Secure consensus with distributed detection via two-hop communication

In this paper, we consider a multi-agent resilient consensus problem, where some of the nodes may behave maliciously. The approach is to equip all nodes with a scheme to detect neighboring nodes when they behave in an abnormal fashion. To this end, the nodes exchange not only their own states but al...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Automatica (Oxford) Ročník 131; s. 109775
Hlavní autori: Yuan, Liwei, Ishii, Hideaki
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.09.2021
Predmet:
ISSN:0005-1098, 1873-2836
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we consider a multi-agent resilient consensus problem, where some of the nodes may behave maliciously. The approach is to equip all nodes with a scheme to detect neighboring nodes when they behave in an abnormal fashion. To this end, the nodes exchange not only their own states but also information regarding their neighbor nodes. Such two-hop communication has long been studied in fault-tolerant algorithms in computer science. We propose two distributed schemes for detection of malicious nodes and resilient consensus with different requirements on resources for communication and the structures of the networks. In particular, the detection schemes become effective under certain connectivity properties in the network so that the non-malicious nodes can share enough information about their neighbors. It is shown that the requirements are however less stringent than those for conventional algorithms. A numerical example is presented to demonstrate the performance of the proposed methods in wireless sensor networks.
AbstractList In this paper, we consider a multi-agent resilient consensus problem, where some of the nodes may behave maliciously. The approach is to equip all nodes with a scheme to detect neighboring nodes when they behave in an abnormal fashion. To this end, the nodes exchange not only their own states but also information regarding their neighbor nodes. Such two-hop communication has long been studied in fault-tolerant algorithms in computer science. We propose two distributed schemes for detection of malicious nodes and resilient consensus with different requirements on resources for communication and the structures of the networks. In particular, the detection schemes become effective under certain connectivity properties in the network so that the non-malicious nodes can share enough information about their neighbors. It is shown that the requirements are however less stringent than those for conventional algorithms. A numerical example is presented to demonstrate the performance of the proposed methods in wireless sensor networks.
ArticleNumber 109775
Author Ishii, Hideaki
Yuan, Liwei
Author_xml – sequence: 1
  givenname: Liwei
  surname: Yuan
  fullname: Yuan, Liwei
  email: yuan@sc.dis.titech.ac.jp
– sequence: 2
  givenname: Hideaki
  surname: Ishii
  fullname: Ishii, Hideaki
  email: ishii@c.titech.ac.jp
BookMark eNqNkN1KAzEQhYNUsK2-w77A1mSzm83eCFrqDxS8UK9DfmZpSjcpSdbi25taQfBGr4aZwzkz883QxHkHCBUELwgm7Hq7kGPyg0xWy0WFK5LHXds2Z2hKeEvLilM2QVOMcVNmhV-gWYzb3NaEV1O0egE9Bii0dxFcHGNxsGlTGBtTsGpMYAoDCXSy3hXvVhbp4MuN32fDMIwuLz0ql-i8l7sIV991jt7uV6_Lx3L9_PC0vF2XmhKeSmCkUw2nwJoeGtw2NW9bLZkxGFOlK666mmOmlQGmqKoq0E1HFJUS96quNZ2jm1OuDj7GAL3QNn1dkIK0O0GwOEIRW_EDRRyhiBOUHMB_BeyDHWT4-I_17mSF_OC7hSCituA0GBsyH2G8_TvkEwxxhuU
CitedBy_id crossref_primary_10_1016_j_sysconle_2023_105509
crossref_primary_10_1109_TAC_2024_3422738
crossref_primary_10_1109_TAC_2023_3274792
crossref_primary_10_1016_j_ejcon_2024_101035
crossref_primary_10_1016_j_sysconle_2022_105415
crossref_primary_10_1109_TSP_2023_3266975
crossref_primary_10_1016_j_automatica_2023_111224
crossref_primary_10_1016_j_arcontrol_2022_01_004
crossref_primary_10_1109_LCSYS_2023_3283041
crossref_primary_10_1016_j_automatica_2024_111908
crossref_primary_10_1016_j_isatra_2025_06_002
crossref_primary_10_1109_LCSYS_2023_3286451
crossref_primary_10_1109_TAC_2024_3426387
crossref_primary_10_1109_TCYB_2024_3411092
crossref_primary_10_1109_TPDS_2021_3096074
crossref_primary_10_1016_j_ifacol_2025_07_054
crossref_primary_10_1017_S0956792522000225
crossref_primary_10_1631_FITEE_2300467
crossref_primary_10_1109_TCNS_2023_3272295
crossref_primary_10_1016_j_automatica_2023_111382
crossref_primary_10_1088_3050_2454_adea7a
crossref_primary_10_1109_TAC_2025_3550065
crossref_primary_10_1109_TNSE_2024_3417478
Cites_doi 10.1109/24.370218
10.1109/TSIPN.2017.2742859
10.1145/2332432.2332505
10.1109/TAC.2019.2954363
10.23919/ACC.2017.7962962
10.1109/TAC.2010.2088690
10.1109/JSAC.2013.130413
10.1016/j.ic.2016.12.003
10.1109/TAC.2017.2771363
10.1145/2767386.2767399
10.1016/j.ifacol.2019.12.195
10.1109/TCNS.2017.2782486
10.1109/ROBOT.2009.5152608
10.1109/TPWRS.2013.2271640
10.1109/LRA.2017.2654550
10.1109/TRO.2017.2658604
10.1109/INFCOM.2007.193
10.1145/1217856.1217857
10.1145/226643.226647
10.1109/TSP.2013.2286102
10.1145/357172.357176
10.1007/s00446-014-0240-5
10.1016/j.automatica.2017.03.008
10.1109/ACC.2012.6315178
10.3182/20140824-6-ZA-1003.02753
10.1016/j.automatica.2011.09.011
10.1145/2185505.2185515
10.1109/TAC.2004.834113
10.1016/j.automatica.2010.01.012
10.1016/j.tcs.2018.08.001
10.1109/CDC.2018.8619772
10.1109/TAC.2011.2158130
10.1016/j.sysconle.2015.02.005
10.1109/TAC.2014.2372932
10.1007/BF01843568
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.automatica.2021.109775
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2836
ExternalDocumentID 10_1016_j_automatica_2021_109775
S0005109821002958
GrantInformation_xml – fundername: JSPS, Japan
  grantid: 18H01460
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: JST CREST, Japan
  grantid: JPMJCR15K3
  funderid: http://dx.doi.org/10.13039/501100003382
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-e619b583e65fe50754877ca6dd003bc28b94806cbde6b3b22ec591b3aa0fb44c3
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000674621200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0005-1098
IngestDate Tue Nov 18 21:21:50 EST 2025
Sat Nov 29 07:34:49 EST 2025
Fri Feb 23 02:42:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-hop communication
Distributed detection
Resilient consensus
Cyber security
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-e619b583e65fe50754877ca6dd003bc28b94806cbde6b3b22ec591b3aa0fb44c3
ParticipantIDs crossref_citationtrail_10_1016_j_automatica_2021_109775
crossref_primary_10_1016_j_automatica_2021_109775
elsevier_sciencedirect_doi_10_1016_j_automatica_2021_109775
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Automatica (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Blahut (b3) 1983
Shames, Teixeira, Sandberg, Johansson (b28) 2011; 47
Lynch (b19) 1996
Zhao, C., He, J., Cheng, P., & Chen, J. (2014). Secure consensus against message manipulation attacks in synchronous networks. In
Dibaji, Ishii, Tempo (b8) 2018; 63
Zhao, He, Chen (b37) 2018; 4
Sakavalas, Tseng, Vaidya (b26) 2018
(pp. 451–460).
Guo, M., Dimarogonas, D. V., & Johansson, K. H. (2012). Distributed real-time fault detection and isolation for cooperative multi-agent systems. In
(pp. 5270–5275).
Azadmanesh, Kieckhafer (b2) 2002; 5
(pp. 1182–1187).
Lindell, Lysyanskaya, Rabin (b18) 2006; 53
Dibaji, Ishii (b6) 2015; 79
Zhao, He, Wang (b39) 2020; 65
.
(pp. 55–64).
Chandra, Toueg (b5) 1996; 43
Fischer, Lynch, Merritt (b11) 1986; 1
(pp. 285–290). Also
LeBlanc, Zhang, Koutsoukos, Sundaram (b17) 2013; 31
Olfati-Saber, Murray (b22) 2004; 49
Park, Hutchinson (b24) 2017; 33
Mitra, A., Abbas, W., & Sundaram, S. (2018). On the impact of trusted nodes in resilient distributed state estimation of LTI systems. In
Saldana, D., Prorok, A., Sundaram, S., Campos, M. F. M., & Kumar, V. (2017). Resilient consensus for time-varying networks of dynamic agents. In
(pp. 252–258).
Mendes, Herlihy, Vaidya, Garg (b20) 2015; 28
Parhami (b23) 1994; 43
Dimarogonas, Johansson (b9) 2010; 46
(pp. 4547–4552).
Vaidya, N. H., Tseng, L., & Liang, G. (2012). Iterative approximate Byzantine consensus in arbitrary directed graphs. In
Lamport, Shostak, Pease (b16) 1982; 4
Yuan, L., & Ishii, H. (2019). Resilient consensus with distributed fault detection. In
(pp. 2723–2728).
Teixeira, A., Pérez, D., Sandberg, H., & Johansson, K. H. (2012). Attack models and scenarios for networked control systems. In
Guerrero-Bonilla, Prorok, Kumar (b12) 2017; 2
Bonomi, Del Pozzo, Potop-Butucaru, Tixeuil (b4) 2019; 758
Pasqualetti, Bicchi, Bullo (b25) 2012; 57
Su, Vaidya (b29) 2017; 255
He, Cheng, Shi, Chen (b14) 2013; 61
Zhang, W., Xue, G., & Misra, S. (2007). Fault-tolerant relay node placement in wireless sensor networks: Problems and algorithms. In
Yang, Tan, Xu (b34) 2013; 28
(pp. 365–374).
(pp. 1649–1657).
Kadowaki, Ishii (b15) 2014; 60
Tseng, L., & Vaidya, N. H. (2015). Fault-tolerant consensus in directed graphs. In
Abbas, Laszka, Koutsoukos (b1) 2017; 5
Dibaji, Ishii (b7) 2017; 81
Fagiolini, A., Babboni, F., & Bicchi, A. (2009). Dynamic distributed intrusion detection for secure multi-robot systems. In
Sundaram, Hadjicostis (b30) 2011; 56
Fischer (10.1016/j.automatica.2021.109775_b11) 1986; 1
Abbas (10.1016/j.automatica.2021.109775_b1) 2017; 5
10.1016/j.automatica.2021.109775_b27
He (10.1016/j.automatica.2021.109775_b14) 2013; 61
Parhami (10.1016/j.automatica.2021.109775_b23) 1994; 43
Lindell (10.1016/j.automatica.2021.109775_b18) 2006; 53
Zhao (10.1016/j.automatica.2021.109775_b39) 2020; 65
Dibaji (10.1016/j.automatica.2021.109775_b6) 2015; 79
Dimarogonas (10.1016/j.automatica.2021.109775_b9) 2010; 46
Pasqualetti (10.1016/j.automatica.2021.109775_b25) 2012; 57
Azadmanesh (10.1016/j.automatica.2021.109775_b2) 2002; 5
10.1016/j.automatica.2021.109775_b21
Guerrero-Bonilla (10.1016/j.automatica.2021.109775_b12) 2017; 2
Bonomi (10.1016/j.automatica.2021.109775_b4) 2019; 758
Su (10.1016/j.automatica.2021.109775_b29) 2017; 255
Yang (10.1016/j.automatica.2021.109775_b34) 2013; 28
Olfati-Saber (10.1016/j.automatica.2021.109775_b22) 2004; 49
Chandra (10.1016/j.automatica.2021.109775_b5) 1996; 43
Mendes (10.1016/j.automatica.2021.109775_b20) 2015; 28
Lynch (10.1016/j.automatica.2021.109775_b19) 1996
Zhao (10.1016/j.automatica.2021.109775_b37) 2018; 4
10.1016/j.automatica.2021.109775_b13
10.1016/j.automatica.2021.109775_b35
Sundaram (10.1016/j.automatica.2021.109775_b30) 2011; 56
10.1016/j.automatica.2021.109775_b36
10.1016/j.automatica.2021.109775_b38
Dibaji (10.1016/j.automatica.2021.109775_b8) 2018; 63
Lamport (10.1016/j.automatica.2021.109775_b16) 1982; 4
LeBlanc (10.1016/j.automatica.2021.109775_b17) 2013; 31
Sakavalas (10.1016/j.automatica.2021.109775_b26) 2018
10.1016/j.automatica.2021.109775_b31
10.1016/j.automatica.2021.109775_b33
10.1016/j.automatica.2021.109775_b10
10.1016/j.automatica.2021.109775_b32
Dibaji (10.1016/j.automatica.2021.109775_b7) 2017; 81
Kadowaki (10.1016/j.automatica.2021.109775_b15) 2014; 60
Shames (10.1016/j.automatica.2021.109775_b28) 2011; 47
Park (10.1016/j.automatica.2021.109775_b24) 2017; 33
Blahut (10.1016/j.automatica.2021.109775_b3) 1983
References_xml – reference: (pp. 5270–5275).
– reference: Guo, M., Dimarogonas, D. V., & Johansson, K. H. (2012). Distributed real-time fault detection and isolation for cooperative multi-agent systems. In
– reference: Teixeira, A., Pérez, D., Sandberg, H., & Johansson, K. H. (2012). Attack models and scenarios for networked control systems. In
– reference: (pp. 451–460).
– volume: 758
  start-page: 17
  year: 2019
  end-page: 29
  ident: b4
  article-title: Approximate agreement under mobile Byzantine faults
  publication-title: Theoretical Computer Science
– reference: Fagiolini, A., Babboni, F., & Bicchi, A. (2009). Dynamic distributed intrusion detection for secure multi-robot systems. In
– volume: 81
  start-page: 123
  year: 2017
  end-page: 132
  ident: b7
  article-title: Resilient consensus of second-order agent networks: Asynchronous update rules with delays
  publication-title: Automatica
– reference: (pp. 2723–2728).
– volume: 31
  start-page: 766
  year: 2013
  end-page: 781
  ident: b17
  article-title: Resilient asymptotic consensus in robust networks
  publication-title: IEEE Journal on Selected Areas in Communications
– volume: 43
  start-page: 617
  year: 1994
  end-page: 629
  ident: b23
  article-title: Voting algorithms
  publication-title: IEEE Transactions on Reliability
– reference: (pp. 1649–1657).
– reference: (pp. 252–258).
– reference: Saldana, D., Prorok, A., Sundaram, S., Campos, M. F. M., & Kumar, V. (2017). Resilient consensus for time-varying networks of dynamic agents. In
– volume: 4
  start-page: 382
  year: 1982
  end-page: 401
  ident: b16
  article-title: The Byzantine generals problem
  publication-title: ACM Transactions on Programming Languages and Systems
– reference: (pp. 285–290). Also,
– volume: 53
  start-page: 881
  year: 2006
  end-page: 917
  ident: b18
  article-title: On the composition of authenticated Byzantine agreement
  publication-title: Journal of the ACM
– reference: Tseng, L., & Vaidya, N. H. (2015). Fault-tolerant consensus in directed graphs. In
– volume: 65
  start-page: 4308
  year: 2020
  end-page: 4315
  ident: b39
  article-title: Resilient distributed optimization algorithm against adversarial attacks
  publication-title: IEEE Transactions on Automatic Control
– reference: (pp. 55–64).
– volume: 2
  start-page: 841
  year: 2017
  end-page: 848
  ident: b12
  article-title: Formations for resilient robot teams
  publication-title: IEEE Robotics and Automation Letters
– volume: 5
  start-page: 2036
  year: 2017
  end-page: 2048
  ident: b1
  article-title: Improving network connectivity and robustness using trusted nodes with application to resilient consensus
  publication-title: IEEE Transactions on Control of Network Systems
– volume: 28
  start-page: 423
  year: 2015
  end-page: 441
  ident: b20
  article-title: Multidimensional agreement in Byzantine systems
  publication-title: Distributed Computing
– year: 1996
  ident: b19
  article-title: Distributed algorithms
– volume: 60
  start-page: 2266
  year: 2014
  end-page: 2271
  ident: b15
  article-title: Event-based distributed clock synchronization for wireless sensor networks
  publication-title: IEEE Transactions on Automatic Control
– volume: 57
  start-page: 90
  year: 2012
  end-page: 104
  ident: b25
  article-title: Consensus computation in unreliable networks: A system theoretic approach
  publication-title: IEEE Transactions on Automatic Control
– year: 1983
  ident: b3
  article-title: Theory and practice of error control codes
– volume: 4
  start-page: 60
  year: 2018
  end-page: 69
  ident: b37
  article-title: Resilient consensus with mobile detectors against malicious attacks
  publication-title: IEEE Transactions on Signal and Information Processing over Networks
– volume: 1
  start-page: 26
  year: 1986
  end-page: 39
  ident: b11
  article-title: Easy impossibility proofs for distributed consensus problems
  publication-title: Distributed Computing
– reference: Mitra, A., Abbas, W., & Sundaram, S. (2018). On the impact of trusted nodes in resilient distributed state estimation of LTI systems. In
– reference: Yuan, L., & Ishii, H. (2019). Resilient consensus with distributed fault detection. In
– reference: Zhao, C., He, J., Cheng, P., & Chen, J. (2014). Secure consensus against message manipulation attacks in synchronous networks. In
– volume: 79
  start-page: 23
  year: 2015
  end-page: 29
  ident: b6
  article-title: Consensus of second-order multi-agent systems in the presence of locally bounded faults
  publication-title: Systems & Control Letters
– volume: 46
  start-page: 695
  year: 2010
  end-page: 700
  ident: b9
  article-title: Stability analysis for multi-agent systems using the incidence matrix: Quantized communication and formation control
  publication-title: Automatica
– reference: (pp. 4547–4552).
– volume: 33
  start-page: 565
  year: 2017
  end-page: 582
  ident: b24
  article-title: Fault-tolerant rendezvous of multirobot systems
  publication-title: IEEE Transactions on Robotics
– volume: 5
  start-page: 26
  year: 2002
  end-page: 34
  ident: b2
  article-title: Asynchronous approximate agreement in partially connected networks
  publication-title: International Journal of Parallel and Distributed Systems and Networks
– volume: 47
  start-page: 2757
  year: 2011
  end-page: 2764
  ident: b28
  article-title: Distributed fault detection for interconnected second-order systems
  publication-title: Automatica
– volume: 43
  start-page: 225
  year: 1996
  end-page: 267
  ident: b5
  article-title: Unreliable failure detectors for reliable distributed systems
  publication-title: Journal of the ACM
– reference: Vaidya, N. H., Tseng, L., & Liang, G. (2012). Iterative approximate Byzantine consensus in arbitrary directed graphs. In
– volume: 255
  start-page: 352
  year: 2017
  end-page: 368
  ident: b29
  article-title: Reaching approximate Byzantine consensus with multi-hop communication
  publication-title: Information and Computation
– reference: Zhang, W., Xue, G., & Misra, S. (2007). Fault-tolerant relay node placement in wireless sensor networks: Problems and algorithms. In
– reference: (pp. 1182–1187).
– volume: 61
  start-page: 6387
  year: 2013
  end-page: 6400
  ident: b14
  article-title: SATS: Secure average-consensus-based time synchronization in wireless sensor networks
  publication-title: IEEE Transactions on Signal Processing
– reference: .
– volume: 63
  start-page: 2508
  year: 2018
  end-page: 2522
  ident: b8
  article-title: Resilient randomized quantized consensus
  publication-title: IEEE Transactions on Automatic Control
– year: 2018
  ident: b26
  article-title: Effects of topology knowledge and relay depth on asynchronous consensus
– volume: 28
  start-page: 4416
  year: 2013
  end-page: 4426
  ident: b34
  article-title: Consensus based approach for economic dispatch problem in a smart grid
  publication-title: IEEE Transactions on Power Systems
– volume: 56
  start-page: 1495
  year: 2011
  end-page: 1508
  ident: b30
  article-title: Distributed function calculation via linear iterative strategies in the presence of malicious agents
  publication-title: IEEE Transactions on Automatic Control
– reference: (pp. 365–374).
– volume: 49
  start-page: 1520
  year: 2004
  end-page: 1533
  ident: b22
  article-title: Consensus problems in networks of agents with switching topology and time-delays
  publication-title: IEEE Transactions on Automatic Control
– volume: 43
  start-page: 617
  issue: 4
  year: 1994
  ident: 10.1016/j.automatica.2021.109775_b23
  article-title: Voting algorithms
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/24.370218
– volume: 4
  start-page: 60
  issue: 1
  year: 2018
  ident: 10.1016/j.automatica.2021.109775_b37
  article-title: Resilient consensus with mobile detectors against malicious attacks
  publication-title: IEEE Transactions on Signal and Information Processing over Networks
  doi: 10.1109/TSIPN.2017.2742859
– ident: 10.1016/j.automatica.2021.109775_b33
  doi: 10.1145/2332432.2332505
– volume: 65
  start-page: 4308
  issue: 10
  year: 2020
  ident: 10.1016/j.automatica.2021.109775_b39
  article-title: Resilient distributed optimization algorithm against adversarial attacks
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2019.2954363
– ident: 10.1016/j.automatica.2021.109775_b27
  doi: 10.23919/ACC.2017.7962962
– volume: 56
  start-page: 1495
  issue: 7
  year: 2011
  ident: 10.1016/j.automatica.2021.109775_b30
  article-title: Distributed function calculation via linear iterative strategies in the presence of malicious agents
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2010.2088690
– volume: 31
  start-page: 766
  issue: 4
  year: 2013
  ident: 10.1016/j.automatica.2021.109775_b17
  article-title: Resilient asymptotic consensus in robust networks
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2013.130413
– volume: 255
  start-page: 352
  year: 2017
  ident: 10.1016/j.automatica.2021.109775_b29
  article-title: Reaching approximate Byzantine consensus with multi-hop communication
  publication-title: Information and Computation
  doi: 10.1016/j.ic.2016.12.003
– year: 1983
  ident: 10.1016/j.automatica.2021.109775_b3
– volume: 63
  start-page: 2508
  issue: 8
  year: 2018
  ident: 10.1016/j.automatica.2021.109775_b8
  article-title: Resilient randomized quantized consensus
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2017.2771363
– ident: 10.1016/j.automatica.2021.109775_b32
  doi: 10.1145/2767386.2767399
– ident: 10.1016/j.automatica.2021.109775_b35
  doi: 10.1016/j.ifacol.2019.12.195
– volume: 5
  start-page: 2036
  issue: 4
  year: 2017
  ident: 10.1016/j.automatica.2021.109775_b1
  article-title: Improving network connectivity and robustness using trusted nodes with application to resilient consensus
  publication-title: IEEE Transactions on Control of Network Systems
  doi: 10.1109/TCNS.2017.2782486
– ident: 10.1016/j.automatica.2021.109775_b10
  doi: 10.1109/ROBOT.2009.5152608
– volume: 28
  start-page: 4416
  issue: 4
  year: 2013
  ident: 10.1016/j.automatica.2021.109775_b34
  article-title: Consensus based approach for economic dispatch problem in a smart grid
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2013.2271640
– volume: 2
  start-page: 841
  issue: 2
  year: 2017
  ident: 10.1016/j.automatica.2021.109775_b12
  article-title: Formations for resilient robot teams
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2017.2654550
– volume: 33
  start-page: 565
  issue: 3
  year: 2017
  ident: 10.1016/j.automatica.2021.109775_b24
  article-title: Fault-tolerant rendezvous of multirobot systems
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2017.2658604
– ident: 10.1016/j.automatica.2021.109775_b36
  doi: 10.1109/INFCOM.2007.193
– volume: 53
  start-page: 881
  issue: 6
  year: 2006
  ident: 10.1016/j.automatica.2021.109775_b18
  article-title: On the composition of authenticated Byzantine agreement
  publication-title: Journal of the ACM
  doi: 10.1145/1217856.1217857
– volume: 43
  start-page: 225
  issue: 2
  year: 1996
  ident: 10.1016/j.automatica.2021.109775_b5
  article-title: Unreliable failure detectors for reliable distributed systems
  publication-title: Journal of the ACM
  doi: 10.1145/226643.226647
– volume: 61
  start-page: 6387
  issue: 24
  year: 2013
  ident: 10.1016/j.automatica.2021.109775_b14
  article-title: SATS: Secure average-consensus-based time synchronization in wireless sensor networks
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2013.2286102
– volume: 4
  start-page: 382
  issue: 3
  year: 1982
  ident: 10.1016/j.automatica.2021.109775_b16
  article-title: The Byzantine generals problem
  publication-title: ACM Transactions on Programming Languages and Systems
  doi: 10.1145/357172.357176
– volume: 28
  start-page: 423
  issue: 6
  year: 2015
  ident: 10.1016/j.automatica.2021.109775_b20
  article-title: Multidimensional agreement in Byzantine systems
  publication-title: Distributed Computing
  doi: 10.1007/s00446-014-0240-5
– volume: 81
  start-page: 123
  year: 2017
  ident: 10.1016/j.automatica.2021.109775_b7
  article-title: Resilient consensus of second-order agent networks: Asynchronous update rules with delays
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.03.008
– ident: 10.1016/j.automatica.2021.109775_b13
  doi: 10.1109/ACC.2012.6315178
– ident: 10.1016/j.automatica.2021.109775_b38
  doi: 10.3182/20140824-6-ZA-1003.02753
– year: 2018
  ident: 10.1016/j.automatica.2021.109775_b26
– year: 1996
  ident: 10.1016/j.automatica.2021.109775_b19
– volume: 5
  start-page: 26
  issue: 1
  year: 2002
  ident: 10.1016/j.automatica.2021.109775_b2
  article-title: Asynchronous approximate agreement in partially connected networks
  publication-title: International Journal of Parallel and Distributed Systems and Networks
– volume: 47
  start-page: 2757
  issue: 12
  year: 2011
  ident: 10.1016/j.automatica.2021.109775_b28
  article-title: Distributed fault detection for interconnected second-order systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.09.011
– ident: 10.1016/j.automatica.2021.109775_b31
  doi: 10.1145/2185505.2185515
– volume: 49
  start-page: 1520
  issue: 9
  year: 2004
  ident: 10.1016/j.automatica.2021.109775_b22
  article-title: Consensus problems in networks of agents with switching topology and time-delays
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2004.834113
– volume: 46
  start-page: 695
  issue: 4
  year: 2010
  ident: 10.1016/j.automatica.2021.109775_b9
  article-title: Stability analysis for multi-agent systems using the incidence matrix: Quantized communication and formation control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.01.012
– volume: 758
  start-page: 17
  year: 2019
  ident: 10.1016/j.automatica.2021.109775_b4
  article-title: Approximate agreement under mobile Byzantine faults
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2018.08.001
– ident: 10.1016/j.automatica.2021.109775_b21
  doi: 10.1109/CDC.2018.8619772
– volume: 57
  start-page: 90
  issue: 1
  year: 2012
  ident: 10.1016/j.automatica.2021.109775_b25
  article-title: Consensus computation in unreliable networks: A system theoretic approach
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2011.2158130
– volume: 79
  start-page: 23
  year: 2015
  ident: 10.1016/j.automatica.2021.109775_b6
  article-title: Consensus of second-order multi-agent systems in the presence of locally bounded faults
  publication-title: Systems & Control Letters
  doi: 10.1016/j.sysconle.2015.02.005
– volume: 60
  start-page: 2266
  issue: 8
  year: 2014
  ident: 10.1016/j.automatica.2021.109775_b15
  article-title: Event-based distributed clock synchronization for wireless sensor networks
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2014.2372932
– volume: 1
  start-page: 26
  issue: 1
  year: 1986
  ident: 10.1016/j.automatica.2021.109775_b11
  article-title: Easy impossibility proofs for distributed consensus problems
  publication-title: Distributed Computing
  doi: 10.1007/BF01843568
SSID ssj0004182
Score 2.5425255
Snippet In this paper, we consider a multi-agent resilient consensus problem, where some of the nodes may behave maliciously. The approach is to equip all nodes with a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109775
SubjectTerms Cyber security
Distributed detection
Multi-hop communication
Resilient consensus
Title Secure consensus with distributed detection via two-hop communication
URI https://dx.doi.org/10.1016/j.automatica.2021.109775
Volume 131
WOSCitedRecordID wos000674621200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwGA06etCDuOK4kYM3qXRPiqdBRtSDeFAYTyVJU6aDdIaZzvLz_dJk2rqAC3gppZC0k5d-_ZJ533sInYeS2EEquUVT27bgCyUsRrljCUE8zv2EMWmXZhPk4YH2etGj8WqflHYCJM_pYhGN_hVquAZgq9LZX8BddQoX4BxAhyPADscfAV_uoJcc9ImysTDla4kSyFXeVpBgJrKQ2iF8lrGLYj60-sORIpfXpSLNnLUzLYalsCsrtUkXmg5fbSC8TE35QjaXWT3T-pn2w84SCUlqc3PBdSr2VB0wlVCpNoquAqaJ2zrkqb-wtfnJp2isNwYGiotjnvNS3eSybvJeAPvDh6miCy6ZaIO47ilWPcW6p1W05pIggri81rnr9u7rwliHarl48ysMlUsT_L5-qq_zk0bO8bSNtsxiAXc0yDtoRea7aLMhIbmHuhpuXMGNFdy4ATeu4MYANzZw43dw76Pnm-7T9a1lrDEsAUG4sCSse3lAPRnCiwYpvVp3EsHCJIEozYVLeeRTOxQ8kSH3uOtKAePDPcbslPu-8A5QKx_m8hBhn4S2yxORepz6kRMxAeMTSOqwlATEZ21ElgMSC6Mbr-xLXuPvYGkjp2o50topP2hztRzz2OSAOreLYVJ92_roD3c8Rhv1zD9BrWI8ladoXcyKbDI-MzPqDWlYhOA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secure+consensus+with+distributed+detection+via+two-hop+communication&rft.jtitle=Automatica+%28Oxford%29&rft.au=Yuan%2C+Liwei&rft.au=Ishii%2C+Hideaki&rft.date=2021-09-01&rft.issn=0005-1098&rft.volume=131&rft.spage=109775&rft_id=info:doi/10.1016%2Fj.automatica.2021.109775&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2021_109775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon