Secure consensus with distributed detection via two-hop communication
In this paper, we consider a multi-agent resilient consensus problem, where some of the nodes may behave maliciously. The approach is to equip all nodes with a scheme to detect neighboring nodes when they behave in an abnormal fashion. To this end, the nodes exchange not only their own states but al...
Uložené v:
| Vydané v: | Automatica (Oxford) Ročník 131; s. 109775 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.09.2021
|
| Predmet: | |
| ISSN: | 0005-1098, 1873-2836 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we consider a multi-agent resilient consensus problem, where some of the nodes may behave maliciously. The approach is to equip all nodes with a scheme to detect neighboring nodes when they behave in an abnormal fashion. To this end, the nodes exchange not only their own states but also information regarding their neighbor nodes. Such two-hop communication has long been studied in fault-tolerant algorithms in computer science. We propose two distributed schemes for detection of malicious nodes and resilient consensus with different requirements on resources for communication and the structures of the networks. In particular, the detection schemes become effective under certain connectivity properties in the network so that the non-malicious nodes can share enough information about their neighbors. It is shown that the requirements are however less stringent than those for conventional algorithms. A numerical example is presented to demonstrate the performance of the proposed methods in wireless sensor networks. |
|---|---|
| AbstractList | In this paper, we consider a multi-agent resilient consensus problem, where some of the nodes may behave maliciously. The approach is to equip all nodes with a scheme to detect neighboring nodes when they behave in an abnormal fashion. To this end, the nodes exchange not only their own states but also information regarding their neighbor nodes. Such two-hop communication has long been studied in fault-tolerant algorithms in computer science. We propose two distributed schemes for detection of malicious nodes and resilient consensus with different requirements on resources for communication and the structures of the networks. In particular, the detection schemes become effective under certain connectivity properties in the network so that the non-malicious nodes can share enough information about their neighbors. It is shown that the requirements are however less stringent than those for conventional algorithms. A numerical example is presented to demonstrate the performance of the proposed methods in wireless sensor networks. |
| ArticleNumber | 109775 |
| Author | Ishii, Hideaki Yuan, Liwei |
| Author_xml | – sequence: 1 givenname: Liwei surname: Yuan fullname: Yuan, Liwei email: yuan@sc.dis.titech.ac.jp – sequence: 2 givenname: Hideaki surname: Ishii fullname: Ishii, Hideaki email: ishii@c.titech.ac.jp |
| BookMark | eNqNkN1KAzEQhYNUsK2-w77A1mSzm83eCFrqDxS8UK9DfmZpSjcpSdbi25taQfBGr4aZwzkz883QxHkHCBUELwgm7Hq7kGPyg0xWy0WFK5LHXds2Z2hKeEvLilM2QVOMcVNmhV-gWYzb3NaEV1O0egE9Bii0dxFcHGNxsGlTGBtTsGpMYAoDCXSy3hXvVhbp4MuN32fDMIwuLz0ql-i8l7sIV991jt7uV6_Lx3L9_PC0vF2XmhKeSmCkUw2nwJoeGtw2NW9bLZkxGFOlK666mmOmlQGmqKoq0E1HFJUS96quNZ2jm1OuDj7GAL3QNn1dkIK0O0GwOEIRW_EDRRyhiBOUHMB_BeyDHWT4-I_17mSF_OC7hSCituA0GBsyH2G8_TvkEwxxhuU |
| CitedBy_id | crossref_primary_10_1016_j_sysconle_2023_105509 crossref_primary_10_1109_TAC_2024_3422738 crossref_primary_10_1109_TAC_2023_3274792 crossref_primary_10_1016_j_ejcon_2024_101035 crossref_primary_10_1016_j_sysconle_2022_105415 crossref_primary_10_1109_TSP_2023_3266975 crossref_primary_10_1016_j_automatica_2023_111224 crossref_primary_10_1016_j_arcontrol_2022_01_004 crossref_primary_10_1109_LCSYS_2023_3283041 crossref_primary_10_1016_j_automatica_2024_111908 crossref_primary_10_1016_j_isatra_2025_06_002 crossref_primary_10_1109_LCSYS_2023_3286451 crossref_primary_10_1109_TAC_2024_3426387 crossref_primary_10_1109_TCYB_2024_3411092 crossref_primary_10_1109_TPDS_2021_3096074 crossref_primary_10_1016_j_ifacol_2025_07_054 crossref_primary_10_1017_S0956792522000225 crossref_primary_10_1631_FITEE_2300467 crossref_primary_10_1109_TCNS_2023_3272295 crossref_primary_10_1016_j_automatica_2023_111382 crossref_primary_10_1088_3050_2454_adea7a crossref_primary_10_1109_TAC_2025_3550065 crossref_primary_10_1109_TNSE_2024_3417478 |
| Cites_doi | 10.1109/24.370218 10.1109/TSIPN.2017.2742859 10.1145/2332432.2332505 10.1109/TAC.2019.2954363 10.23919/ACC.2017.7962962 10.1109/TAC.2010.2088690 10.1109/JSAC.2013.130413 10.1016/j.ic.2016.12.003 10.1109/TAC.2017.2771363 10.1145/2767386.2767399 10.1016/j.ifacol.2019.12.195 10.1109/TCNS.2017.2782486 10.1109/ROBOT.2009.5152608 10.1109/TPWRS.2013.2271640 10.1109/LRA.2017.2654550 10.1109/TRO.2017.2658604 10.1109/INFCOM.2007.193 10.1145/1217856.1217857 10.1145/226643.226647 10.1109/TSP.2013.2286102 10.1145/357172.357176 10.1007/s00446-014-0240-5 10.1016/j.automatica.2017.03.008 10.1109/ACC.2012.6315178 10.3182/20140824-6-ZA-1003.02753 10.1016/j.automatica.2011.09.011 10.1145/2185505.2185515 10.1109/TAC.2004.834113 10.1016/j.automatica.2010.01.012 10.1016/j.tcs.2018.08.001 10.1109/CDC.2018.8619772 10.1109/TAC.2011.2158130 10.1016/j.sysconle.2015.02.005 10.1109/TAC.2014.2372932 10.1007/BF01843568 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.automatica.2021.109775 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2836 |
| ExternalDocumentID | 10_1016_j_automatica_2021_109775 S0005109821002958 |
| GrantInformation_xml | – fundername: JSPS, Japan grantid: 18H01460 funderid: http://dx.doi.org/10.13039/501100001691 – fundername: JST CREST, Japan grantid: JPMJCR15K3 funderid: http://dx.doi.org/10.13039/501100003382 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XFK XPP ZMT ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c318t-e619b583e65fe50754877ca6dd003bc28b94806cbde6b3b22ec591b3aa0fb44c3 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000674621200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0005-1098 |
| IngestDate | Tue Nov 18 21:21:50 EST 2025 Sat Nov 29 07:34:49 EST 2025 Fri Feb 23 02:42:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-hop communication Distributed detection Resilient consensus Cyber security |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c318t-e619b583e65fe50754877ca6dd003bc28b94806cbde6b3b22ec591b3aa0fb44c3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_automatica_2021_109775 crossref_primary_10_1016_j_automatica_2021_109775 elsevier_sciencedirect_doi_10_1016_j_automatica_2021_109775 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Automatica (Oxford) |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Blahut (b3) 1983 Shames, Teixeira, Sandberg, Johansson (b28) 2011; 47 Lynch (b19) 1996 Zhao, C., He, J., Cheng, P., & Chen, J. (2014). Secure consensus against message manipulation attacks in synchronous networks. In Dibaji, Ishii, Tempo (b8) 2018; 63 Zhao, He, Chen (b37) 2018; 4 Sakavalas, Tseng, Vaidya (b26) 2018 (pp. 451–460). Guo, M., Dimarogonas, D. V., & Johansson, K. H. (2012). Distributed real-time fault detection and isolation for cooperative multi-agent systems. In (pp. 5270–5275). Azadmanesh, Kieckhafer (b2) 2002; 5 (pp. 1182–1187). Lindell, Lysyanskaya, Rabin (b18) 2006; 53 Dibaji, Ishii (b6) 2015; 79 Zhao, He, Wang (b39) 2020; 65 . (pp. 55–64). Chandra, Toueg (b5) 1996; 43 Fischer, Lynch, Merritt (b11) 1986; 1 (pp. 285–290). Also LeBlanc, Zhang, Koutsoukos, Sundaram (b17) 2013; 31 Olfati-Saber, Murray (b22) 2004; 49 Park, Hutchinson (b24) 2017; 33 Mitra, A., Abbas, W., & Sundaram, S. (2018). On the impact of trusted nodes in resilient distributed state estimation of LTI systems. In Saldana, D., Prorok, A., Sundaram, S., Campos, M. F. M., & Kumar, V. (2017). Resilient consensus for time-varying networks of dynamic agents. In (pp. 252–258). Mendes, Herlihy, Vaidya, Garg (b20) 2015; 28 Parhami (b23) 1994; 43 Dimarogonas, Johansson (b9) 2010; 46 (pp. 4547–4552). Vaidya, N. H., Tseng, L., & Liang, G. (2012). Iterative approximate Byzantine consensus in arbitrary directed graphs. In Lamport, Shostak, Pease (b16) 1982; 4 Yuan, L., & Ishii, H. (2019). Resilient consensus with distributed fault detection. In (pp. 2723–2728). Teixeira, A., Pérez, D., Sandberg, H., & Johansson, K. H. (2012). Attack models and scenarios for networked control systems. In Guerrero-Bonilla, Prorok, Kumar (b12) 2017; 2 Bonomi, Del Pozzo, Potop-Butucaru, Tixeuil (b4) 2019; 758 Pasqualetti, Bicchi, Bullo (b25) 2012; 57 Su, Vaidya (b29) 2017; 255 He, Cheng, Shi, Chen (b14) 2013; 61 Zhang, W., Xue, G., & Misra, S. (2007). Fault-tolerant relay node placement in wireless sensor networks: Problems and algorithms. In Yang, Tan, Xu (b34) 2013; 28 (pp. 365–374). (pp. 1649–1657). Kadowaki, Ishii (b15) 2014; 60 Tseng, L., & Vaidya, N. H. (2015). Fault-tolerant consensus in directed graphs. In Abbas, Laszka, Koutsoukos (b1) 2017; 5 Dibaji, Ishii (b7) 2017; 81 Fagiolini, A., Babboni, F., & Bicchi, A. (2009). Dynamic distributed intrusion detection for secure multi-robot systems. In Sundaram, Hadjicostis (b30) 2011; 56 Fischer (10.1016/j.automatica.2021.109775_b11) 1986; 1 Abbas (10.1016/j.automatica.2021.109775_b1) 2017; 5 10.1016/j.automatica.2021.109775_b27 He (10.1016/j.automatica.2021.109775_b14) 2013; 61 Parhami (10.1016/j.automatica.2021.109775_b23) 1994; 43 Lindell (10.1016/j.automatica.2021.109775_b18) 2006; 53 Zhao (10.1016/j.automatica.2021.109775_b39) 2020; 65 Dibaji (10.1016/j.automatica.2021.109775_b6) 2015; 79 Dimarogonas (10.1016/j.automatica.2021.109775_b9) 2010; 46 Pasqualetti (10.1016/j.automatica.2021.109775_b25) 2012; 57 Azadmanesh (10.1016/j.automatica.2021.109775_b2) 2002; 5 10.1016/j.automatica.2021.109775_b21 Guerrero-Bonilla (10.1016/j.automatica.2021.109775_b12) 2017; 2 Bonomi (10.1016/j.automatica.2021.109775_b4) 2019; 758 Su (10.1016/j.automatica.2021.109775_b29) 2017; 255 Yang (10.1016/j.automatica.2021.109775_b34) 2013; 28 Olfati-Saber (10.1016/j.automatica.2021.109775_b22) 2004; 49 Chandra (10.1016/j.automatica.2021.109775_b5) 1996; 43 Mendes (10.1016/j.automatica.2021.109775_b20) 2015; 28 Lynch (10.1016/j.automatica.2021.109775_b19) 1996 Zhao (10.1016/j.automatica.2021.109775_b37) 2018; 4 10.1016/j.automatica.2021.109775_b13 10.1016/j.automatica.2021.109775_b35 Sundaram (10.1016/j.automatica.2021.109775_b30) 2011; 56 10.1016/j.automatica.2021.109775_b36 10.1016/j.automatica.2021.109775_b38 Dibaji (10.1016/j.automatica.2021.109775_b8) 2018; 63 Lamport (10.1016/j.automatica.2021.109775_b16) 1982; 4 LeBlanc (10.1016/j.automatica.2021.109775_b17) 2013; 31 Sakavalas (10.1016/j.automatica.2021.109775_b26) 2018 10.1016/j.automatica.2021.109775_b31 10.1016/j.automatica.2021.109775_b33 10.1016/j.automatica.2021.109775_b10 10.1016/j.automatica.2021.109775_b32 Dibaji (10.1016/j.automatica.2021.109775_b7) 2017; 81 Kadowaki (10.1016/j.automatica.2021.109775_b15) 2014; 60 Shames (10.1016/j.automatica.2021.109775_b28) 2011; 47 Park (10.1016/j.automatica.2021.109775_b24) 2017; 33 Blahut (10.1016/j.automatica.2021.109775_b3) 1983 |
| References_xml | – reference: (pp. 5270–5275). – reference: Guo, M., Dimarogonas, D. V., & Johansson, K. H. (2012). Distributed real-time fault detection and isolation for cooperative multi-agent systems. In – reference: Teixeira, A., Pérez, D., Sandberg, H., & Johansson, K. H. (2012). Attack models and scenarios for networked control systems. In – reference: (pp. 451–460). – volume: 758 start-page: 17 year: 2019 end-page: 29 ident: b4 article-title: Approximate agreement under mobile Byzantine faults publication-title: Theoretical Computer Science – reference: Fagiolini, A., Babboni, F., & Bicchi, A. (2009). Dynamic distributed intrusion detection for secure multi-robot systems. In – volume: 81 start-page: 123 year: 2017 end-page: 132 ident: b7 article-title: Resilient consensus of second-order agent networks: Asynchronous update rules with delays publication-title: Automatica – reference: (pp. 2723–2728). – volume: 31 start-page: 766 year: 2013 end-page: 781 ident: b17 article-title: Resilient asymptotic consensus in robust networks publication-title: IEEE Journal on Selected Areas in Communications – volume: 43 start-page: 617 year: 1994 end-page: 629 ident: b23 article-title: Voting algorithms publication-title: IEEE Transactions on Reliability – reference: (pp. 1649–1657). – reference: (pp. 252–258). – reference: Saldana, D., Prorok, A., Sundaram, S., Campos, M. F. M., & Kumar, V. (2017). Resilient consensus for time-varying networks of dynamic agents. In – volume: 4 start-page: 382 year: 1982 end-page: 401 ident: b16 article-title: The Byzantine generals problem publication-title: ACM Transactions on Programming Languages and Systems – reference: (pp. 285–290). Also, – volume: 53 start-page: 881 year: 2006 end-page: 917 ident: b18 article-title: On the composition of authenticated Byzantine agreement publication-title: Journal of the ACM – reference: Tseng, L., & Vaidya, N. H. (2015). Fault-tolerant consensus in directed graphs. In – volume: 65 start-page: 4308 year: 2020 end-page: 4315 ident: b39 article-title: Resilient distributed optimization algorithm against adversarial attacks publication-title: IEEE Transactions on Automatic Control – reference: (pp. 55–64). – volume: 2 start-page: 841 year: 2017 end-page: 848 ident: b12 article-title: Formations for resilient robot teams publication-title: IEEE Robotics and Automation Letters – volume: 5 start-page: 2036 year: 2017 end-page: 2048 ident: b1 article-title: Improving network connectivity and robustness using trusted nodes with application to resilient consensus publication-title: IEEE Transactions on Control of Network Systems – volume: 28 start-page: 423 year: 2015 end-page: 441 ident: b20 article-title: Multidimensional agreement in Byzantine systems publication-title: Distributed Computing – year: 1996 ident: b19 article-title: Distributed algorithms – volume: 60 start-page: 2266 year: 2014 end-page: 2271 ident: b15 article-title: Event-based distributed clock synchronization for wireless sensor networks publication-title: IEEE Transactions on Automatic Control – volume: 57 start-page: 90 year: 2012 end-page: 104 ident: b25 article-title: Consensus computation in unreliable networks: A system theoretic approach publication-title: IEEE Transactions on Automatic Control – year: 1983 ident: b3 article-title: Theory and practice of error control codes – volume: 4 start-page: 60 year: 2018 end-page: 69 ident: b37 article-title: Resilient consensus with mobile detectors against malicious attacks publication-title: IEEE Transactions on Signal and Information Processing over Networks – volume: 1 start-page: 26 year: 1986 end-page: 39 ident: b11 article-title: Easy impossibility proofs for distributed consensus problems publication-title: Distributed Computing – reference: Mitra, A., Abbas, W., & Sundaram, S. (2018). On the impact of trusted nodes in resilient distributed state estimation of LTI systems. In – reference: Yuan, L., & Ishii, H. (2019). Resilient consensus with distributed fault detection. In – reference: Zhao, C., He, J., Cheng, P., & Chen, J. (2014). Secure consensus against message manipulation attacks in synchronous networks. In – volume: 79 start-page: 23 year: 2015 end-page: 29 ident: b6 article-title: Consensus of second-order multi-agent systems in the presence of locally bounded faults publication-title: Systems & Control Letters – volume: 46 start-page: 695 year: 2010 end-page: 700 ident: b9 article-title: Stability analysis for multi-agent systems using the incidence matrix: Quantized communication and formation control publication-title: Automatica – reference: (pp. 4547–4552). – volume: 33 start-page: 565 year: 2017 end-page: 582 ident: b24 article-title: Fault-tolerant rendezvous of multirobot systems publication-title: IEEE Transactions on Robotics – volume: 5 start-page: 26 year: 2002 end-page: 34 ident: b2 article-title: Asynchronous approximate agreement in partially connected networks publication-title: International Journal of Parallel and Distributed Systems and Networks – volume: 47 start-page: 2757 year: 2011 end-page: 2764 ident: b28 article-title: Distributed fault detection for interconnected second-order systems publication-title: Automatica – volume: 43 start-page: 225 year: 1996 end-page: 267 ident: b5 article-title: Unreliable failure detectors for reliable distributed systems publication-title: Journal of the ACM – reference: Vaidya, N. H., Tseng, L., & Liang, G. (2012). Iterative approximate Byzantine consensus in arbitrary directed graphs. In – volume: 255 start-page: 352 year: 2017 end-page: 368 ident: b29 article-title: Reaching approximate Byzantine consensus with multi-hop communication publication-title: Information and Computation – reference: Zhang, W., Xue, G., & Misra, S. (2007). Fault-tolerant relay node placement in wireless sensor networks: Problems and algorithms. In – reference: (pp. 1182–1187). – volume: 61 start-page: 6387 year: 2013 end-page: 6400 ident: b14 article-title: SATS: Secure average-consensus-based time synchronization in wireless sensor networks publication-title: IEEE Transactions on Signal Processing – reference: . – volume: 63 start-page: 2508 year: 2018 end-page: 2522 ident: b8 article-title: Resilient randomized quantized consensus publication-title: IEEE Transactions on Automatic Control – year: 2018 ident: b26 article-title: Effects of topology knowledge and relay depth on asynchronous consensus – volume: 28 start-page: 4416 year: 2013 end-page: 4426 ident: b34 article-title: Consensus based approach for economic dispatch problem in a smart grid publication-title: IEEE Transactions on Power Systems – volume: 56 start-page: 1495 year: 2011 end-page: 1508 ident: b30 article-title: Distributed function calculation via linear iterative strategies in the presence of malicious agents publication-title: IEEE Transactions on Automatic Control – reference: (pp. 365–374). – volume: 49 start-page: 1520 year: 2004 end-page: 1533 ident: b22 article-title: Consensus problems in networks of agents with switching topology and time-delays publication-title: IEEE Transactions on Automatic Control – volume: 43 start-page: 617 issue: 4 year: 1994 ident: 10.1016/j.automatica.2021.109775_b23 article-title: Voting algorithms publication-title: IEEE Transactions on Reliability doi: 10.1109/24.370218 – volume: 4 start-page: 60 issue: 1 year: 2018 ident: 10.1016/j.automatica.2021.109775_b37 article-title: Resilient consensus with mobile detectors against malicious attacks publication-title: IEEE Transactions on Signal and Information Processing over Networks doi: 10.1109/TSIPN.2017.2742859 – ident: 10.1016/j.automatica.2021.109775_b33 doi: 10.1145/2332432.2332505 – volume: 65 start-page: 4308 issue: 10 year: 2020 ident: 10.1016/j.automatica.2021.109775_b39 article-title: Resilient distributed optimization algorithm against adversarial attacks publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2019.2954363 – ident: 10.1016/j.automatica.2021.109775_b27 doi: 10.23919/ACC.2017.7962962 – volume: 56 start-page: 1495 issue: 7 year: 2011 ident: 10.1016/j.automatica.2021.109775_b30 article-title: Distributed function calculation via linear iterative strategies in the presence of malicious agents publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2010.2088690 – volume: 31 start-page: 766 issue: 4 year: 2013 ident: 10.1016/j.automatica.2021.109775_b17 article-title: Resilient asymptotic consensus in robust networks publication-title: IEEE Journal on Selected Areas in Communications doi: 10.1109/JSAC.2013.130413 – volume: 255 start-page: 352 year: 2017 ident: 10.1016/j.automatica.2021.109775_b29 article-title: Reaching approximate Byzantine consensus with multi-hop communication publication-title: Information and Computation doi: 10.1016/j.ic.2016.12.003 – year: 1983 ident: 10.1016/j.automatica.2021.109775_b3 – volume: 63 start-page: 2508 issue: 8 year: 2018 ident: 10.1016/j.automatica.2021.109775_b8 article-title: Resilient randomized quantized consensus publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2017.2771363 – ident: 10.1016/j.automatica.2021.109775_b32 doi: 10.1145/2767386.2767399 – ident: 10.1016/j.automatica.2021.109775_b35 doi: 10.1016/j.ifacol.2019.12.195 – volume: 5 start-page: 2036 issue: 4 year: 2017 ident: 10.1016/j.automatica.2021.109775_b1 article-title: Improving network connectivity and robustness using trusted nodes with application to resilient consensus publication-title: IEEE Transactions on Control of Network Systems doi: 10.1109/TCNS.2017.2782486 – ident: 10.1016/j.automatica.2021.109775_b10 doi: 10.1109/ROBOT.2009.5152608 – volume: 28 start-page: 4416 issue: 4 year: 2013 ident: 10.1016/j.automatica.2021.109775_b34 article-title: Consensus based approach for economic dispatch problem in a smart grid publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2013.2271640 – volume: 2 start-page: 841 issue: 2 year: 2017 ident: 10.1016/j.automatica.2021.109775_b12 article-title: Formations for resilient robot teams publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2017.2654550 – volume: 33 start-page: 565 issue: 3 year: 2017 ident: 10.1016/j.automatica.2021.109775_b24 article-title: Fault-tolerant rendezvous of multirobot systems publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2017.2658604 – ident: 10.1016/j.automatica.2021.109775_b36 doi: 10.1109/INFCOM.2007.193 – volume: 53 start-page: 881 issue: 6 year: 2006 ident: 10.1016/j.automatica.2021.109775_b18 article-title: On the composition of authenticated Byzantine agreement publication-title: Journal of the ACM doi: 10.1145/1217856.1217857 – volume: 43 start-page: 225 issue: 2 year: 1996 ident: 10.1016/j.automatica.2021.109775_b5 article-title: Unreliable failure detectors for reliable distributed systems publication-title: Journal of the ACM doi: 10.1145/226643.226647 – volume: 61 start-page: 6387 issue: 24 year: 2013 ident: 10.1016/j.automatica.2021.109775_b14 article-title: SATS: Secure average-consensus-based time synchronization in wireless sensor networks publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2013.2286102 – volume: 4 start-page: 382 issue: 3 year: 1982 ident: 10.1016/j.automatica.2021.109775_b16 article-title: The Byzantine generals problem publication-title: ACM Transactions on Programming Languages and Systems doi: 10.1145/357172.357176 – volume: 28 start-page: 423 issue: 6 year: 2015 ident: 10.1016/j.automatica.2021.109775_b20 article-title: Multidimensional agreement in Byzantine systems publication-title: Distributed Computing doi: 10.1007/s00446-014-0240-5 – volume: 81 start-page: 123 year: 2017 ident: 10.1016/j.automatica.2021.109775_b7 article-title: Resilient consensus of second-order agent networks: Asynchronous update rules with delays publication-title: Automatica doi: 10.1016/j.automatica.2017.03.008 – ident: 10.1016/j.automatica.2021.109775_b13 doi: 10.1109/ACC.2012.6315178 – ident: 10.1016/j.automatica.2021.109775_b38 doi: 10.3182/20140824-6-ZA-1003.02753 – year: 2018 ident: 10.1016/j.automatica.2021.109775_b26 – year: 1996 ident: 10.1016/j.automatica.2021.109775_b19 – volume: 5 start-page: 26 issue: 1 year: 2002 ident: 10.1016/j.automatica.2021.109775_b2 article-title: Asynchronous approximate agreement in partially connected networks publication-title: International Journal of Parallel and Distributed Systems and Networks – volume: 47 start-page: 2757 issue: 12 year: 2011 ident: 10.1016/j.automatica.2021.109775_b28 article-title: Distributed fault detection for interconnected second-order systems publication-title: Automatica doi: 10.1016/j.automatica.2011.09.011 – ident: 10.1016/j.automatica.2021.109775_b31 doi: 10.1145/2185505.2185515 – volume: 49 start-page: 1520 issue: 9 year: 2004 ident: 10.1016/j.automatica.2021.109775_b22 article-title: Consensus problems in networks of agents with switching topology and time-delays publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2004.834113 – volume: 46 start-page: 695 issue: 4 year: 2010 ident: 10.1016/j.automatica.2021.109775_b9 article-title: Stability analysis for multi-agent systems using the incidence matrix: Quantized communication and formation control publication-title: Automatica doi: 10.1016/j.automatica.2010.01.012 – volume: 758 start-page: 17 year: 2019 ident: 10.1016/j.automatica.2021.109775_b4 article-title: Approximate agreement under mobile Byzantine faults publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2018.08.001 – ident: 10.1016/j.automatica.2021.109775_b21 doi: 10.1109/CDC.2018.8619772 – volume: 57 start-page: 90 issue: 1 year: 2012 ident: 10.1016/j.automatica.2021.109775_b25 article-title: Consensus computation in unreliable networks: A system theoretic approach publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2011.2158130 – volume: 79 start-page: 23 year: 2015 ident: 10.1016/j.automatica.2021.109775_b6 article-title: Consensus of second-order multi-agent systems in the presence of locally bounded faults publication-title: Systems & Control Letters doi: 10.1016/j.sysconle.2015.02.005 – volume: 60 start-page: 2266 issue: 8 year: 2014 ident: 10.1016/j.automatica.2021.109775_b15 article-title: Event-based distributed clock synchronization for wireless sensor networks publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2014.2372932 – volume: 1 start-page: 26 issue: 1 year: 1986 ident: 10.1016/j.automatica.2021.109775_b11 article-title: Easy impossibility proofs for distributed consensus problems publication-title: Distributed Computing doi: 10.1007/BF01843568 |
| SSID | ssj0004182 |
| Score | 2.5425255 |
| Snippet | In this paper, we consider a multi-agent resilient consensus problem, where some of the nodes may behave maliciously. The approach is to equip all nodes with a... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109775 |
| SubjectTerms | Cyber security Distributed detection Multi-hop communication Resilient consensus |
| Title | Secure consensus with distributed detection via two-hop communication |
| URI | https://dx.doi.org/10.1016/j.automatica.2021.109775 |
| Volume | 131 |
| WOSCitedRecordID | wos000674621200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-2836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwGA06etCDuOK4kYM3qXRPiqdBRtSDeFAYTyVJU6aDdIaZzvLz_dJk2rqAC3gppZC0k5d-_ZJ533sInYeS2EEquUVT27bgCyUsRrljCUE8zv2EMWmXZhPk4YH2etGj8WqflHYCJM_pYhGN_hVquAZgq9LZX8BddQoX4BxAhyPADscfAV_uoJcc9ImysTDla4kSyFXeVpBgJrKQ2iF8lrGLYj60-sORIpfXpSLNnLUzLYalsCsrtUkXmg5fbSC8TE35QjaXWT3T-pn2w84SCUlqc3PBdSr2VB0wlVCpNoquAqaJ2zrkqb-wtfnJp2isNwYGiotjnvNS3eSybvJeAPvDh6miCy6ZaIO47ilWPcW6p1W05pIggri81rnr9u7rwliHarl48ysMlUsT_L5-qq_zk0bO8bSNtsxiAXc0yDtoRea7aLMhIbmHuhpuXMGNFdy4ATeu4MYANzZw43dw76Pnm-7T9a1lrDEsAUG4sCSse3lAPRnCiwYpvVp3EsHCJIEozYVLeeRTOxQ8kSH3uOtKAePDPcbslPu-8A5QKx_m8hBhn4S2yxORepz6kRMxAeMTSOqwlATEZ21ElgMSC6Mbr-xLXuPvYGkjp2o50topP2hztRzz2OSAOreLYVJ92_roD3c8Rhv1zD9BrWI8ladoXcyKbDI-MzPqDWlYhOA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secure+consensus+with+distributed+detection+via+two-hop+communication&rft.jtitle=Automatica+%28Oxford%29&rft.au=Yuan%2C+Liwei&rft.au=Ishii%2C+Hideaki&rft.date=2021-09-01&rft.issn=0005-1098&rft.volume=131&rft.spage=109775&rft_id=info:doi/10.1016%2Fj.automatica.2021.109775&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2021_109775 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |