Distributed quasi-monotone subgradient algorithm for nonsmooth convex optimization over directed graphs

Distributed optimization is of essential importance in networked systems. Most of the existing distributed algorithms either assume the information exchange over undirected graphs, or require that the underlying directed network topology provides a doubly stochastic weight matrix to the agents. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) Jg. 101; S. 175 - 181
Hauptverfasser: Liang, Shu, Wang, Leyi, Yin, George
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.03.2019
Schlagworte:
ISSN:0005-1098, 1873-2836
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Distributed optimization is of essential importance in networked systems. Most of the existing distributed algorithms either assume the information exchange over undirected graphs, or require that the underlying directed network topology provides a doubly stochastic weight matrix to the agents. In this brief paper, a distributed subgradient-based algorithm is proposed to solve nonsmooth convex optimization problems. The algorithm applies to directed graphs without using a doubly stochastic weight matrix. Moreover, the algorithm is a distributed generalization and improvement of the quasi-monotone subgradient algorithm. An O(1∕k) convergence rate is achieved. The effectiveness of our algorithm is also illustrated by a numerical example.
AbstractList Distributed optimization is of essential importance in networked systems. Most of the existing distributed algorithms either assume the information exchange over undirected graphs, or require that the underlying directed network topology provides a doubly stochastic weight matrix to the agents. In this brief paper, a distributed subgradient-based algorithm is proposed to solve nonsmooth convex optimization problems. The algorithm applies to directed graphs without using a doubly stochastic weight matrix. Moreover, the algorithm is a distributed generalization and improvement of the quasi-monotone subgradient algorithm. An O(1∕k) convergence rate is achieved. The effectiveness of our algorithm is also illustrated by a numerical example.
Author Liang, Shu
Wang, Leyi
Yin, George
Author_xml – sequence: 1
  givenname: Shu
  surname: Liang
  fullname: Liang, Shu
  email: sliang@amss.ac.cn, sliang@ustb.edu.cn
  organization: Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 2
  givenname: Leyi
  surname: Wang
  fullname: Wang, Leyi
  email: lywang@wayne.edu
  organization: Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA
– sequence: 3
  givenname: George
  surname: Yin
  fullname: Yin, George
  email: gyin@math.wayne.edu
  organization: Department of Mathematics, Wayne State University, Detroit, MI 48202, USA
BookMark eNqNkE1LAzEQhoMo2Fb_Q_7Arpn9yKYXQesnFLzoOaTJbJvS3dQkW9Rfb2oFwYuehjnMM-_7jMlx73okhALLgQG_WOdqiK5T0WqVFwxEDpCzmh-REYimzApR8mMyYozVGbCpOCXjENZprUAUI7K8sSF6uxgiGvo6qGCzzvUupic0DIulV8ZiH6naLJ23cdXR1nmaMoTOubii2vU7fKNuG21nP1IK11O3Q0-N9aj30ITYrsIZOWnVJuD595yQl7vb59lDNn-6f5xdzTNdgoiZMY1pC-BFxeqmVVA3iKwtuSlRCKOqUnPBmwoLpUEbDsgVFrwEPU1tWg3lhIgDV3sXgsdWbr3tlH-XwORemFzLH2FyL0wCyCQsnV7-OtU2fjWKXtnNfwDXBwCmgjuLXgad5Gk8uJDG2b8hn56hlME
CitedBy_id crossref_primary_10_1007_s12555_024_0424_0
crossref_primary_10_1007_s11432_022_3582_5
crossref_primary_10_1109_TAC_2020_2989282
crossref_primary_10_1109_TAC_2021_3095456
crossref_primary_10_1016_j_automatica_2023_111245
crossref_primary_10_1016_j_automatica_2020_109286
crossref_primary_10_1109_TNSE_2024_3374765
crossref_primary_10_1016_j_neucom_2024_129310
crossref_primary_10_1109_TAC_2024_3445575
crossref_primary_10_1016_j_jfranklin_2024_107466
crossref_primary_10_1109_JIOT_2023_3311758
crossref_primary_10_1109_TCNS_2020_3011837
crossref_primary_10_1049_cth2_12062
crossref_primary_10_1109_TETCI_2024_3393362
crossref_primary_10_1007_s11590_022_01931_4
crossref_primary_10_1109_TSIPN_2025_3559433
crossref_primary_10_1016_j_ins_2021_02_049
crossref_primary_10_1016_j_jfranklin_2021_04_044
crossref_primary_10_1016_j_sysconle_2022_105252
crossref_primary_10_1109_TAC_2021_3097295
crossref_primary_10_1109_TCNS_2023_3336833
crossref_primary_10_1016_j_automatica_2021_109738
crossref_primary_10_1016_j_automatica_2020_109459
crossref_primary_10_1109_TPDS_2022_3212424
crossref_primary_10_32604_ee_2024_050001
crossref_primary_10_1109_TCSII_2023_3338217
Cites_doi 10.3166/EJC.18.539-557
10.1109/TAC.2014.2364096
10.1109/TAC.2012.2219953
10.1109/TAC.2014.2308612
10.1109/TAC.2013.2278132
10.1287/opre.18.1.87
10.1109/TAC.2010.2041686
10.1007/s10957-014-0677-5
10.1109/TAC.2017.2752001
10.1109/TSMCB.2011.2160394
10.1007/s10107-007-0149-x
10.1109/TAC.2008.2009515
10.1109/TAC.2016.2628807
10.1109/TAC.2016.2615066
10.1016/j.automatica.2012.08.003
10.1109/TAC.2011.2161027
10.1109/TNNLS.2016.2549566
10.1109/TAC.2011.2167817
10.1007/s10957-010-9737-7
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.automatica.2018.11.056
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2836
EndPage 181
ExternalDocumentID 10_1016_j_automatica_2018_11_056
S0005109818305971
GrantInformation_xml – fundername: U.S. Army Research Office
  grantid: W911NF-15-1-0218
  funderid: http://dx.doi.org/10.13039/100000183
– fundername: National Natural Science Foundation of China
  grantid: 61873024
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Fundamental Research Funds for the China Central Universities of USTB
  grantid: FRF-TP-17-088A1
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-dd7df21624057fa157ee0f36d3e88da43c68674e2ac1cd61e6ae2631c9182fc13
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458941700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0005-1098
IngestDate Tue Nov 18 22:03:47 EST 2025
Sat Nov 29 07:32:29 EST 2025
Fri Feb 23 02:23:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Quasi-monotone subgradient algorithm
Distributed optimization
Nonsmooth convex optimization
Directed graph
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-dd7df21624057fa157ee0f36d3e88da43c68674e2ac1cd61e6ae2631c9182fc13
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_automatica_2018_11_056
crossref_citationtrail_10_1016_j_automatica_2018_11_056
elsevier_sciencedirect_doi_10_1016_j_automatica_2018_11_056
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationTitle Automatica (Oxford)
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gharesifard, Cortés (b6) 2014; 59
Gharesifard, Cortés (b5) 2012; 18
Nesterov (b15) 2009; 120
Nesterov, Shikhman (b16) 2015; 165
Xi, Khan (b19) 2017; 62
Ram, Nedić, Veeravalli (b17) 2010; 147
Hooi-Tong (b7) 1970; 18
Zeng, Yi, Hong (b21) 2017; 62
Dominguez-Garcia, Hadjicostis (b3) 2013; 58
Chang, Nedić, Scaglione (b2) 2014; 59
Johansson, Keviczky, Johansson, Johansson (b8) 2008
Liang, Zeng, Hong (b10) 2018; 63
Yuan, Xu, Zhao (b20) 2011; 41
Zhu, Martínez (b22) 2012; 57
Nedić, Ozdaglar, Parrilo (b14) 2010; 55
Kempe, Dobra, Gehrke (b9) 2003
Liu, Yang, Wang (b11) 2017; 28
Rockafellar, Wets (b18) 1998; vol. 317
Cai, Ishii (b1) 2012; 48
Duchi, Agarwal, Wainwright (b4) 2012; 57
Nedić, Olshevsky (b12) 2015; 60
Nedić, Ozdaglar (b13) 2009; 54
Xi (10.1016/j.automatica.2018.11.056_b19) 2017; 62
Nesterov (10.1016/j.automatica.2018.11.056_b15) 2009; 120
Cai (10.1016/j.automatica.2018.11.056_b1) 2012; 48
Ram (10.1016/j.automatica.2018.11.056_b17) 2010; 147
Duchi (10.1016/j.automatica.2018.11.056_b4) 2012; 57
Kempe (10.1016/j.automatica.2018.11.056_b9) 2003
Nedić (10.1016/j.automatica.2018.11.056_b12) 2015; 60
Yuan (10.1016/j.automatica.2018.11.056_b20) 2011; 41
Liu (10.1016/j.automatica.2018.11.056_b11) 2017; 28
Nedić (10.1016/j.automatica.2018.11.056_b14) 2010; 55
Zhu (10.1016/j.automatica.2018.11.056_b22) 2012; 57
Chang (10.1016/j.automatica.2018.11.056_b2) 2014; 59
Nedić (10.1016/j.automatica.2018.11.056_b13) 2009; 54
Gharesifard (10.1016/j.automatica.2018.11.056_b5) 2012; 18
Liang (10.1016/j.automatica.2018.11.056_b10) 2018; 63
Gharesifard (10.1016/j.automatica.2018.11.056_b6) 2014; 59
Zeng (10.1016/j.automatica.2018.11.056_b21) 2017; 62
Nesterov (10.1016/j.automatica.2018.11.056_b16) 2015; 165
Rockafellar (10.1016/j.automatica.2018.11.056_b18) 1998; vol. 317
Johansson (10.1016/j.automatica.2018.11.056_b8) 2008
Hooi-Tong (10.1016/j.automatica.2018.11.056_b7) 1970; 18
Dominguez-Garcia (10.1016/j.automatica.2018.11.056_b3) 2013; 58
References_xml – start-page: 4185
  year: 2008
  end-page: 4190
  ident: b8
  article-title: Subgradient methods and consensus algorithms for solving convex optimization problems
  publication-title: The 47th IEEE conference on decision and control
– volume: 60
  start-page: 601
  year: 2015
  end-page: 615
  ident: b12
  article-title: Distributed optimization over time-varying directed graphs
  publication-title: IEEE Transactions on Automatic Control
– volume: 57
  start-page: 592
  year: 2012
  end-page: 606
  ident: b4
  article-title: Dual averaging for distributed optimization: convergence analysis and network scaling
  publication-title: IEEE Transactions on Automatic Control
– volume: 120
  start-page: 221
  year: 2009
  end-page: 259
  ident: b15
  article-title: Primal-dual subgradient methods for convex problems
  publication-title: Mathematical Programming
– volume: 18
  start-page: 87
  year: 1970
  end-page: 94
  ident: b7
  article-title: On a class of directed graphs-with an application to traffic-flow problems
  publication-title: Operations Research
– volume: 59
  start-page: 1524
  year: 2014
  end-page: 1538
  ident: b2
  article-title: Distributed constrained optimization by consensus-based primal-dual perturbation method
  publication-title: IEEE Transactions on Automatic Control
– volume: 55
  start-page: 922
  year: 2010
  end-page: 938
  ident: b14
  article-title: Constrained consensus and optimization in multi-agent networks
  publication-title: IEEE Transactions on Automatic Control
– volume: 41
  start-page: 1715
  year: 2011
  end-page: 1724
  ident: b20
  article-title: Distributed primal–dual subgradient method for multiagent optimization via consensus algorithms
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
– volume: 58
  start-page: 667
  year: 2013
  end-page: 681
  ident: b3
  article-title: Distributed matrix scaling and application to average consensus in directed graphs
  publication-title: IEEE Transactions on Automatic Control
– volume: 62
  start-page: 3986
  year: 2017
  end-page: 3992
  ident: b19
  article-title: Distributed subgradient projection algorithm over directed graphs
  publication-title: IEEE Transactions on Automatic Control
– volume: 54
  start-page: 48
  year: 2009
  end-page: 61
  ident: b13
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Transactions on Automatic Control
– volume: 63
  start-page: 1753
  year: 2018
  end-page: 1759
  ident: b10
  article-title: Distributed nonsmooth optimization with coupled inequality constraints via modified Lagrangian function
  publication-title: IEEE Transactions on Automatic Control
– volume: 28
  start-page: 1747
  year: 2017
  end-page: 1758
  ident: b11
  article-title: A collective neurodynamic approach to distributed constrained optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 165
  start-page: 917
  year: 2015
  end-page: 940
  ident: b16
  article-title: Quasi-monotone subgradient methods for nonsmooth convex minimization
  publication-title: Journal of Optimization Theory and Applications
– volume: 147
  start-page: 516
  year: 2010
  end-page: 545
  ident: b17
  article-title: Distributed stochastic subgradient projection algorithms for convex optimization
  publication-title: Journal of Optimization Theory and Applications
– start-page: 482
  year: 2003
  end-page: 491
  ident: b9
  article-title: Gossip-based computation of aggregate information
  publication-title: The 44th annual IEEE symposium on foundations of computer science
– volume: 57
  start-page: 151
  year: 2012
  end-page: 164
  ident: b22
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Transactions on Automatic Control
– volume: 62
  start-page: 5227
  year: 2017
  end-page: 5233
  ident: b21
  article-title: Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach
  publication-title: IEEE Transactions on Automatic Control
– volume: 18
  start-page: 539
  year: 2012
  end-page: 557
  ident: b5
  article-title: Distributed strategies for generating weight-balanced and doubly stochastic digraphs
  publication-title: European Journal of Control
– volume: 48
  start-page: 2750
  year: 2012
  end-page: 2761
  ident: b1
  article-title: Average consensus on general strongly connected digraphs
  publication-title: Automatica
– volume: 59
  start-page: 781
  year: 2014
  end-page: 786
  ident: b6
  article-title: Distributed continuous-time convex optimization on weight-balanced digraphs
  publication-title: IEEE Transactions on Automatic Control
– volume: vol. 317
  year: 1998
  ident: b18
  publication-title: Variational analysis
– volume: 18
  start-page: 539
  issue: 6
  year: 2012
  ident: 10.1016/j.automatica.2018.11.056_b5
  article-title: Distributed strategies for generating weight-balanced and doubly stochastic digraphs
  publication-title: European Journal of Control
  doi: 10.3166/EJC.18.539-557
– volume: 60
  start-page: 601
  issue: 3
  year: 2015
  ident: 10.1016/j.automatica.2018.11.056_b12
  article-title: Distributed optimization over time-varying directed graphs
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2014.2364096
– volume: 58
  start-page: 667
  issue: 3
  year: 2013
  ident: 10.1016/j.automatica.2018.11.056_b3
  article-title: Distributed matrix scaling and application to average consensus in directed graphs
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2012.2219953
– start-page: 482
  year: 2003
  ident: 10.1016/j.automatica.2018.11.056_b9
  article-title: Gossip-based computation of aggregate information
– start-page: 4185
  year: 2008
  ident: 10.1016/j.automatica.2018.11.056_b8
  article-title: Subgradient methods and consensus algorithms for solving convex optimization problems
– volume: 59
  start-page: 1524
  issue: 6
  year: 2014
  ident: 10.1016/j.automatica.2018.11.056_b2
  article-title: Distributed constrained optimization by consensus-based primal-dual perturbation method
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2014.2308612
– volume: 59
  start-page: 781
  issue: 3
  year: 2014
  ident: 10.1016/j.automatica.2018.11.056_b6
  article-title: Distributed continuous-time convex optimization on weight-balanced digraphs
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2013.2278132
– volume: vol. 317
  year: 1998
  ident: 10.1016/j.automatica.2018.11.056_b18
– volume: 18
  start-page: 87
  issue: 1
  year: 1970
  ident: 10.1016/j.automatica.2018.11.056_b7
  article-title: On a class of directed graphs-with an application to traffic-flow problems
  publication-title: Operations Research
  doi: 10.1287/opre.18.1.87
– volume: 55
  start-page: 922
  issue: 4
  year: 2010
  ident: 10.1016/j.automatica.2018.11.056_b14
  article-title: Constrained consensus and optimization in multi-agent networks
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2010.2041686
– volume: 165
  start-page: 917
  issue: 3
  year: 2015
  ident: 10.1016/j.automatica.2018.11.056_b16
  article-title: Quasi-monotone subgradient methods for nonsmooth convex minimization
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-014-0677-5
– volume: 63
  start-page: 1753
  issue: 6
  year: 2018
  ident: 10.1016/j.automatica.2018.11.056_b10
  article-title: Distributed nonsmooth optimization with coupled inequality constraints via modified Lagrangian function
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2017.2752001
– volume: 41
  start-page: 1715
  issue: 6
  year: 2011
  ident: 10.1016/j.automatica.2018.11.056_b20
  article-title: Distributed primal–dual subgradient method for multiagent optimization via consensus algorithms
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2011.2160394
– volume: 120
  start-page: 221
  issue: 1
  year: 2009
  ident: 10.1016/j.automatica.2018.11.056_b15
  article-title: Primal-dual subgradient methods for convex problems
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-007-0149-x
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  ident: 10.1016/j.automatica.2018.11.056_b13
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2008.2009515
– volume: 62
  start-page: 5227
  issue: 10
  year: 2017
  ident: 10.1016/j.automatica.2018.11.056_b21
  article-title: Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2628807
– volume: 62
  start-page: 3986
  issue: 8
  year: 2017
  ident: 10.1016/j.automatica.2018.11.056_b19
  article-title: Distributed subgradient projection algorithm over directed graphs
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2615066
– volume: 48
  start-page: 2750
  issue: 11
  year: 2012
  ident: 10.1016/j.automatica.2018.11.056_b1
  article-title: Average consensus on general strongly connected digraphs
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.08.003
– volume: 57
  start-page: 592
  issue: 3
  year: 2012
  ident: 10.1016/j.automatica.2018.11.056_b4
  article-title: Dual averaging for distributed optimization: convergence analysis and network scaling
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2011.2161027
– volume: 28
  start-page: 1747
  issue: 8
  year: 2017
  ident: 10.1016/j.automatica.2018.11.056_b11
  article-title: A collective neurodynamic approach to distributed constrained optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2549566
– volume: 57
  start-page: 151
  issue: 1
  year: 2012
  ident: 10.1016/j.automatica.2018.11.056_b22
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2011.2167817
– volume: 147
  start-page: 516
  issue: 3
  year: 2010
  ident: 10.1016/j.automatica.2018.11.056_b17
  article-title: Distributed stochastic subgradient projection algorithms for convex optimization
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-010-9737-7
SSID ssj0004182
Score 2.4753466
Snippet Distributed optimization is of essential importance in networked systems. Most of the existing distributed algorithms either assume the information exchange...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 175
SubjectTerms Directed graph
Distributed optimization
Nonsmooth convex optimization
Quasi-monotone subgradient algorithm
Title Distributed quasi-monotone subgradient algorithm for nonsmooth convex optimization over directed graphs
URI https://dx.doi.org/10.1016/j.automatica.2018.11.056
Volume 101
WOSCitedRecordID wos000458941700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeqjQd4QHyK8SU_8FZlqmM3dsRTBUOAqgmJgfoWOYndZVqb0SZTeeB_55xzPgaTGEK8RJUlO87dr-fz6e53hLwKOXjF2uXp8DQOBBxYQTxVNhBWMJHrqc6a_ilf5_L4WC0W8afR6EdbC3N5LtdrtdvFF_9V1TAGynals3-h7m5RGIDfoHR4gtrheSPFv3VUuK6LFbiS32q9LQJ4dek4t8fbOl1umhwvF-hdlpuiOl01iYZr2M2qLNs09N24BFOy8jWaY5fmOcbDDxZtOK63Q692VldlQ_2qG_bSHSbMdyGGedEGpU_rPoCPQ3PzvegsD_IZYJh-GI5wFVB8GI7o6mT6pCS0u47vFPtNHxo0tUryAJyb6Iot9kuhNWXYVMUfzAx7u_xm8zH8cOYyfvy3uow9dejIWae_0Gw3B_fnxnGF3YA5A-_SMRDsh3BvAqO4P_twtPjYF9YyhXTzfvs-FQwTBK9_3_X-zcBnOblH7vrLBp0hSO6TkVk_IHcGFJQPyXIAF3oVLnQAF9rBhYJyaQcXinChQ7hQBxfawoUiXB6RL--OTt68D3zzjSADM18FeS5zG7IodB691WwqjZlYHuXcKJVrwbNIRVKYUGcsyyNmIm3CiLMsBpnZjPHHZA82Y54QCpcQK0xuRZhPRKS10vEkTSUH59SmXOoDIluRJZlnpncNUs6TNgXxLOmFnThhw8U1AWEfENbNvEB2lhvMed1qJfFeJkokAUD9cfbTf5r9jNzu_zPPyV61qc0Lciu7rIrt5qVH30-x-6w2
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+quasi-monotone+subgradient+algorithm+for+nonsmooth+convex+optimization+over+directed+graphs&rft.jtitle=Automatica+%28Oxford%29&rft.au=Liang%2C+Shu&rft.au=Wang%2C+Leyi&rft.au=Yin%2C+George&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=0005-1098&rft.eissn=1873-2836&rft.volume=101&rft.spage=175&rft.epage=181&rft_id=info:doi/10.1016%2Fj.automatica.2018.11.056&rft.externalDocID=S0005109818305971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon