8EqlSOlbE-HIr4TbNZUYnaRlGrlLJbe-J6ClSUnWV9abXzQuz3niAVWbBrKqSqRAxVU2ky2SqE6BKh4L1qdoFfMrUatOgL3g6-sn3xU32K5f34tgfJq2SSliw1PphNVIoRgrVSJNouuk5ASS86dZJu3NaHZq1fCUlr99C07wU-e_rp_q6dqnVI5cLaF4vJIyWAsAimuDJEpqryUsuo5MCCkYNCkYdCkYFBQOCaUgovD6_FCAwNAhW0NVR-_Lw2NStM0wKSToz4wBzDyo1TiLmRH4Uu9R2G3KxS0kDRywKXMyhuPNd7tqURwHzCMFN8HGpH9v2KppK0oSvISNiDe56mDdjp4kjUd_GFBbpDGMPlsrUWUde8VFCqnXlRXuT-_C70Kwjq_QcKG2VH_gcFN891DWiqv1CANa33ht_uOMmmq3Qv4WmsmHOt9EMfcx6o-GORtUbB56O6Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+distributed+optimization+algorithms+for+Euler%E2%80%93Lagrange+systems&rft.jtitle=Automatica+%28Oxford%29&rft.au=Zou%2C+Yao&rft.au=Meng%2C+Ziyang&rft.au=Hong%2C+Yiguang&rft.date=2020-09-01&rft.issn=0005-1098&rft.volume=119&rft.spage=109060&rft_id=info:doi/10.1016%2Fj.automatica.2020.109060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2020_109060 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |