Maximum Likelihood recursive state estimation using the Expectation Maximization algorithm

A Maximum Likelihood recursive state estimator is derived for non-linear state–space models. The estimator iteratively combines a particle filter to generate the predicted/filtered state densities and the Expectation Maximization algorithm to compute the maximum likelihood filtered state estimate. A...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Automatica (Oxford) Ročník 144; s. 110482
Hlavní autori: Ramadan, Mohammad S., Bitmead, Robert R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.10.2022
Predmet:
ISSN:0005-1098, 1873-2836
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A Maximum Likelihood recursive state estimator is derived for non-linear state–space models. The estimator iteratively combines a particle filter to generate the predicted/filtered state densities and the Expectation Maximization algorithm to compute the maximum likelihood filtered state estimate. Algorithms for maximum likelihood state filtering, prediction and smoothing are derived. The convergence properties of these algorithms, which are inherited from the Expectation Maximization algorithm and the particle filter, are examined in two examples. For nonlinear state–space systems with linear measurements and additive Gaussian noises, it is shown that the filtering and prediction algorithms reduce to gradient-free optimization in a form of a fixed-point iteration. It is also shown that, with randomized reinitialization, which is feasible because of the simplicity of the algorithm, these methods are able to converge to the Maximum Likelihood Estimate (MLE) of multimodal, truncated and skewed densities, as well as those of disjoint support.
AbstractList A Maximum Likelihood recursive state estimator is derived for non-linear state–space models. The estimator iteratively combines a particle filter to generate the predicted/filtered state densities and the Expectation Maximization algorithm to compute the maximum likelihood filtered state estimate. Algorithms for maximum likelihood state filtering, prediction and smoothing are derived. The convergence properties of these algorithms, which are inherited from the Expectation Maximization algorithm and the particle filter, are examined in two examples. For nonlinear state–space systems with linear measurements and additive Gaussian noises, it is shown that the filtering and prediction algorithms reduce to gradient-free optimization in a form of a fixed-point iteration. It is also shown that, with randomized reinitialization, which is feasible because of the simplicity of the algorithm, these methods are able to converge to the Maximum Likelihood Estimate (MLE) of multimodal, truncated and skewed densities, as well as those of disjoint support.
ArticleNumber 110482
Author Bitmead, Robert R.
Ramadan, Mohammad S.
Author_xml – sequence: 1
  givenname: Mohammad S.
  surname: Ramadan
  fullname: Ramadan, Mohammad S.
  email: msramada@eng.ucsd.edu
  organization: Department of Mechanical & Aerospace Engineering, University of California, San Diego, La Jolla CA 92093-0411, USA
– sequence: 2
  givenname: Robert R.
  surname: Bitmead
  fullname: Bitmead, Robert R.
  email: rbitmead@eng.ucsd.edu
  organization: Department of Mechanical & Aerospace Engineering, University of California, San Diego, La Jolla CA 92093-0411, USA
BookMark eNqNkE1OwzAQRi1UJNrCHXyBBNtpEmeDBFX5kYrYwIaN5drj1iWJK9upCqcnJUhIbGA1mpG-NzNvgkatawEhTElKCS0ut6nsomtktEqmjDCWUkpmnJ2gMeVlljCeFSM0JoTkCSUVP0OTELZ9O6OcjdHrozzYpmvw0r5BbTfOaexBdT7YPeAQZQQMIdrjAtfiLth2jeMG8OKwAxWH6RfDfgyNrNfO27hpztGpkXWAi-86RS-3i-f5fbJ8unuYXy8TlVEeEygKxUBLUpUVAaLLnJuSVhXVhuam0pzSnBhqdKkZX4HhmhQlmxUlGC35imRTxAeu8i4ED0bsfH-vfxeUiKMjsRU_jsTRkRgc9dGrX1Flh5-il7b-D-BmAED_4N6CF0FZaBVo21uMQjv7N-QTQJ-O2A
CitedBy_id crossref_primary_10_1016_j_jobe_2024_111414
crossref_primary_10_1016_j_automatica_2024_111820
crossref_primary_10_1109_TETCI_2024_3355813
crossref_primary_10_3390_foods12030672
crossref_primary_10_1109_LCSYS_2024_3455248
crossref_primary_10_1002_oca_3321
crossref_primary_10_1016_j_chaos_2024_115181
crossref_primary_10_2478_amns_2023_2_01514
crossref_primary_10_3390_plants12040941
crossref_primary_10_1109_TASE_2025_3534849
crossref_primary_10_1109_TIM_2025_3548225
crossref_primary_10_1177_09596518241280323
crossref_primary_10_1109_JAS_2023_124137
crossref_primary_10_1088_1361_6501_ada6ee
crossref_primary_10_1177_09544062231190822
Cites_doi 10.1080/01621459.1990.10474930
10.1023/A:1008935410038
10.1016/j.automatica.2010.10.013
10.1214/18-BA1099
10.1214/14-STS511
10.1016/j.dsp.2013.11.006
10.1109/TIT.2020.3047761
10.1214/aos/1176346060
10.1093/restud/rds040
10.1093/biomet/asq062
10.2514/3.3166
10.1111/j.2517-6161.1977.tb01600.x
10.1145/2414416.2414418
10.1109/TAC.2016.2624698
10.1093/biomet/80.2.267
10.1109/79.543975
10.1080/01621459.1999.10474153
10.1111/j.2517-6161.1995.tb02037.x
10.1016/j.jeconom.2011.07.006
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.automatica.2022.110482
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2836
ExternalDocumentID 10_1016_j_automatica_2022_110482
S0005109822003417
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-e66c2eda09790e0d758f71991df15f9d81150f1fd7d28bef8d0672467efda8b03
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000837854100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0005-1098
IngestDate Sat Nov 29 07:33:18 EST 2025
Tue Nov 18 21:50:46 EST 2025
Fri Feb 23 02:39:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Expectation Maximization
Maximum Likelihood
State estimation
Particle filter
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-e66c2eda09790e0d758f71991df15f9d81150f1fd7d28bef8d0672467efda8b03
ParticipantIDs crossref_primary_10_1016_j_automatica_2022_110482
crossref_citationtrail_10_1016_j_automatica_2022_110482
elsevier_sciencedirect_doi_10_1016_j_automatica_2022_110482
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Automatica (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Le Corff, Fort (b6) 2013; 23
Mihaylova, Carmi, Septier, Gning, Pang, Godsill (b12) 2014; 25
Doucet, Godsill, Andrieu (b3) 2000; 10
Li, Scharth (b8) 2020
Dempster, Laird, Rubin (b2) 1977; 39
Vankov, Guindani, Ensor (b20) 2019; 14
Malik, Pitt (b10) 2011; 165
Septier, Pang, Godsill, Carmi (b18) 2009
Lange (b5) 1995; 57
Li, Liu, Chen (b7) 2016; 62
Poyiadjis, Doucet, Singh (b15) 2011; 98
Schön, Wills, Ninness (b17) 2011; 47
Rauch, Tung, Striebel (b16) 1965; 3
DeJong, Liesenfeld, Moura, Richard, Dharmarajan (b1) 2013; 80
Pitt, Shephard (b14) 1999; 94
Kantas, Doucet, Singh, Maciejowski, Chopin (b4) 2015; 30
Tadić, Doucet (b19) 2020; 67
Moon (b13) 1996; 13
Wei, Tanner (b21) 1990; 85
Lindholm, Lindsten (b9) 2018
Wu (b22) 1983; 11
Meng, Rubin (b11) 1993; 80
Lindholm (10.1016/j.automatica.2022.110482_b9) 2018
Malik (10.1016/j.automatica.2022.110482_b10) 2011; 165
Wu (10.1016/j.automatica.2022.110482_b22) 1983; 11
Li (10.1016/j.automatica.2022.110482_b8) 2020
Septier (10.1016/j.automatica.2022.110482_b18) 2009
Moon (10.1016/j.automatica.2022.110482_b13) 1996; 13
Li (10.1016/j.automatica.2022.110482_b7) 2016; 62
Wei (10.1016/j.automatica.2022.110482_b21) 1990; 85
Doucet (10.1016/j.automatica.2022.110482_b3) 2000; 10
Pitt (10.1016/j.automatica.2022.110482_b14) 1999; 94
DeJong (10.1016/j.automatica.2022.110482_b1) 2013; 80
Le Corff (10.1016/j.automatica.2022.110482_b6) 2013; 23
Vankov (10.1016/j.automatica.2022.110482_b20) 2019; 14
Meng (10.1016/j.automatica.2022.110482_b11) 1993; 80
Tadić (10.1016/j.automatica.2022.110482_b19) 2020; 67
Poyiadjis (10.1016/j.automatica.2022.110482_b15) 2011; 98
Rauch (10.1016/j.automatica.2022.110482_b16) 1965; 3
Dempster (10.1016/j.automatica.2022.110482_b2) 1977; 39
Kantas (10.1016/j.automatica.2022.110482_b4) 2015; 30
Schön (10.1016/j.automatica.2022.110482_b17) 2011; 47
Mihaylova (10.1016/j.automatica.2022.110482_b12) 2014; 25
Lange (10.1016/j.automatica.2022.110482_b5) 1995; 57
References_xml – volume: 30
  start-page: 328
  year: 2015
  end-page: 351
  ident: b4
  article-title: On particle methods for parameter estimation in state-space models
  publication-title: Statistical Science
– volume: 25
  start-page: 1
  year: 2014
  end-page: 16
  ident: b12
  article-title: Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking
  publication-title: Digital Signal Processing
– volume: 98
  start-page: 65
  year: 2011
  end-page: 80
  ident: b15
  article-title: Particle approximations of the score and observed information matrix in state space models with application to parameter estimation
  publication-title: Biometrika
– volume: 3
  start-page: 1445
  year: 1965
  end-page: 1450
  ident: b16
  article-title: Maximum likelihood estimates of linear dynamic systems
  publication-title: American Institute of Aeronautics and Astronautics
– volume: 165
  start-page: 190
  year: 2011
  end-page: 209
  ident: b10
  article-title: Particle filters for continuous likelihood evaluation and maximisation
  publication-title: Journal of Econometrics
– volume: 80
  start-page: 538
  year: 2013
  end-page: 567
  ident: b1
  article-title: Efficient likelihood evaluation of state-space representations
  publication-title: Review of Economic Studies
– volume: 14
  start-page: 29
  year: 2019
  end-page: 52
  ident: b20
  article-title: Filtering and estimation for a class of stochastic volatility models with intractable likelihoods
  publication-title: Bayesian Analysis
– volume: 10
  start-page: 197
  year: 2000
  end-page: 208
  ident: b3
  article-title: On sequential Monte Carlo sampling methods for Bayesian filtering
  publication-title: Statistics and Computing
– volume: 67
  start-page: 1825
  year: 2020
  end-page: 1848
  ident: b19
  article-title: Asymptotic properties of recursive particle maximum likelihood estimation
  publication-title: IEEE Transactions on Information Theory
– volume: 80
  start-page: 267
  year: 1993
  end-page: 278
  ident: b11
  article-title: Maximum likelihood estimation via the ECM algorithm: A general framework
  publication-title: Biometrika
– volume: 11
  start-page: 95
  year: 1983
  end-page: 103
  ident: b22
  article-title: On the convergence properties of the EM algorithm
  publication-title: The Annals of Statistics
– volume: 62
  start-page: 4639
  year: 2016
  end-page: 4646
  ident: b7
  article-title: An auxiliary particle filtering algorithm with inequality constraints
  publication-title: IEEE Transactions on Automatic Control
– year: 2018
  ident: b9
  article-title: Learning dynamical systems with particle stochastic approximation EM
– volume: 39
  start-page: 1
  year: 1977
  end-page: 22
  ident: b2
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
– volume: 57
  start-page: 425
  year: 1995
  end-page: 437
  ident: b5
  article-title: A gradient algorithm locally equivalent to the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
– volume: 13
  start-page: 47
  year: 1996
  end-page: 60
  ident: b13
  article-title: The expectation-maximization algorithm
  publication-title: IEEE Signal Processing Magazine
– volume: 85
  start-page: 699
  year: 1990
  end-page: 704
  ident: b21
  article-title: A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms
  publication-title: Journal of the American Statistical Association
– volume: 94
  start-page: 590
  year: 1999
  end-page: 599
  ident: b14
  article-title: Filtering via simulation: Auxiliary particle filters
  publication-title: Journal of the American Statistical Association
– start-page: 1
  year: 2009
  end-page: 11
  ident: b18
  article-title: Tracking of coordinated groups using marginalised MCMC-based particle algorithm
  publication-title: 2009 IEEE aerospace conference
– volume: 23
  start-page: 1
  year: 2013
  end-page: 22
  ident: b6
  article-title: Convergence of a particle-based approximation of the block online expectation maximization algorithm
  publication-title: ACM Transactions on Modeling and Computer Simulation (TOMACS)
– volume: 47
  start-page: 39
  year: 2011
  end-page: 49
  ident: b17
  article-title: System identification of nonlinear state-space models
  publication-title: Automatica
– start-page: 1
  year: 2020
  end-page: 17
  ident: b8
  article-title: Leverage, asymmetry, and heavy tails in the high-dimensional factor stochastic volatility model
  publication-title: Journal of Business & Economic Statistics
– volume: 85
  start-page: 699
  issue: 411
  year: 1990
  ident: 10.1016/j.automatica.2022.110482_b21
  article-title: A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1990.10474930
– volume: 10
  start-page: 197
  issue: 3
  year: 2000
  ident: 10.1016/j.automatica.2022.110482_b3
  article-title: On sequential Monte Carlo sampling methods for Bayesian filtering
  publication-title: Statistics and Computing
  doi: 10.1023/A:1008935410038
– volume: 47
  start-page: 39
  issue: 1
  year: 2011
  ident: 10.1016/j.automatica.2022.110482_b17
  article-title: System identification of nonlinear state-space models
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.10.013
– start-page: 1
  year: 2009
  ident: 10.1016/j.automatica.2022.110482_b18
  article-title: Tracking of coordinated groups using marginalised MCMC-based particle algorithm
– year: 2018
  ident: 10.1016/j.automatica.2022.110482_b9
– start-page: 1
  year: 2020
  ident: 10.1016/j.automatica.2022.110482_b8
  article-title: Leverage, asymmetry, and heavy tails in the high-dimensional factor stochastic volatility model
  publication-title: Journal of Business & Economic Statistics
– volume: 14
  start-page: 29
  issue: 1
  year: 2019
  ident: 10.1016/j.automatica.2022.110482_b20
  article-title: Filtering and estimation for a class of stochastic volatility models with intractable likelihoods
  publication-title: Bayesian Analysis
  doi: 10.1214/18-BA1099
– volume: 30
  start-page: 328
  issue: 3
  year: 2015
  ident: 10.1016/j.automatica.2022.110482_b4
  article-title: On particle methods for parameter estimation in state-space models
  publication-title: Statistical Science
  doi: 10.1214/14-STS511
– volume: 25
  start-page: 1
  year: 2014
  ident: 10.1016/j.automatica.2022.110482_b12
  article-title: Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2013.11.006
– volume: 67
  start-page: 1825
  issue: 3
  year: 2020
  ident: 10.1016/j.automatica.2022.110482_b19
  article-title: Asymptotic properties of recursive particle maximum likelihood estimation
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2020.3047761
– volume: 11
  start-page: 95
  issue: 1
  year: 1983
  ident: 10.1016/j.automatica.2022.110482_b22
  article-title: On the convergence properties of the EM algorithm
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176346060
– volume: 80
  start-page: 538
  issue: 2
  year: 2013
  ident: 10.1016/j.automatica.2022.110482_b1
  article-title: Efficient likelihood evaluation of state-space representations
  publication-title: Review of Economic Studies
  doi: 10.1093/restud/rds040
– volume: 98
  start-page: 65
  issue: 1
  year: 2011
  ident: 10.1016/j.automatica.2022.110482_b15
  article-title: Particle approximations of the score and observed information matrix in state space models with application to parameter estimation
  publication-title: Biometrika
  doi: 10.1093/biomet/asq062
– volume: 3
  start-page: 1445
  issue: 8
  year: 1965
  ident: 10.1016/j.automatica.2022.110482_b16
  article-title: Maximum likelihood estimates of linear dynamic systems
  publication-title: American Institute of Aeronautics and Astronautics
  doi: 10.2514/3.3166
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.automatica.2022.110482_b2
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 23
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.automatica.2022.110482_b6
  article-title: Convergence of a particle-based approximation of the block online expectation maximization algorithm
  publication-title: ACM Transactions on Modeling and Computer Simulation (TOMACS)
  doi: 10.1145/2414416.2414418
– volume: 62
  start-page: 4639
  issue: 9
  year: 2016
  ident: 10.1016/j.automatica.2022.110482_b7
  article-title: An auxiliary particle filtering algorithm with inequality constraints
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2624698
– volume: 80
  start-page: 267
  issue: 2
  year: 1993
  ident: 10.1016/j.automatica.2022.110482_b11
  article-title: Maximum likelihood estimation via the ECM algorithm: A general framework
  publication-title: Biometrika
  doi: 10.1093/biomet/80.2.267
– volume: 13
  start-page: 47
  issue: 6
  year: 1996
  ident: 10.1016/j.automatica.2022.110482_b13
  article-title: The expectation-maximization algorithm
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/79.543975
– volume: 94
  start-page: 590
  issue: 446
  year: 1999
  ident: 10.1016/j.automatica.2022.110482_b14
  article-title: Filtering via simulation: Auxiliary particle filters
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1999.10474153
– volume: 57
  start-page: 425
  issue: 2
  year: 1995
  ident: 10.1016/j.automatica.2022.110482_b5
  article-title: A gradient algorithm locally equivalent to the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/j.2517-6161.1995.tb02037.x
– volume: 165
  start-page: 190
  issue: 2
  year: 2011
  ident: 10.1016/j.automatica.2022.110482_b10
  article-title: Particle filters for continuous likelihood evaluation and maximisation
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2011.07.006
SSID ssj0004182
Score 2.4931438
Snippet A Maximum Likelihood recursive state estimator is derived for non-linear state–space models. The estimator iteratively combines a particle filter to generate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110482
SubjectTerms Expectation Maximization
Maximum Likelihood
Particle filter
State estimation
Title Maximum Likelihood recursive state estimation using the Expectation Maximization algorithm
URI https://dx.doi.org/10.1016/j.automatica.2022.110482
Volume 144
WOSCitedRecordID wos000837854100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5R4NAeKlpalbagPfRmOVo7cXZXPUUViFYCIaBS1Iu12UcJxA5KnCo_v7MPPwpIUFW9WImltZOdL-OZyTffIPQpZYaIAZ_ERtMUEhSlYgFhQwyZmCEGntCZJG7YBD09ZeMxPwuCCks3ToCWJVuv-e1_NTWcA2Pb1tm_MHdzUTgBr8HocASzw_FJhj8R62mxKiDbvtGzqVMtXtiiuuOpu_6hyCpr-JbFaLWs-6Ws6LEM3EN3jdChGYnZz_liWl0V3UB2tKrmTu1VOMHStefIN1WFc1EI5WurJ_MrUcC76KLXVuSrImDLM7uj8163_ACZa01kCzWxui-mJSF5P2v1Tf186Z72rpXRfgzBzPAP3-vFH-_5cV9SuLYsnvBlevbmtmlh4IcV3VHJvnDBKLFqhFZyJ6HP0FZKMw6Obmv09XD8rW2WTZiXkA8fMdC7POnv4fs9HLN04pDLHfQyJBB45A3_Cm3o8jV60ZGV3EU_AgRwCwHcQAA7COAWAthBAAMEcAcCuAsB3EDgDfp-dHj55TgOMzRiCd66ivVwKFOtBOGUE00UpIeGWrqbMklmuGI2IzCJUVSlbKINU_a_eXh6aqMEm5D-W7RZzkv9DmHOJn1KGFUZlbaowgeaZ0ZLI5O-4YLuIVrvUi6DwLydczLLaybhdd7ub273N_f7u4eSZuWtF1l5wprPtSHyECz6IDAHDD26-v0_rf6Anrc_hY9os1qs9D7alr-q6XJxEAD3G0JSls8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+Likelihood+recursive+state+estimation+using+the+Expectation+Maximization+algorithm&rft.jtitle=Automatica+%28Oxford%29&rft.au=Ramadan%2C+Mohammad+S.&rft.au=Bitmead%2C+Robert+R.&rft.date=2022-10-01&rft.pub=Elsevier+Ltd&rft.issn=0005-1098&rft.eissn=1873-2836&rft.volume=144&rft_id=info:doi/10.1016%2Fj.automatica.2022.110482&rft.externalDocID=S0005109822003417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon