Multi-objective optimization of CFRP drilling parameters with a hybrid method integrating the ANN, NSGA-II and fuzzy C-means

A full factorial experiment is performed for the conventional dry drilling of CFRP with spindle speed, feed rate and point angle as drilling parameters, response variables are thrust force and exit-delamination. Artificial neural network (ANN) is developed to express thrust force and delamination fa...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures Vol. 235; p. 111803
Main Authors: Wang, Qian, Jia, Xiaoliang
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.03.2020
Subjects:
ISSN:0263-8223, 1879-1085
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A full factorial experiment is performed for the conventional dry drilling of CFRP with spindle speed, feed rate and point angle as drilling parameters, response variables are thrust force and exit-delamination. Artificial neural network (ANN) is developed to express thrust force and delamination factor as a function of drilling parameters. Multi-objective optimization of drilling parameters is accomplished based on Non-dominated Sorting Genetic Algorithm (NSGA-II) with thrust force, delamination factor and material removal rate as optimization objectives, delamination factor also serves as a constraint. The Pareto front of drilling response variables determined by NSGA-II consists of a large number of non-dominated solutions. In order to facilitate the experimental verification of optimization results, fuzzy C-means clustering algorithm is used to narrow down the solutions on the front to several representative ones. Conformation tests are conducted and results show that the representative solutions can give satisfactory performance with achieving a trade-off among thrust force, exit-delamination and material removal rate.
AbstractList A full factorial experiment is performed for the conventional dry drilling of CFRP with spindle speed, feed rate and point angle as drilling parameters, response variables are thrust force and exit-delamination. Artificial neural network (ANN) is developed to express thrust force and delamination factor as a function of drilling parameters. Multi-objective optimization of drilling parameters is accomplished based on Non-dominated Sorting Genetic Algorithm (NSGA-II) with thrust force, delamination factor and material removal rate as optimization objectives, delamination factor also serves as a constraint. The Pareto front of drilling response variables determined by NSGA-II consists of a large number of non-dominated solutions. In order to facilitate the experimental verification of optimization results, fuzzy C-means clustering algorithm is used to narrow down the solutions on the front to several representative ones. Conformation tests are conducted and results show that the representative solutions can give satisfactory performance with achieving a trade-off among thrust force, exit-delamination and material removal rate.
ArticleNumber 111803
Author Wang, Qian
Jia, Xiaoliang
Author_xml – sequence: 1
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  email: wq_w@mail.nwpu.edu.cn
– sequence: 2
  givenname: Xiaoliang
  surname: Jia
  fullname: Jia, Xiaoliang
  email: jiaxl@nwpu.edu.cn
BookMark eNqNkNtKAzEQhoMoWA_vkAdwa5LtbrM3Qi0eClrFw3XIJrPtlN1NSVKlxYd3awXBG70amPn_D-Y7Ivuta4EQylmfM56fL_rGNcsQ_crEvmC86HPOJUv3SI_LYZFwJrN90mMiTxMpRHpIjkJYMMbkgPMe-bhf1RETVy7ARHwD6pYRG9zoiK6lrqLj66dHaj3WNbYzutReNxDBB_qOcU41na9Lj5Z2y7mzFNsIM9-Vu2ycAx1Np2d0-nwzSiYTqltLq9Vms6bjpAHdhhNyUOk6wOn3PCav11cv49vk7uFmMh7dJSblMiaVKGwFeSZKYYZSgBCmACgqkclBPkiZ0CyzUOmsKO3QSJtCkcky1zzl3bVLHJOLHdd4F4KHShmMXx9Gr7FWnKmtS7VQPy7V1qXauewA8hdg6bHRfv2f6uWuCt2DbwheBYPQGrDoO-XKOvwb8glqR5j5
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126765
crossref_primary_10_1016_j_compositesb_2022_109752
crossref_primary_10_1016_j_engappai_2023_106047
crossref_primary_10_1007_s00170_022_09121_3
crossref_primary_10_1016_j_compositesb_2025_112701
crossref_primary_10_1016_j_compstruct_2021_113764
crossref_primary_10_1007_s00170_024_14317_w
crossref_primary_10_1177_09544089241230160
crossref_primary_10_1016_j_compositesb_2021_109034
crossref_primary_10_1016_j_compstruct_2023_116713
crossref_primary_10_1007_s00170_022_10112_7
crossref_primary_10_1007_s40430_022_03806_2
crossref_primary_10_1177_07316844251318852
crossref_primary_10_1007_s10845_023_02315_w
crossref_primary_10_3390_ma15030933
crossref_primary_10_1007_s10845_024_02503_2
crossref_primary_10_1177_09544062231207491
crossref_primary_10_1177_16878132251358905
crossref_primary_10_32604_fdmp_2022_019577
crossref_primary_10_1016_j_cie_2022_108022
crossref_primary_10_1016_j_energy_2023_127518
crossref_primary_10_1007_s00170_021_06616_3
crossref_primary_10_1016_j_cie_2024_110207
crossref_primary_10_1007_s11665_021_05807_z
crossref_primary_10_1007_s00170_021_07918_2
crossref_primary_10_3390_polym13142246
crossref_primary_10_1002_pc_29193
crossref_primary_10_1007_s12633_021_00977_w
crossref_primary_10_1016_j_jclepro_2021_129479
crossref_primary_10_1016_j_jclepro_2021_126153
crossref_primary_10_21062_mft_2024_064
crossref_primary_10_1016_j_jmapro_2022_02_040
crossref_primary_10_1016_j_tws_2025_113721
crossref_primary_10_1088_1742_6596_2484_1_012039
crossref_primary_10_1061_JAEEEZ_ASENG_6092
crossref_primary_10_1016_j_tws_2023_111086
crossref_primary_10_1177_08927057241264803
Cites_doi 10.1007/s00170-011-3785-5
10.1016/j.compstruct.2016.07.015
10.1016/j.compstruct.2017.12.005
10.1016/j.compositesb.2019.106936
10.1016/j.jmatprotec.2006.04.126
10.1016/j.compositesb.2012.01.007
10.1016/j.jmatprotec.2007.04.121
10.1016/j.measurement.2015.09.015
10.1007/s00158-015-1324-y
10.1016/j.ejor.2010.10.021
10.1016/j.jclepro.2019.04.187
10.1007/s00170-007-0963-6
10.1109/4235.996017
10.1016/j.jmatprotec.2018.06.037
10.1021/jp502557s
10.1007/s00521-014-1721-y
10.1016/j.ijmachtools.2010.06.005
10.1016/j.compositesb.2017.05.039
10.1016/j.matdes.2008.03.014
10.1016/j.compstruct.2018.10.107
10.1016/j.chemolab.2016.09.007
10.1016/S0890-6955(96)00095-8
10.1016/j.jmatprotec.2007.01.016
10.1007/s00170-007-0999-7
10.1016/j.compstruct.2016.03.059
10.1007/s00170-018-1981-2
10.1016/j.measurement.2012.01.008
10.1016/j.compstruct.2016.08.004
10.1016/j.eswa.2017.01.004
10.1016/0377-0427(87)90125-7
10.1016/j.eswa.2019.04.032
10.1016/j.jmatprotec.2018.07.026
10.1016/j.jmatprotec.2007.11.082
10.1007/s13042-017-0668-6
10.1016/j.measurement.2017.07.007
10.1016/j.jmatprotec.2016.10.007
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compstruct.2019.111803
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1085
ExternalDocumentID 10_1016_j_compstruct_2019_111803
S0263822319330922
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SMS
WUQ
~HD
ID FETCH-LOGICAL-c318t-f29dfe652b2c782e22c9ee9f258464302a05defa59bd7c8d3e958b6a131430643
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508631700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-8223
IngestDate Sat Nov 29 07:20:27 EST 2025
Tue Nov 18 22:14:44 EST 2025
Fri Feb 23 02:47:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fuzzy C-means clustering algorithm
Multi-objective optimization
Artificial neural network (ANN)
Carbon fiber reinforced polymer
Non-dominated Sorting Genetic Algorithm (NSGA-II)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-f29dfe652b2c782e22c9ee9f258464302a05defa59bd7c8d3e958b6a131430643
ParticipantIDs crossref_citationtrail_10_1016_j_compstruct_2019_111803
crossref_primary_10_1016_j_compstruct_2019_111803
elsevier_sciencedirect_doi_10_1016_j_compstruct_2019_111803
PublicationCentury 2000
PublicationDate 2020-03-01
2020-03-00
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Composite structures
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Basheer, Dabade, Joshi, Bhanuprasad, Gadre (b0130) 2008; 197
Kalla, Sheikh-Ahmad, Twomey (b0120) 2010; 50
Umbrello, Ambrogio, Filice, Shivpuri (b0135) 2007; 189
Zhang, Wu, Chen (b0005) 2019; 209
Krishnamoorthy, Boopathy, Palanikumar, Davim (b0040) 2012; 45
Zio, Bazzo (b0190) 2011; 210
Kamaloo, Jabbari, Tooski, Javadi (b0180) 2019; 174
Peng, Li, Zhao, Lv, Tan, Dong (b0170) 2019; 227
Su, Zheng, Sun, Wang, Deng, Qiu (b0065) 2018; 262
Qiu, Li, Niu, Chen, Ouyang, Li (b0025) 2018; 97
Girot, Dau, Gutiérrez-Orrantia (b0090) 2017; 240
Geier, Szalay (b0030) 2017; 110
Peter (b0205) 1987; 20
Tsao, Hocheng (b0035) 2008; 203
Ojo, Ismail, Paggi, Dhakal (b0085) 2017; 124
Davim, Gaitonde, Karnik (b0125) 2008; 205
Guo, Wen, Gao, Bao (b0110) 2011; 226
Abhishek, Datta, Mahapatra (b0045) 2016; 77
Dave, Raval (b0140) 2010; 8
Tang, Yu, Liu, Chen, Huang (b0195) 2019; 130
Tsao (b0015) 2012; 62
Karnik, Gaitonde, Rubio, Correia, Abrão, Davim (b0020) 2008; 29
Tsao (b0075) 2008; 37
Saoudi, Zitoune, Mezlini, Gururaja, Seitier (b0100) 2016; 153
Liu, Mei, Shen, Tu (b0115) 2014; 118
Zhang, Li, Zhang, Yu, Lu (b0200) 2018; 9
Karimi, Heidary, Minak (b0095) 2016; 148
Deb, Pratap, Agarwal, Meyarivan (b0175) 2002; 6
Mu, Su, Chu, Wang (b0185) 2003
Sorrentino, Turchetta, Bellini (b0080) 2018; 186
Zerti, Yallese, Zerti, Nouioua, Khettabi (b0155) 2019
Quiza, Figueira, Davim (b0150) 2008; 37
Chen (b0070) 1997; 37
Wang, Zhao, Wu, Wu (b0160) 2017; 74
Feito, Milani, Muñoz-Sánchez (b0055) 2016; 53
Joshi, Rawat, Balan (b0105) 2018; 262
Sánchez, Ortiz, Sarabia (b0165) 2016; 158
Saoudi, Zitoune, Gururaja, Mezlini, Hajjaji (b0060) 2016; 18
Krishnaraj, Prabukarthi, Ramanathan, Elanghovan, Kumar, Zitoune (b0050) 2012; 43
Kara, Aslantas, Cicek (b0145) 2015; 26
Gaugel, Sripathy, Haeger, Meinhard, Bernthaler, Lissek (b0010) 2016; 155
Karimi (10.1016/j.compstruct.2019.111803_b0095) 2016; 148
Tsao (10.1016/j.compstruct.2019.111803_b0075) 2008; 37
Qiu (10.1016/j.compstruct.2019.111803_b0025) 2018; 97
Sorrentino (10.1016/j.compstruct.2019.111803_b0080) 2018; 186
Davim (10.1016/j.compstruct.2019.111803_b0125) 2008; 205
Peng (10.1016/j.compstruct.2019.111803_b0170) 2019; 227
Zio (10.1016/j.compstruct.2019.111803_b0190) 2011; 210
Tsao (10.1016/j.compstruct.2019.111803_b0015) 2012; 62
Guo (10.1016/j.compstruct.2019.111803_b0110) 2011; 226
Mu (10.1016/j.compstruct.2019.111803_b0185) 2003
Basheer (10.1016/j.compstruct.2019.111803_b0130) 2008; 197
Karnik (10.1016/j.compstruct.2019.111803_b0020) 2008; 29
Kara (10.1016/j.compstruct.2019.111803_b0145) 2015; 26
Wang (10.1016/j.compstruct.2019.111803_b0160) 2017; 74
Gaugel (10.1016/j.compstruct.2019.111803_b0010) 2016; 155
Feito (10.1016/j.compstruct.2019.111803_b0055) 2016; 53
Kalla (10.1016/j.compstruct.2019.111803_b0120) 2010; 50
Liu (10.1016/j.compstruct.2019.111803_b0115) 2014; 118
Umbrello (10.1016/j.compstruct.2019.111803_b0135) 2007; 189
Su (10.1016/j.compstruct.2019.111803_b0065) 2018; 262
Abhishek (10.1016/j.compstruct.2019.111803_b0045) 2016; 77
Krishnaraj (10.1016/j.compstruct.2019.111803_b0050) 2012; 43
Tang (10.1016/j.compstruct.2019.111803_b0195) 2019; 130
Quiza (10.1016/j.compstruct.2019.111803_b0150) 2008; 37
Kamaloo (10.1016/j.compstruct.2019.111803_b0180) 2019; 174
Saoudi (10.1016/j.compstruct.2019.111803_b0100) 2016; 153
Zhang (10.1016/j.compstruct.2019.111803_b0200) 2018; 9
Saoudi (10.1016/j.compstruct.2019.111803_b0060) 2016; 18
Ojo (10.1016/j.compstruct.2019.111803_b0085) 2017; 124
Dave (10.1016/j.compstruct.2019.111803_b0140) 2010; 8
Chen (10.1016/j.compstruct.2019.111803_b0070) 1997; 37
Geier (10.1016/j.compstruct.2019.111803_b0030) 2017; 110
Peter (10.1016/j.compstruct.2019.111803_b0205) 1987; 20
Krishnamoorthy (10.1016/j.compstruct.2019.111803_b0040) 2012; 45
Tsao (10.1016/j.compstruct.2019.111803_b0035) 2008; 203
Zerti (10.1016/j.compstruct.2019.111803_b0155) 2019
Girot (10.1016/j.compstruct.2019.111803_b0090) 2017; 240
Sánchez (10.1016/j.compstruct.2019.111803_b0165) 2016; 158
Deb (10.1016/j.compstruct.2019.111803_b0175) 2002; 6
Zhang (10.1016/j.compstruct.2019.111803_b0005) 2019; 209
Joshi (10.1016/j.compstruct.2019.111803_b0105) 2018; 262
References_xml – volume: 37
  start-page: 23
  year: 2008
  end-page: 28
  ident: b0075
  article-title: Thrust force and delamination of core-saw drill during drilling of carbon fiber reinforced plastics (CFRP)
  publication-title: Int J Adv Manuf Technol
– volume: 118
  start-page: 10686
  year: 2014
  end-page: 10693
  ident: b0115
  article-title: Nonoxidative conversion of methane in a dielectric barrier discharge reactor: prediction of reaction performance based on neural network model
  publication-title: J Phys Chem C
– volume: 174
  year: 2019
  ident: b0180
  article-title: Optimization of thickness and delamination growth in composite laminates under multi-axial fatigue loading using NSGA-II
  publication-title: Compos Part B-Eng
– volume: 130
  start-page: 265
  year: 2019
  end-page: 275
  ident: b0195
  article-title: A hierarchical prediction model for lane-changes based on combination of fuzzy C-means and adaptive neural network
  publication-title: Expert Syst Appl
– volume: 62
  start-page: 241
  year: 2012
  end-page: 247
  ident: b0015
  article-title: Evaluation of the drilling-induced delamination of compound core-special drills using response surface methodology based on the Taguchi method
  publication-title: Int J Adv Manuf Technol
– volume: 8
  start-page: 198
  year: 2010
  ident: b0140
  article-title: Modelling of cutting forces as a function of cutting parameters in milling process using regression analysis and artificial neural network
  publication-title: Int J Mach Mach Mater
– volume: 77
  start-page: 222
  year: 2016
  end-page: 239
  ident: b0045
  article-title: Multi-objective optimization in drilling of CFRP (polyester) composites: application of a fuzzy embedded harmony search (HS) algorithm
  publication-title: Measurement
– volume: 205
  start-page: 16
  year: 2008
  end-page: 23
  ident: b0125
  article-title: Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models
  publication-title: J Mater Process Technol
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0175
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comp
– volume: 189
  start-page: 143
  year: 2007
  end-page: 152
  ident: b0135
  article-title: An ANN approach for predicting subsurface residual stresses and the desired cutting conditions during hard turning
  publication-title: J Mater Process Technol
– volume: 37
  start-page: 641
  year: 2008
  end-page: 648
  ident: b0150
  article-title: Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel
  publication-title: Int J Adv Manuf Technol
– volume: 97
  start-page: 857
  year: 2018
  end-page: 865
  ident: b0025
  article-title: Influence of machining parameters and tool structure on cutting force and hole wall damage in drilling CFRP with stepped drills
  publication-title: Int J Adv Manuf Technol
– start-page: 914
  year: 2003
  end-page: 920
  ident: b0185
  article-title: An efficient evolutionary multi-objective optimization algorithm
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation
– volume: 240
  start-page: 332
  year: 2017
  end-page: 343
  ident: b0090
  article-title: New analytical model for delamination of CFRP during drilling
  publication-title: J Mater Process Technol
– volume: 262
  start-page: 157
  year: 2018
  end-page: 167
  ident: b0065
  article-title: Novel drill bit based on the step-control scheme for reducing the CFRP delamination
  publication-title: J Mater Process Technol
– volume: 18
  start-page: 77
  year: 2016
  end-page: 98
  ident: b0060
  article-title: Prediction of critical thrust force for exit-ply delamination during drilling composite laminates: thermo-mechanical analysis
  publication-title: Int J Mach Mach Mater
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: b0205
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J Comput Appl Math
– volume: 26
  start-page: 237
  year: 2015
  end-page: 250
  ident: b0145
  article-title: ANN and multiple regression method-based modeling of cuttingforces in orthogonal machining of AISI 316L stainless steel
  publication-title: Neural Comput Appl
– start-page: 1989
  year: 2019
  end-page: 1996
  ident: b0155
  article-title: Prediction of machining performance using RSM and ANN models in hard turning of martensitic stainless steel AISI 420
  publication-title: ARCHIVE P I Mech Part C: J Mech Eng Sci
– volume: 226
  start-page: 28
  year: 2011
  end-page: 42
  ident: b0110
  article-title: Prediction of the cutting forces generated in the drilling of carbon-fibre-reinforced plastic composites using a twist drill
  publication-title: P I Mech Eng B-J Eng
– volume: 74
  start-page: 96
  year: 2017
  end-page: 104
  ident: b0160
  article-title: Multi-objective optimization: a method for selecting the optimal solution from Pareto non-inferior solutions
  publication-title: Expert Syst Appl
– volume: 197
  start-page: 439
  year: 2008
  end-page: 444
  ident: b0130
  article-title: Modeling of surface roughness in precision machining of metal matrix composites using ANN
  publication-title: J Mater Process Technol
– volume: 43
  start-page: 1791
  year: 2012
  end-page: 1799
  ident: b0050
  article-title: Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates
  publication-title: Compos PartB-Eng
– volume: 148
  start-page: 19
  year: 2016
  end-page: 26
  ident: b0095
  article-title: Critical thrust and feed prediction models in drilling of composite laminates
  publication-title: Compos Struct
– volume: 227
  start-page: 58
  year: 2019
  end-page: 69
  ident: b0170
  article-title: Towards energy and material efficient laser cladding process: modeling and optimization using a hybrid TS-GEP algorithm and the NSGA-II
  publication-title: J Clean Prod
– volume: 50
  start-page: 882
  year: 2010
  end-page: 891
  ident: b0120
  article-title: Prediction of cutting forces in helical end milling fiber reinforced polymers
  publication-title: Int J MachTools Manuf
– volume: 155
  start-page: 173
  year: 2016
  end-page: 183
  ident: b0010
  article-title: A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP)
  publication-title: Compos Struct
– volume: 203
  start-page: 342
  year: 2008
  end-page: 348
  ident: b0035
  article-title: Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network
  publication-title: J Mater Process Technol
– volume: 262
  start-page: 521
  year: 2018
  end-page: 531
  ident: b0105
  article-title: A novel approach to predict the delamination factor for dry and cryogenic drilling of CFRP
  publication-title: J Mater Process Technol
– volume: 209
  start-page: 337
  year: 2019
  end-page: 348
  ident: b0005
  article-title: A theoretical model for predicting the CFRP drilling-countersinking thrust force of stacks
  publication-title: Compo Struct
– volume: 153
  start-page: 886
  year: 2016
  end-page: 894
  ident: b0100
  article-title: Critical thrust force predictions during drilling: analytical modeling and X-ray tomography quantification
  publication-title: Compos Struct
– volume: 210
  start-page: 624
  year: 2011
  end-page: 634
  ident: b0190
  article-title: A clustering procedure for reducing the number of representative solutions in the Pareto Front of multiobjective optimization problems
  publication-title: Eur J Oper Res
– volume: 45
  start-page: 1286
  year: 2012
  end-page: 1296
  ident: b0040
  article-title: Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics
  publication-title: Measurement
– volume: 37
  start-page: 1097
  year: 1997
  end-page: 1108
  ident: b0070
  article-title: Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates
  publication-title: Int J Mach Tools Manuf
– volume: 29
  start-page: 1768
  year: 2008
  end-page: 1776
  ident: b0020
  article-title: Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model
  publication-title: Mater Des
– volume: 186
  start-page: 154
  year: 2018
  end-page: 164
  ident: b0080
  article-title: A new method to reduce delaminations during drilling of FRP laminates by feed rate control
  publication-title: Compos Struct
– volume: 124
  start-page: 207
  year: 2017
  end-page: 217
  ident: b0085
  article-title: A new analytical critical thrust force model for delamination analysis of laminated composites during drilling operation
  publication-title: Compos Part B-Eng
– volume: 9
  start-page: 1609
  year: 2018
  end-page: 1621
  ident: b0200
  article-title: Fuzzy c-means clustering-based mating restriction for multiobjective optimization
  publication-title: Int J Mach Learn Cyber
– volume: 110
  start-page: 319
  year: 2017
  end-page: 334
  ident: b0030
  article-title: Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP)
  publication-title: Measurement
– volume: 53
  start-page: 239
  year: 2016
  end-page: 251
  ident: b0055
  article-title: Drilling optimization of woven CFRP laminates under different tool wear conditions: a multi-objective design of experiments approach
  publication-title: Struct Multidisc Optim
– volume: 158
  start-page: 210
  year: 2016
  end-page: 217
  ident: b0165
  article-title: A useful tool for computation and interpretation of trading-off solutions through Pareto front in the field of experimental designs for mixtures
  publication-title: Chemom Intell Lab Syst
– volume: 62
  start-page: 241
  issue: 1–4
  year: 2012
  ident: 10.1016/j.compstruct.2019.111803_b0015
  article-title: Evaluation of the drilling-induced delamination of compound core-special drills using response surface methodology based on the Taguchi method
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-011-3785-5
– volume: 153
  start-page: 886
  year: 2016
  ident: 10.1016/j.compstruct.2019.111803_b0100
  article-title: Critical thrust force predictions during drilling: analytical modeling and X-ray tomography quantification
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.07.015
– volume: 186
  start-page: 154
  year: 2018
  ident: 10.1016/j.compstruct.2019.111803_b0080
  article-title: A new method to reduce delaminations during drilling of FRP laminates by feed rate control
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2017.12.005
– volume: 174
  year: 2019
  ident: 10.1016/j.compstruct.2019.111803_b0180
  article-title: Optimization of thickness and delamination growth in composite laminates under multi-axial fatigue loading using NSGA-II
  publication-title: Compos Part B-Eng
  doi: 10.1016/j.compositesb.2019.106936
– volume: 203
  start-page: 342
  year: 2008
  ident: 10.1016/j.compstruct.2019.111803_b0035
  article-title: Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2006.04.126
– volume: 43
  start-page: 1791
  year: 2012
  ident: 10.1016/j.compstruct.2019.111803_b0050
  article-title: Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates
  publication-title: Compos PartB-Eng
  doi: 10.1016/j.compositesb.2012.01.007
– volume: 197
  start-page: 439
  year: 2008
  ident: 10.1016/j.compstruct.2019.111803_b0130
  article-title: Modeling of surface roughness in precision machining of metal matrix composites using ANN
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.04.121
– volume: 77
  start-page: 222
  year: 2016
  ident: 10.1016/j.compstruct.2019.111803_b0045
  article-title: Multi-objective optimization in drilling of CFRP (polyester) composites: application of a fuzzy embedded harmony search (HS) algorithm
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.09.015
– volume: 53
  start-page: 239
  issue: 2
  year: 2016
  ident: 10.1016/j.compstruct.2019.111803_b0055
  article-title: Drilling optimization of woven CFRP laminates under different tool wear conditions: a multi-objective design of experiments approach
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-015-1324-y
– volume: 226
  start-page: 28
  issue: 1
  year: 2011
  ident: 10.1016/j.compstruct.2019.111803_b0110
  article-title: Prediction of the cutting forces generated in the drilling of carbon-fibre-reinforced plastic composites using a twist drill
  publication-title: P I Mech Eng B-J Eng
– volume: 210
  start-page: 624
  issue: 3
  year: 2011
  ident: 10.1016/j.compstruct.2019.111803_b0190
  article-title: A clustering procedure for reducing the number of representative solutions in the Pareto Front of multiobjective optimization problems
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.10.021
– volume: 227
  start-page: 58
  year: 2019
  ident: 10.1016/j.compstruct.2019.111803_b0170
  article-title: Towards energy and material efficient laser cladding process: modeling and optimization using a hybrid TS-GEP algorithm and the NSGA-II
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.04.187
– volume: 18
  start-page: 77
  issue: 1–2
  year: 2016
  ident: 10.1016/j.compstruct.2019.111803_b0060
  article-title: Prediction of critical thrust force for exit-ply delamination during drilling composite laminates: thermo-mechanical analysis
  publication-title: Int J Mach Mach Mater
– start-page: 1989
  issue: 203-210
  year: 2019
  ident: 10.1016/j.compstruct.2019.111803_b0155
  article-title: Prediction of machining performance using RSM and ANN models in hard turning of martensitic stainless steel AISI 420
  publication-title: ARCHIVE P I Mech Part C: J Mech Eng Sci
– volume: 37
  start-page: 23
  issue: 1–2
  year: 2008
  ident: 10.1016/j.compstruct.2019.111803_b0075
  article-title: Thrust force and delamination of core-saw drill during drilling of carbon fiber reinforced plastics (CFRP)
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-007-0963-6
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.compstruct.2019.111803_b0175
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comp
  doi: 10.1109/4235.996017
– volume: 262
  start-page: 157
  year: 2018
  ident: 10.1016/j.compstruct.2019.111803_b0065
  article-title: Novel drill bit based on the step-control scheme for reducing the CFRP delamination
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2018.06.037
– volume: 118
  start-page: 10686
  issue: 20
  year: 2014
  ident: 10.1016/j.compstruct.2019.111803_b0115
  article-title: Nonoxidative conversion of methane in a dielectric barrier discharge reactor: prediction of reaction performance based on neural network model
  publication-title: J Phys Chem C
  doi: 10.1021/jp502557s
– volume: 26
  start-page: 237
  year: 2015
  ident: 10.1016/j.compstruct.2019.111803_b0145
  article-title: ANN and multiple regression method-based modeling of cuttingforces in orthogonal machining of AISI 316L stainless steel
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1721-y
– volume: 50
  start-page: 882
  issue: 10
  year: 2010
  ident: 10.1016/j.compstruct.2019.111803_b0120
  article-title: Prediction of cutting forces in helical end milling fiber reinforced polymers
  publication-title: Int J MachTools Manuf
  doi: 10.1016/j.ijmachtools.2010.06.005
– volume: 8
  start-page: 198
  issue: 1/2
  year: 2010
  ident: 10.1016/j.compstruct.2019.111803_b0140
  article-title: Modelling of cutting forces as a function of cutting parameters in milling process using regression analysis and artificial neural network
  publication-title: Int J Mach Mach Mater
– volume: 124
  start-page: 207
  year: 2017
  ident: 10.1016/j.compstruct.2019.111803_b0085
  article-title: A new analytical critical thrust force model for delamination analysis of laminated composites during drilling operation
  publication-title: Compos Part B-Eng
  doi: 10.1016/j.compositesb.2017.05.039
– volume: 29
  start-page: 1768
  year: 2008
  ident: 10.1016/j.compstruct.2019.111803_b0020
  article-title: Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2008.03.014
– volume: 209
  start-page: 337
  year: 2019
  ident: 10.1016/j.compstruct.2019.111803_b0005
  article-title: A theoretical model for predicting the CFRP drilling-countersinking thrust force of stacks
  publication-title: Compo Struct
  doi: 10.1016/j.compstruct.2018.10.107
– volume: 158
  start-page: 210
  year: 2016
  ident: 10.1016/j.compstruct.2019.111803_b0165
  article-title: A useful tool for computation and interpretation of trading-off solutions through Pareto front in the field of experimental designs for mixtures
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2016.09.007
– volume: 37
  start-page: 1097
  issue: 8
  year: 1997
  ident: 10.1016/j.compstruct.2019.111803_b0070
  article-title: Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/S0890-6955(96)00095-8
– volume: 189
  start-page: 143
  year: 2007
  ident: 10.1016/j.compstruct.2019.111803_b0135
  article-title: An ANN approach for predicting subsurface residual stresses and the desired cutting conditions during hard turning
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.01.016
– volume: 37
  start-page: 641
  year: 2008
  ident: 10.1016/j.compstruct.2019.111803_b0150
  article-title: Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-007-0999-7
– volume: 148
  start-page: 19
  year: 2016
  ident: 10.1016/j.compstruct.2019.111803_b0095
  article-title: Critical thrust and feed prediction models in drilling of composite laminates
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.03.059
– volume: 97
  start-page: 857
  year: 2018
  ident: 10.1016/j.compstruct.2019.111803_b0025
  article-title: Influence of machining parameters and tool structure on cutting force and hole wall damage in drilling CFRP with stepped drills
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-1981-2
– volume: 45
  start-page: 1286
  issue: 5
  year: 2012
  ident: 10.1016/j.compstruct.2019.111803_b0040
  article-title: Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.01.008
– volume: 155
  start-page: 173
  year: 2016
  ident: 10.1016/j.compstruct.2019.111803_b0010
  article-title: A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP)
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.08.004
– volume: 74
  start-page: 96
  year: 2017
  ident: 10.1016/j.compstruct.2019.111803_b0160
  article-title: Multi-objective optimization: a method for selecting the optimal solution from Pareto non-inferior solutions
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.01.004
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.compstruct.2019.111803_b0205
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– volume: 130
  start-page: 265
  year: 2019
  ident: 10.1016/j.compstruct.2019.111803_b0195
  article-title: A hierarchical prediction model for lane-changes based on combination of fuzzy C-means and adaptive neural network
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.04.032
– volume: 262
  start-page: 521
  year: 2018
  ident: 10.1016/j.compstruct.2019.111803_b0105
  article-title: A novel approach to predict the delamination factor for dry and cryogenic drilling of CFRP
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2018.07.026
– volume: 205
  start-page: 16
  year: 2008
  ident: 10.1016/j.compstruct.2019.111803_b0125
  article-title: Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.11.082
– volume: 9
  start-page: 1609
  issue: 10
  year: 2018
  ident: 10.1016/j.compstruct.2019.111803_b0200
  article-title: Fuzzy c-means clustering-based mating restriction for multiobjective optimization
  publication-title: Int J Mach Learn Cyber
  doi: 10.1007/s13042-017-0668-6
– volume: 110
  start-page: 319
  year: 2017
  ident: 10.1016/j.compstruct.2019.111803_b0030
  article-title: Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP)
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.07.007
– start-page: 914
  year: 2003
  ident: 10.1016/j.compstruct.2019.111803_b0185
  article-title: An efficient evolutionary multi-objective optimization algorithm
– volume: 240
  start-page: 332
  year: 2017
  ident: 10.1016/j.compstruct.2019.111803_b0090
  article-title: New analytical model for delamination of CFRP during drilling
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2016.10.007
SSID ssj0008411
Score 2.4819198
Snippet A full factorial experiment is performed for the conventional dry drilling of CFRP with spindle speed, feed rate and point angle as drilling parameters,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111803
SubjectTerms Artificial neural network (ANN)
Carbon fiber reinforced polymer
Fuzzy C-means clustering algorithm
Multi-objective optimization
Non-dominated Sorting Genetic Algorithm (NSGA-II)
Title Multi-objective optimization of CFRP drilling parameters with a hybrid method integrating the ANN, NSGA-II and fuzzy C-means
URI https://dx.doi.org/10.1016/j.compstruct.2019.111803
Volume 235
WOSCitedRecordID wos000508631700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008411
  issn: 0263-8223
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbQxgM8IK5i3OQH3oql1IkTWzxVaINOqBpsiL5F8SWsFU2qdkNj4sdzTuxcBJMYQrxEVVTXUb-vx8en3_lMyMsy1ZE0WcZg_1OwRKsx07GImUjRa50nQnuf2ffZbCbnc3UUZGPb5jiBrKrkxYVa_1eo4R6Aja2zfwF396FwA14D6HAF2OF6LeCbllpW66UPZaMagsIqdFs24ouDj0cju1l4M260_l6hJKZtcxudfscmrnC0dGcn0XZVTWaNLmB2_HbCptPmr4fy_PISAgtbuSKU_lrnA4g1qAlDE1t0qT3f9ILFz6FO_WFAz0Mv3J0vihqLL1-GFQnYfnaSLF8ma1tlel3StnF4jRlkIz6aOR9tZaYYtj8MwzH39iW_hXZfZVgiMmv_1CjMUxjzZRT3y1knMjzGKXHGMRZtFIeFepdnQkHs251M9-eH3Yotk-ac5u4Rg-LL6wCvnu_qNGaQmpzcJXfCnoJOPBfukRuuuk9uD5wmH5Afv7CCDllB65IiK2jLCtqzgiIraEE9K6hnBR2wggIrKLDiFQ2coMAJ2nCCBk48JJ8O9k_evGPh4A1mIMSfsZIrW7pUcM0NZJCOc6OcUyXHbDWJI15EwrqyEErbzEgbOyWkTotxDNk35riPyE5VV-4xodxYodGm0sU2cVEsnYUU0lg0YEit0Xska7_H3ARXejwc5Wveyg-XeY9AjgjkHoE9Mu5Grr0zyzXGvG6hykOG6TPHHFj2x9FP_mn0U3Kr_7E8IzvwBvec3DTfzhbbzYtAyZ-q6ac-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+CFRP+drilling+parameters+with+a+hybrid+method+integrating+the+ANN%2C+NSGA-II+and+fuzzy+C-means&rft.jtitle=Composite+structures&rft.au=Wang%2C+Qian&rft.au=Jia%2C+Xiaoliang&rft.date=2020-03-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8223&rft.eissn=1879-1085&rft.volume=235&rft_id=info:doi/10.1016%2Fj.compstruct.2019.111803&rft.externalDocID=S0263822319330922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon