Parallel PCA–KPCA for nonlinear process monitoring

Both linear and nonlinear relationships may exist among process variables, and monitoring a process with such complex relationships among variables is imperative. However, individual principal component analysis (PCA) or kernel PCA (KPCA) may not be able to characterize these complex relationships w...

Full description

Saved in:
Bibliographic Details
Published in:Control engineering practice Vol. 80; pp. 17 - 25
Main Authors: Jiang, Qingchao, Yan, Xuefeng
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.11.2018
Subjects:
ISSN:0967-0661, 1873-6939
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Both linear and nonlinear relationships may exist among process variables, and monitoring a process with such complex relationships among variables is imperative. However, individual principal component analysis (PCA) or kernel PCA (KPCA) may not be able to characterize these complex relationships well. This paper proposes a parallel PCA–KPCA (P-PCA–KPCA) modeling and monitoring scheme that incorporates randomized algorithm (RA) and genetic algorithm (GA) for efficient fault detection for a process with linearly correlated and nonlinearly related variables First, to determine the included variables in the parallel PCA (P-PCA) and the parallel KPCA (P-KPCA) models, GA-based optimization is performed, in which RA is used to generate faulty validation data. Second, monitoring statistics are established for the P-PCA and the P-KPCA models, in which the process status is determined. The proposed monitoring scheme discriminates the linear and nonlinear relationships among variables in a process and deals with nonlinear processes efficiently. We provide case studies on a numerical example and the continuous stirred tank reactor process. These case studies demonstrate that the proposed P-PCA–KPCA monitoring scheme is better than conventional PCA- or KPCA-based methods at performing nonlinear process monitoring. •A parallel PCA–KPCA-based nonlinear process monitoring scheme is proposed.•RA and GA are integrated to emplace variables automatically.•Linear and nonlinear variable relationships are well characterized.•Monitoring efficiency and superiority are demonstrated.
AbstractList Both linear and nonlinear relationships may exist among process variables, and monitoring a process with such complex relationships among variables is imperative. However, individual principal component analysis (PCA) or kernel PCA (KPCA) may not be able to characterize these complex relationships well. This paper proposes a parallel PCA–KPCA (P-PCA–KPCA) modeling and monitoring scheme that incorporates randomized algorithm (RA) and genetic algorithm (GA) for efficient fault detection for a process with linearly correlated and nonlinearly related variables First, to determine the included variables in the parallel PCA (P-PCA) and the parallel KPCA (P-KPCA) models, GA-based optimization is performed, in which RA is used to generate faulty validation data. Second, monitoring statistics are established for the P-PCA and the P-KPCA models, in which the process status is determined. The proposed monitoring scheme discriminates the linear and nonlinear relationships among variables in a process and deals with nonlinear processes efficiently. We provide case studies on a numerical example and the continuous stirred tank reactor process. These case studies demonstrate that the proposed P-PCA–KPCA monitoring scheme is better than conventional PCA- or KPCA-based methods at performing nonlinear process monitoring. •A parallel PCA–KPCA-based nonlinear process monitoring scheme is proposed.•RA and GA are integrated to emplace variables automatically.•Linear and nonlinear variable relationships are well characterized.•Monitoring efficiency and superiority are demonstrated.
Author Yan, Xuefeng
Jiang, Qingchao
Author_xml – sequence: 1
  givenname: Qingchao
  surname: Jiang
  fullname: Jiang, Qingchao
– sequence: 2
  givenname: Xuefeng
  surname: Yan
  fullname: Yan, Xuefeng
  email: xfyan@ecust.edu.cn
BookMark eNqNj81KAzEURoNUsK2-w7zAjPmZZJKNUIt_WLALXYfbTFIyTJOSDII738E39EmcUkFwo6sPLpxzOTM0CTFYhAqCK4KJuOwqMx7Cdp_AVBQTWeGmwoSeoCmRDSuFYmqCpliJpsRCkDM0y7nDI6oUmaJ6DQn63vbFern4fP94HKdwMRXjm94HC6nYp2hszsUuBj_E5MP2HJ066LO9-N45erm9eV7el6unu4flYlUaRuRQOg41BiXalkmg3FHJJOcgGLW1NE5IxpnbNOBcC462tDYYK6eM5PWGC0fZHMmj16SYc7JO75PfQXrTBOtDve70T70-1Gvc6LF-RK9-ocYPMPgYhgS-_4_g-iiwY-Crt0ln420wtvXJmkG30f8t-QJNTYBP
CitedBy_id crossref_primary_10_3390_pr12020251
crossref_primary_10_3390_su16156443
crossref_primary_10_1016_j_jtice_2023_104687
crossref_primary_10_1002_cjce_25242
crossref_primary_10_1109_TNNLS_2023_3242361
crossref_primary_10_1155_2022_3054860
crossref_primary_10_3390_s25061847
crossref_primary_10_1016_j_chemolab_2025_105423
crossref_primary_10_1109_TASE_2019_2897477
crossref_primary_10_1109_TIM_2024_3413131
crossref_primary_10_1016_j_eswa_2022_117732
crossref_primary_10_1002_cem_3110
crossref_primary_10_1016_j_conengprac_2021_105038
crossref_primary_10_1016_j_conengprac_2020_104344
crossref_primary_10_1002_cjce_23858
crossref_primary_10_1016_j_conengprac_2019_03_015
crossref_primary_10_1002_cjce_23576
crossref_primary_10_1016_j_isatra_2019_05_013
crossref_primary_10_1016_j_compeleceng_2022_108538
crossref_primary_10_1109_ACCESS_2019_2937886
crossref_primary_10_1177_18758967251348540
crossref_primary_10_1177_01423312231195365
crossref_primary_10_1016_j_apor_2021_102681
crossref_primary_10_1088_1361_6501_ac2ca4
crossref_primary_10_1038_s41598_024_68141_z
crossref_primary_10_1109_TASE_2019_2956087
crossref_primary_10_1016_j_ces_2021_117236
crossref_primary_10_1016_j_ins_2020_06_062
crossref_primary_10_1109_ACCESS_2019_2906976
crossref_primary_10_1016_j_asoc_2019_105527
crossref_primary_10_1016_j_asoc_2019_105526
crossref_primary_10_1088_1361_6501_addf6c
crossref_primary_10_1109_TCST_2019_2936793
crossref_primary_10_1016_j_conengprac_2019_104295
crossref_primary_10_1109_ACCESS_2020_3006282
crossref_primary_10_1109_ACCESS_2021_3083544
crossref_primary_10_1177_0142331220910885
crossref_primary_10_3390_su12010131
crossref_primary_10_1016_j_conengprac_2024_105970
crossref_primary_10_1088_1361_6501_ab7bbd
crossref_primary_10_1371_journal_pone_0297996
crossref_primary_10_1109_TII_2024_3353840
crossref_primary_10_1109_TSMC_2019_2896922
crossref_primary_10_1016_j_jfranklin_2022_06_022
crossref_primary_10_1109_ACCESS_2019_2958547
crossref_primary_10_3389_fenrg_2021_696785
crossref_primary_10_1007_s43153_021_00125_2
crossref_primary_10_1109_TII_2022_3209248
crossref_primary_10_1109_TSMC_2022_3224747
crossref_primary_10_1016_j_jprocont_2020_03_007
crossref_primary_10_1002_cjce_23753
crossref_primary_10_1109_TIE_2019_2942560
crossref_primary_10_1002_cjce_24722
crossref_primary_10_1109_TII_2023_3240732
crossref_primary_10_1016_j_jprocont_2023_03_003
crossref_primary_10_1155_2022_3511073
crossref_primary_10_3390_pr8091123
crossref_primary_10_1002_cjce_24066
crossref_primary_10_3390_s19061440
crossref_primary_10_1016_j_apenergy_2022_119678
crossref_primary_10_1016_j_conengprac_2023_105660
crossref_primary_10_1109_TIM_2023_3334335
crossref_primary_10_1109_ACCESS_2019_2894764
crossref_primary_10_1016_j_conengprac_2020_104628
crossref_primary_10_1016_j_rcim_2023_102694
crossref_primary_10_1109_JSEN_2022_3144827
crossref_primary_10_1016_j_ins_2019_11_039
crossref_primary_10_1016_j_jtice_2019_10_021
crossref_primary_10_1080_21642583_2020_1768173
crossref_primary_10_1109_ACCESS_2020_3000004
crossref_primary_10_1109_TIM_2023_3289545
crossref_primary_10_1016_j_conengprac_2021_104778
crossref_primary_10_1109_ACCESS_2019_2962008
crossref_primary_10_1155_2020_8864594
crossref_primary_10_1016_j_jfranklin_2020_01_049
crossref_primary_10_1016_j_measurement_2019_03_013
crossref_primary_10_1016_j_ifacol_2020_12_699
crossref_primary_10_1016_j_measurement_2020_108200
crossref_primary_10_1088_1361_6501_ad1a87
crossref_primary_10_1109_ACCESS_2019_2907328
crossref_primary_10_1016_j_engappai_2021_104381
crossref_primary_10_1016_j_ress_2025_111347
crossref_primary_10_1016_j_asoc_2022_108898
crossref_primary_10_1016_j_isatra_2020_07_037
crossref_primary_10_1109_ACCESS_2019_2909986
crossref_primary_10_1002_cjce_23762
crossref_primary_10_1109_ACCESS_2019_2920395
crossref_primary_10_1177_1550147719857583
crossref_primary_10_1016_j_chemolab_2023_104931
crossref_primary_10_1109_TNNLS_2021_3086323
crossref_primary_10_1002_apj_3132
crossref_primary_10_1016_j_conengprac_2023_105750
crossref_primary_10_1016_j_ifacol_2020_12_101
crossref_primary_10_1002_cem_3158
crossref_primary_10_1109_TCSII_2023_3330904
crossref_primary_10_3390_pr8010024
crossref_primary_10_1016_j_neunet_2020_11_006
crossref_primary_10_1109_TIM_2022_3222506
crossref_primary_10_1109_TCYB_2022_3228524
crossref_primary_10_1109_TCST_2018_2870570
crossref_primary_10_1109_TNNLS_2020_2985223
crossref_primary_10_1016_j_conengprac_2022_105182
crossref_primary_10_1002_cjce_23670
crossref_primary_10_1016_j_cjche_2024_02_005
crossref_primary_10_1109_TASE_2023_3332452
crossref_primary_10_1080_17517575_2021_1995784
crossref_primary_10_1109_TII_2020_3029900
crossref_primary_10_1016_j_chemolab_2022_104528
crossref_primary_10_1109_TIM_2024_3476588
crossref_primary_10_1016_j_conengprac_2022_105109
crossref_primary_10_3390_pr10050925
crossref_primary_10_1007_s13369_021_05388_y
crossref_primary_10_1007_s10489_021_03007_9
crossref_primary_10_1002_cjce_25689
crossref_primary_10_1002_cjce_25688
crossref_primary_10_1002_cem_3142
crossref_primary_10_1016_j_compchemeng_2024_108707
crossref_primary_10_1080_21642583_2021_1967220
crossref_primary_10_1109_ACCESS_2020_3034550
crossref_primary_10_1016_j_ifacol_2022_07_533
crossref_primary_10_1007_s13762_020_02799_6
crossref_primary_10_1016_j_conengprac_2019_07_017
crossref_primary_10_1016_j_flowmeasinst_2021_101904
crossref_primary_10_1016_j_ress_2024_110421
crossref_primary_10_1016_j_cie_2021_107447
crossref_primary_10_1109_ACCESS_2019_2892496
crossref_primary_10_1016_j_matpr_2021_11_327
crossref_primary_10_1016_j_conengprac_2020_104558
crossref_primary_10_1016_j_conengprac_2023_105613
crossref_primary_10_1016_j_conengprac_2021_104955
crossref_primary_10_1016_j_jtice_2020_06_001
crossref_primary_10_1002_cem_3134
crossref_primary_10_1016_j_pnucene_2022_104516
crossref_primary_10_1016_j_conengprac_2019_04_008
crossref_primary_10_1016_j_jfranklin_2023_03_041
crossref_primary_10_1002_aic_17402
crossref_primary_10_1016_j_conengprac_2019_104235
crossref_primary_10_1109_ACCESS_2018_2890301
crossref_primary_10_1007_s10614_024_10813_z
crossref_primary_10_1016_j_chemolab_2019_103812
crossref_primary_10_1016_j_jclepro_2024_143680
crossref_primary_10_1016_j_psep_2021_11_029
crossref_primary_10_1088_1742_6596_1748_3_032057
crossref_primary_10_1016_j_eswa_2022_117989
crossref_primary_10_1016_j_eswa_2023_121348
crossref_primary_10_1038_s41598_025_10634_6
crossref_primary_10_1109_ACCESS_2018_2886289
crossref_primary_10_1016_j_measurement_2023_113491
crossref_primary_10_1016_j_eswa_2023_120097
crossref_primary_10_1016_j_jprocont_2022_03_010
Cites_doi 10.1016/j.conengprac.2017.06.003
10.1016/j.jprocont.2016.08.006
10.1016/j.jprocont.2015.04.014
10.1016/0098-1354(95)00003-K
10.1021/ie301945s
10.1016/j.conengprac.2017.07.009
10.14257/ijhit.2016.9.1.17
10.1016/0166-218X(91)90086-C
10.1016/j.conengprac.2015.10.006
10.1016/0169-7439(95)00076-3
10.1016/S0959-1524(00)00022-6
10.1016/j.ces.2003.09.012
10.1016/S0959-1524(00)00008-1
10.1109/TIE.2014.2301761
10.1021/ie900521b
10.1016/j.eswa.2011.02.049
10.1109/TIE.2015.2466557
10.1021/ie3017016
10.1021/ie048873f
10.1002/(SICI)1099-128X(199905/08)13:3/4<379::AID-CEM556>3.0.CO;2-N
10.1016/j.conengprac.2017.07.005
10.1016/j.ifacol.2017.08.711
10.1162/089976698300017467
10.1002/aic.690370209
10.1016/j.chemolab.2014.05.012
10.1080/21642583.2016.1198940
10.1109/TNNLS.2016.2547968
10.1002/aic.690400809
10.1016/j.conengprac.2017.05.005
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conengprac.2018.07.012
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
EndPage 25
ExternalDocumentID 10_1016_j_conengprac_2018_07_012
S0967066118303289
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-f5a40a96dd38a25f283855a632e48cf68353fb7affdaf2d24c009f9c854b56f23
ISICitedReferencesCount 182
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447483500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0967-0661
IngestDate Sat Nov 29 07:10:09 EST 2025
Tue Nov 18 21:49:54 EST 2025
Fri Feb 23 02:35:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear process monitoring
Fault detection
Randomized algorithm
Genetic algorithm
Parallel PCA–KPCA
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-f5a40a96dd38a25f283855a632e48cf68353fb7affdaf2d24c009f9c854b56f23
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_conengprac_2018_07_012
crossref_citationtrail_10_1016_j_conengprac_2018_07_012
elsevier_sciencedirect_doi_10_1016_j_conengprac_2018_07_012
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationTitle Control engineering practice
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Yue, Valle-Cervantes, Qin (b25) 2000; 10
Zhang, Chai, Wang (b39) 2017; 28
Cheng, Hsu, Chen (b5) 2010; 49
Nomikos, Macgregor (b28) 1994; 40
Lee, Yoo, Sang, Vanrolleghem, Lee (b23) 2004; 59
Samuel, Cao (b30) 2016; 4
Ma, Dong, Peng, Zhang (b27) 2017; 67
Wang, Kruger, Irwin (b33) 2005; 44
Wise, Gallagher, Butler, White, Barna (b35) 2015; 13
Yoon, Macgregor (b37) 2001; 11
Jiang, Yan, Huang (b17) 2016; 63
Ge, Song (b10) 2013; 52
Karp (b19) 1991; 34
Jiang, Ding, Wang, Yan (b12) 2017; PP
Rashidi, Singh, Zhao (b29) 2017; 70
Zhao, Gao (b41) 2017; 65
Tempo, Calafiore, Dabbene (b32) 2005
Chen (b2) 2011; 38
Kramer (b20) 1991; 37
Luo, Li, Deng, Zhong, Cai (b26) 2016; 9
Yi, Huang, He, Zhou, Han, Li (b36) 2017; PP
Dong, McAvoy (b9) 1996; 20
Bakdi, Kouadri, Bensmail (b1) 2017; 66
Chen, Ding, Peng, Yang, Gui (b4) 2017; PP
Krueger, Koenings, Liu, Ding, Saijai, Li (b21) 2017; 50
Li, Qin, Zhou (b24) 2014; 61
Deng, Tian, Chen, Harris (b7) 2016; PP
Goldberg (b11) 2006
Ku, Storer, Georgakis (b22) 1995; 30
Jiang, Wang, Yan (b14) 2017
Yuan, Wang, Yang, Ge, Song, Gui (b38) 2017; PP
Schölkopf, Smola, Müller (b31) 1998; 10
Chiang, Russell, Braatz (b6) 2001
Jiang, Yan (b15) 2014; 136
Ding (b8) 2014
Chen (b3) 2016; 46
Jiang, Huang (b13) 2016; 46
Zhang, Du, Li (b40) 2017; PP
Jiang, Yan, Zhao (b18) 2013; 52
Wang, Zhao (b34) 2017; 68
Jiang, Yan (b16) 2015; 32
Karp (10.1016/j.conengprac.2018.07.012_b19) 1991; 34
Ma (10.1016/j.conengprac.2018.07.012_b27) 2017; 67
Zhang (10.1016/j.conengprac.2018.07.012_b40) 2017; PP
Wise (10.1016/j.conengprac.2018.07.012_b35) 2015; 13
Samuel (10.1016/j.conengprac.2018.07.012_b30) 2016; 4
Jiang (10.1016/j.conengprac.2018.07.012_b15) 2014; 136
Zhao (10.1016/j.conengprac.2018.07.012_b41) 2017; 65
Jiang (10.1016/j.conengprac.2018.07.012_b18) 2013; 52
Ge (10.1016/j.conengprac.2018.07.012_b10) 2013; 52
Rashidi (10.1016/j.conengprac.2018.07.012_b29) 2017; 70
Deng (10.1016/j.conengprac.2018.07.012_b7) 2016; PP
Lee (10.1016/j.conengprac.2018.07.012_b23) 2004; 59
Nomikos (10.1016/j.conengprac.2018.07.012_b28) 1994; 40
Schölkopf (10.1016/j.conengprac.2018.07.012_b31) 1998; 10
Yoon (10.1016/j.conengprac.2018.07.012_b37) 2001; 11
Jiang (10.1016/j.conengprac.2018.07.012_b14) 2017
Ding (10.1016/j.conengprac.2018.07.012_b8) 2014
Goldberg (10.1016/j.conengprac.2018.07.012_b11) 2006
Luo (10.1016/j.conengprac.2018.07.012_b26) 2016; 9
Jiang (10.1016/j.conengprac.2018.07.012_b13) 2016; 46
Jiang (10.1016/j.conengprac.2018.07.012_b16) 2015; 32
Wang (10.1016/j.conengprac.2018.07.012_b34) 2017; 68
Yuan (10.1016/j.conengprac.2018.07.012_b38) 2017; PP
Chen (10.1016/j.conengprac.2018.07.012_b3) 2016; 46
Li (10.1016/j.conengprac.2018.07.012_b25) 2000; 10
Jiang (10.1016/j.conengprac.2018.07.012_b17) 2016; 63
Ku (10.1016/j.conengprac.2018.07.012_b22) 1995; 30
Krueger (10.1016/j.conengprac.2018.07.012_b21) 2017; 50
Bakdi (10.1016/j.conengprac.2018.07.012_b1) 2017; 66
Chiang (10.1016/j.conengprac.2018.07.012_b6) 2001
Dong (10.1016/j.conengprac.2018.07.012_b9) 1996; 20
Cheng (10.1016/j.conengprac.2018.07.012_b5) 2010; 49
Jiang (10.1016/j.conengprac.2018.07.012_b12) 2017; PP
Tempo (10.1016/j.conengprac.2018.07.012_b32) 2005
Wang (10.1016/j.conengprac.2018.07.012_b33) 2005; 44
Kramer (10.1016/j.conengprac.2018.07.012_b20) 1991; 37
Li (10.1016/j.conengprac.2018.07.012_b24) 2014; 61
Yi (10.1016/j.conengprac.2018.07.012_b36) 2017; PP
Chen (10.1016/j.conengprac.2018.07.012_b2) 2011; 38
Zhang (10.1016/j.conengprac.2018.07.012_b39) 2017; 28
Chen (10.1016/j.conengprac.2018.07.012_b4) 2017; PP
References_xml – volume: 32
  start-page: 38
  year: 2015
  end-page: 50
  ident: b16
  article-title: Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA
  publication-title: Journal of Process Control
– year: 2001
  ident: b6
  article-title: Fault detection and diagnosis in industrial systems
– volume: 50
  start-page: 3648
  year: 2017
  end-page: 3653
  ident: b21
  article-title: Randomized algorithm based fault detection system design for uncertain LTI systems
  publication-title: IFac Paper online
– volume: 30
  start-page: 179
  year: 1995
  end-page: 196
  ident: b22
  article-title: Disturbance detection and isolation by dynamic principal component analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 20
  start-page: 65
  year: 1996
  end-page: 78
  ident: b9
  article-title: Nonlinear principal component analysis — based on principal curves and neural networks
  publication-title: Computers & Chemical Engineering
– volume: 9
  start-page: 195
  year: 2016
  end-page: 206
  ident: b26
  article-title: Multivariate statistical Kernel PCA for nonlinear process fault diagnosis in military barracks
  publication-title: International Journal of Hybrid Information Technology
– volume: 37
  start-page: 233
  year: 1991
  end-page: 243
  ident: b20
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE Journal
– volume: 46
  start-page: 51
  year: 2016
  end-page: 58
  ident: b3
  article-title: Canonical correlation analysis-based fault detection methods
  publication-title: Control Engineering Practice
– volume: PP
  start-page: 1
  year: 2016
  end-page: 13
  ident: b7
  article-title: Nonlinear process fault diagnosis based on serial principal component analysis
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: PP
  year: 2017
  ident: b12
  article-title: Data-driven distributed local fault detection for large-scale processes based on GA-regularized canonical correlation analysis
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 4
  start-page: 1
  year: 2016
  end-page: 9
  ident: b30
  article-title: Nonlinear process fault detection and identification using kernel PCA and kernel density estimation
  publication-title: Systems Science & Control Engineering
– volume: PP
  year: 2017
  ident: b38
  article-title: Weighted linear dynamic system for feature representation and soft sensor application in nonlinear dynamic industrial processes
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 52
  start-page: 1947
  year: 2013
  end-page: 1957
  ident: b10
  article-title: Distributed PCA model for plant-wide process monitoring
  publication-title: Industrial and Engineering Chemistry Research
– volume: 13
  start-page: 379
  year: 2015
  end-page: 396
  ident: b35
  article-title: A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
  publication-title: Journal of Chemometrics
– volume: 34
  start-page: 29
  year: 1991
  end-page: 40
  ident: b19
  article-title: An introduction to randomized algorithms
  publication-title: Discrete Applied Mathematics
– volume: PP
  year: 2017
  ident: b40
  article-title: Observation and detection for a class of industrial systems
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 10
  start-page: 471
  year: 2000
  end-page: 486
  ident: b25
  article-title: Recursive PCA for adaptive process monitoring
  publication-title: Journal of Process Control
– volume: 10
  start-page: 1299
  year: 1998
  end-page: 1319
  ident: b31
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Computation
– year: 2014
  ident: b8
  article-title: Data-driven design of fault diagnosis and fault-tolerant control systems
– volume: 52
  start-page: 1635
  year: 2013
  end-page: 1644
  ident: b18
  article-title: Fault detection and diagnosis in chemical processes using sensitive principal component analysis
  publication-title: Industrial and Engineering Chemistry Research
– volume: 49
  start-page: 2254
  year: 2010
  end-page: 2262
  ident: b5
  article-title: Adaptive Kernel Principal Component Analysis (KPCA) for monitoring small disturbances of nonlinear processes
  publication-title: Industrial & Engineering Chemistry Research
– volume: 136
  start-page: 121
  year: 2014
  end-page: 137
  ident: b15
  article-title: Monitoring multi-mode plant-wide processes by using mutual information-based multi-block PCA, joint probability, and Bayesian inference
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 11
  start-page: 387
  year: 2001
  end-page: 400
  ident: b37
  article-title: Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
  publication-title: Journal of Process Control
– volume: 44
  start-page: 5691
  year: 2005
  end-page: 5702
  ident: b33
  article-title: Process monitoring approach using fast moving window PCA
  publication-title: Industrial and Engineering Chemistry Research
– volume: 40
  start-page: 1361
  year: 1994
  end-page: 1375
  ident: b28
  article-title: Monitoring batch processes using multiway principal component analysis
  publication-title: AIChE Journal
– volume: 65
  start-page: 70
  year: 2017
  end-page: 82
  ident: b41
  article-title: A sparse dissimilarity analysis algorithm for incipient fault isolation with no priori fault information
  publication-title: Control Engineering Practice
– volume: PP
  year: 2017
  ident: b4
  article-title: Fault detection for non-Gaussian processes using generalized canonical correlation analysis and randomized algorithms
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 66
  start-page: 64
  year: 2017
  end-page: 75
  ident: b1
  article-title: Fault detection and diagnosis in a cement rotary kiln using PCA with EWMA-based adaptive threshold monitoring scheme
  publication-title: Control Engineering Practice
– volume: 67
  start-page: 43
  year: 2017
  end-page: 51
  ident: b27
  article-title: A novel data-based quality-related fault diagnosis scheme for fault detection and root cause diagnosis with application to hot strip mill process
  publication-title: Control Engineering Practice
– volume: 61
  start-page: 6438
  year: 2014
  end-page: 6445
  ident: b24
  article-title: A new method of dynamic latent-variable modeling for process monitoring
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 46
  start-page: 75
  year: 2016
  end-page: 83
  ident: b13
  article-title: Distributed monitoring for large-scale processes based on multivariate statistical analysis and Bayesian method
  publication-title: Journal of Process Control
– volume: 70
  year: 2017
  ident: b29
  article-title: Data-driven root-cause fault diagnosis for multivariate non-linear processes
  publication-title: Control Engineering Practice
– volume: 38
  start-page: 10368
  year: 2011
  end-page: 10376
  ident: b2
  article-title: Combining linear and nonlinear model in forecasting tourism demand
  publication-title: Expert Systems with Applications
– year: 2006
  ident: b11
  article-title: Genetic algorithms
– year: 2005
  ident: b32
  article-title: Randomized algorithms for analysis and control of uncertain systems
– volume: PP
  year: 2017
  ident: b36
  article-title: A novel framework for fault diagnosis using kernel partial least squares based on optimal preference matrix
  publication-title: IEEE Transactions on Industrial Electronics
– year: 2017
  ident: b14
  article-title: Optimal variable transmission for distributed local fault detection incorporating RA and evolutionary optimization
  publication-title: IEEE Access
– volume: 63
  start-page: 377
  year: 2016
  end-page: 386
  ident: b17
  article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 68
  start-page: 32
  year: 2017
  end-page: 45
  ident: b34
  article-title: Probabilistic fault diagnosis method based on the combination of nest-loop fisher discriminant analysis and analysis of relative changes
  publication-title: Control Engineering Practice
– volume: 59
  start-page: 223
  year: 2004
  end-page: 234
  ident: b23
  article-title: Nonlinear process monitoring using kernel principal component analysis
  publication-title: Chemical Engineering Science
– volume: 28
  start-page: 1606
  year: 2017
  end-page: 1617
  ident: b39
  article-title: An alternating identification algorithm for a class of nonlinear dynamical systems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 66
  start-page: 64
  year: 2017
  ident: 10.1016/j.conengprac.2018.07.012_b1
  article-title: Fault detection and diagnosis in a cement rotary kiln using PCA with EWMA-based adaptive threshold monitoring scheme
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2017.06.003
– volume: 46
  start-page: 75
  year: 2016
  ident: 10.1016/j.conengprac.2018.07.012_b13
  article-title: Distributed monitoring for large-scale processes based on multivariate statistical analysis and Bayesian method
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2016.08.006
– volume: 32
  start-page: 38
  year: 2015
  ident: 10.1016/j.conengprac.2018.07.012_b16
  article-title: Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2015.04.014
– volume: PP
  year: 2017
  ident: 10.1016/j.conengprac.2018.07.012_b36
  article-title: A novel framework for fault diagnosis using kernel partial least squares based on optimal preference matrix
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 20
  start-page: 65
  year: 1996
  ident: 10.1016/j.conengprac.2018.07.012_b9
  article-title: Nonlinear principal component analysis — based on principal curves and neural networks
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/0098-1354(95)00003-K
– volume: 52
  start-page: 1947
  year: 2013
  ident: 10.1016/j.conengprac.2018.07.012_b10
  article-title: Distributed PCA model for plant-wide process monitoring
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie301945s
– volume: PP
  year: 2017
  ident: 10.1016/j.conengprac.2018.07.012_b4
  article-title: Fault detection for non-Gaussian processes using generalized canonical correlation analysis and randomized algorithms
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 68
  start-page: 32
  year: 2017
  ident: 10.1016/j.conengprac.2018.07.012_b34
  article-title: Probabilistic fault diagnosis method based on the combination of nest-loop fisher discriminant analysis and analysis of relative changes
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2017.07.009
– volume: 9
  start-page: 195
  year: 2016
  ident: 10.1016/j.conengprac.2018.07.012_b26
  article-title: Multivariate statistical Kernel PCA for nonlinear process fault diagnosis in military barracks
  publication-title: International Journal of Hybrid Information Technology
  doi: 10.14257/ijhit.2016.9.1.17
– volume: 34
  start-page: 29
  year: 1991
  ident: 10.1016/j.conengprac.2018.07.012_b19
  article-title: An introduction to randomized algorithms
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/0166-218X(91)90086-C
– volume: 46
  start-page: 51
  year: 2016
  ident: 10.1016/j.conengprac.2018.07.012_b3
  article-title: Canonical correlation analysis-based fault detection methods
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2015.10.006
– volume: 30
  start-page: 179
  year: 1995
  ident: 10.1016/j.conengprac.2018.07.012_b22
  article-title: Disturbance detection and isolation by dynamic principal component analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/0169-7439(95)00076-3
– volume: 10
  start-page: 471
  year: 2000
  ident: 10.1016/j.conengprac.2018.07.012_b25
  article-title: Recursive PCA for adaptive process monitoring
  publication-title: Journal of Process Control
  doi: 10.1016/S0959-1524(00)00022-6
– volume: 59
  start-page: 223
  year: 2004
  ident: 10.1016/j.conengprac.2018.07.012_b23
  article-title: Nonlinear process monitoring using kernel principal component analysis
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2003.09.012
– year: 2001
  ident: 10.1016/j.conengprac.2018.07.012_b6
– year: 2017
  ident: 10.1016/j.conengprac.2018.07.012_b14
  article-title: Optimal variable transmission for distributed local fault detection incorporating RA and evolutionary optimization
  publication-title: IEEE Access
– volume: 11
  start-page: 387
  year: 2001
  ident: 10.1016/j.conengprac.2018.07.012_b37
  article-title: Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
  publication-title: Journal of Process Control
  doi: 10.1016/S0959-1524(00)00008-1
– volume: 61
  start-page: 6438
  year: 2014
  ident: 10.1016/j.conengprac.2018.07.012_b24
  article-title: A new method of dynamic latent-variable modeling for process monitoring
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2014.2301761
– year: 2006
  ident: 10.1016/j.conengprac.2018.07.012_b11
– year: 2014
  ident: 10.1016/j.conengprac.2018.07.012_b8
– volume: 49
  start-page: 2254
  year: 2010
  ident: 10.1016/j.conengprac.2018.07.012_b5
  article-title: Adaptive Kernel Principal Component Analysis (KPCA) for monitoring small disturbances of nonlinear processes
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie900521b
– volume: 38
  start-page: 10368
  year: 2011
  ident: 10.1016/j.conengprac.2018.07.012_b2
  article-title: Combining linear and nonlinear model in forecasting tourism demand
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.02.049
– volume: 63
  start-page: 377
  year: 2016
  ident: 10.1016/j.conengprac.2018.07.012_b17
  article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2015.2466557
– volume: 52
  start-page: 1635
  year: 2013
  ident: 10.1016/j.conengprac.2018.07.012_b18
  article-title: Fault detection and diagnosis in chemical processes using sensitive principal component analysis
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie3017016
– volume: 44
  start-page: 5691
  year: 2005
  ident: 10.1016/j.conengprac.2018.07.012_b33
  article-title: Process monitoring approach using fast moving window PCA
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie048873f
– volume: 13
  start-page: 379
  year: 2015
  ident: 10.1016/j.conengprac.2018.07.012_b35
  article-title: A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
  publication-title: Journal of Chemometrics
  doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<379::AID-CEM556>3.0.CO;2-N
– volume: 67
  start-page: 43
  year: 2017
  ident: 10.1016/j.conengprac.2018.07.012_b27
  article-title: A novel data-based quality-related fault diagnosis scheme for fault detection and root cause diagnosis with application to hot strip mill process
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2017.07.005
– volume: 50
  start-page: 3648
  year: 2017
  ident: 10.1016/j.conengprac.2018.07.012_b21
  article-title: Randomized algorithm based fault detection system design for uncertain LTI systems
  publication-title: IFac Paper online
  doi: 10.1016/j.ifacol.2017.08.711
– volume: 70
  year: 2017
  ident: 10.1016/j.conengprac.2018.07.012_b29
  article-title: Data-driven root-cause fault diagnosis for multivariate non-linear processes
  publication-title: Control Engineering Practice
– volume: 10
  start-page: 1299
  year: 1998
  ident: 10.1016/j.conengprac.2018.07.012_b31
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Computation
  doi: 10.1162/089976698300017467
– volume: 37
  start-page: 233
  year: 1991
  ident: 10.1016/j.conengprac.2018.07.012_b20
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE Journal
  doi: 10.1002/aic.690370209
– volume: PP
  start-page: 1
  year: 2016
  ident: 10.1016/j.conengprac.2018.07.012_b7
  article-title: Nonlinear process fault diagnosis based on serial principal component analysis
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 136
  start-page: 121
  year: 2014
  ident: 10.1016/j.conengprac.2018.07.012_b15
  article-title: Monitoring multi-mode plant-wide processes by using mutual information-based multi-block PCA, joint probability, and Bayesian inference
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2014.05.012
– volume: 4
  start-page: 1
  year: 2016
  ident: 10.1016/j.conengprac.2018.07.012_b30
  article-title: Nonlinear process fault detection and identification using kernel PCA and kernel density estimation
  publication-title: Systems Science & Control Engineering
  doi: 10.1080/21642583.2016.1198940
– volume: 28
  start-page: 1606
  year: 2017
  ident: 10.1016/j.conengprac.2018.07.012_b39
  article-title: An alternating identification algorithm for a class of nonlinear dynamical systems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2547968
– volume: PP
  year: 2017
  ident: 10.1016/j.conengprac.2018.07.012_b12
  article-title: Data-driven distributed local fault detection for large-scale processes based on GA-regularized canonical correlation analysis
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 40
  start-page: 1361
  year: 1994
  ident: 10.1016/j.conengprac.2018.07.012_b28
  article-title: Monitoring batch processes using multiway principal component analysis
  publication-title: AIChE Journal
  doi: 10.1002/aic.690400809
– volume: PP
  year: 2017
  ident: 10.1016/j.conengprac.2018.07.012_b40
  article-title: Observation and detection for a class of industrial systems
  publication-title: IEEE Transactions on Industrial Electronics
– volume: PP
  year: 2017
  ident: 10.1016/j.conengprac.2018.07.012_b38
  article-title: Weighted linear dynamic system for feature representation and soft sensor application in nonlinear dynamic industrial processes
  publication-title: IEEE Transactions on Industrial Electronics
– year: 2005
  ident: 10.1016/j.conengprac.2018.07.012_b32
– volume: 65
  start-page: 70
  year: 2017
  ident: 10.1016/j.conengprac.2018.07.012_b41
  article-title: A sparse dissimilarity analysis algorithm for incipient fault isolation with no priori fault information
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2017.05.005
SSID ssj0016991
Score 2.6182883
Snippet Both linear and nonlinear relationships may exist among process variables, and monitoring a process with such complex relationships among variables is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 17
SubjectTerms Fault detection
Genetic algorithm
Nonlinear process monitoring
Parallel PCA–KPCA
Randomized algorithm
Title Parallel PCA–KPCA for nonlinear process monitoring
URI https://dx.doi.org/10.1016/j.conengprac.2018.07.012
Volume 80
WOSCitedRecordID wos000447483500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA7ifNAH8Yp3-uDbKHRp0qT4NGTiBcaECXsraZqgolXmFB_9D_5Df4knTdJNHXgBX8rWkaTtl52cnH7nOwjtY2FEtxISwtqDQ8JkGopIqTBXsGcuOEu5zqtiE6zb5YNB2nP17h-qcgKsLPnzc3r_r1DDOQDbpM7-Au66UzgBnwF0OALscPwR8D0xNPVRbpq9w7anMsRn8KViFJZWGsMIXNsUgeZt9a8e-iXMqxY4Crsa6xXWGVU16-bKBZvP4Vd5Ke5qE2KjqoNHpZXr1gUWWtxl2E1ECBPDjLNa6d5Y2rJLztrZrEu3btr85S8W2QYHruGBljCiuVDDp-OVYqojUH8Qwf60ONWUQc9Gu87GPWWmpyxiWWTqTDcwoykYtkb7pDM4rV8lJaktm-jvxtG5LMlv-lVN91Em_I7-Elp0G4agbYFeRjOqXEELEzKSq4h4yANA-e3l1YAdANhBDXbgwA7GYK-hi6NO__A4dNUwQgl2dxRqKkgk0qQoYi4w1eAXckpFEmNFuNQJuNKxzpnQuhAaF5hIcJ91KjklOU00jtfRLAyrNlDAaC4oLhSmRU4KRYTkLXCDY9g8wm5YR5uI-fvPpJOKNxVLbrLvUNhErbrlvZVL-UGbA_-IM-f2WXcugzn0beutP4y4jebHE34HzY6Gj2oXzcmn0dXDcM9NoHddr323
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+PCA%E2%80%93KPCA+for+nonlinear+process+monitoring&rft.jtitle=Control+engineering+practice&rft.au=Jiang%2C+Qingchao&rft.au=Yan%2C+Xuefeng&rft.date=2018-11-01&rft.issn=0967-0661&rft.volume=80&rft.spage=17&rft.epage=25&rft_id=info:doi/10.1016%2Fj.conengprac.2018.07.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2018_07_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon