An improved ensemble fusion autoencoder model for fault diagnosis from imbalanced and incomplete data
Skewed distribution and incompleteness of monitored data might cause feature submergence and information loss, rendering the fault diagnosis from imbalanced and incomplete data commonly existing in industrial systems is still an intractable problem. Therefore, in order to improve the accuracy of fau...
Gespeichert in:
| Veröffentlicht in: | Control engineering practice Jg. 98; S. 104358 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.05.2020
|
| Schlagworte: | |
| ISSN: | 0967-0661, 1873-6939 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!