Analog Coherent Detection for Energy Efficient Intra-Data Center Links at 200 Gbps Per Wavelength
As datacenters continue to scale in size, energy efficiency for short reach (<; 2 km) links is a major factor for networks that may connect hundreds of thousands of servers. We demonstrate that links based on analog coherent detection (ACD) offer a promising path to simultaneously achieving signi...
Gespeichert in:
| Veröffentlicht in: | Journal of lightwave technology Jg. 39; H. 2; S. 520 - 531 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
15.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0733-8724, 1558-2213 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As datacenters continue to scale in size, energy efficiency for short reach (<; 2 km) links is a major factor for networks that may connect hundreds of thousands of servers. We demonstrate that links based on analog coherent detection (ACD) offer a promising path to simultaneously achieving significantly larger link budgets and improved link energy efficiency. A complete analysis is presented that considers the power consumption of all the photonic and electronic components necessary to realize an ACD link architecture based on 50 Gbaud (GBd) quadrature phase-shift keying (QPSK) signaling combined with polarization multiplexing to achieve 200 Gb/s/λ. These links utilize receivers that incorporate an optical phase-locked loop (OPLL) to frequency- and phase-lock the local oscillator (LO) laser to the incoming signal. QPSK modulation offers compelling advantages both in achievable link budget and in energy efficiency. Indeed, low-complexity electronics based on limiting amplifiers can be used as opposed to the linear front-ends, A/D converters, and digital signal processing (DSP) required for higher-order QAM or PAM formats. Our analysis indicates that links with 13 dB of unallocated budget operating at error rates of <; 10 -12 can be achieved and is compatible with higher error rates that require forward error correction (FEC). We present a comparison of silicon and InP platforms and evaluate both traveling-wave and segmented modulator designs, providing an illustration of the wide design space before converging on the most promising architectures that maximize energy efficiency and minimize laser power. We establish the theoretical potential to achieve picojoule-per-bit energy efficiency targets. |
|---|---|
| AbstractList | As datacenters continue to scale in size, energy efficiency for short reach (<; 2 km) links is a major factor for networks that may connect hundreds of thousands of servers. We demonstrate that links based on analog coherent detection (ACD) offer a promising path to simultaneously achieving significantly larger link budgets and improved link energy efficiency. A complete analysis is presented that considers the power consumption of all the photonic and electronic components necessary to realize an ACD link architecture based on 50 Gbaud (GBd) quadrature phase-shift keying (QPSK) signaling combined with polarization multiplexing to achieve 200 Gb/s/λ. These links utilize receivers that incorporate an optical phase-locked loop (OPLL) to frequency- and phase-lock the local oscillator (LO) laser to the incoming signal. QPSK modulation offers compelling advantages both in achievable link budget and in energy efficiency. Indeed, low-complexity electronics based on limiting amplifiers can be used as opposed to the linear front-ends, A/D converters, and digital signal processing (DSP) required for higher-order QAM or PAM formats. Our analysis indicates that links with 13 dB of unallocated budget operating at error rates of <; 10 -12 can be achieved and is compatible with higher error rates that require forward error correction (FEC). We present a comparison of silicon and InP platforms and evaluate both traveling-wave and segmented modulator designs, providing an illustration of the wide design space before converging on the most promising architectures that maximize energy efficiency and minimize laser power. We establish the theoretical potential to achieve picojoule-per-bit energy efficiency targets. Not provided. As datacenters continue to scale in size, energy efficiency for short reach (<2 km) links is a major factor for networks that may connect hundreds of thousands of servers. We demonstrate that links based on analog coherent detection (ACD) offer a promising path to simultaneously achieving significantly larger link budgets and improved link energy efficiency. A complete analysis is presented that considers the power consumption of all the photonic and electronic components necessary to realize an ACD link architecture based on 50 Gbaud (GBd) quadrature phase-shift keying (QPSK) signaling combined with polarization multiplexing to achieve 200 Gb/s/λ. These links utilize receivers that incorporate an optical phase-locked loop (OPLL) to frequency- and phase-lock the local oscillator (LO) laser to the incoming signal. QPSK modulation offers compelling advantages both in achievable link budget and in energy efficiency. Indeed, low-complexity electronics based on limiting amplifiers can be used as opposed to the linear front-ends, A/D converters, and digital signal processing (DSP) required for higher-order QAM or PAM formats. Our analysis indicates that links with 13 dB of unallocated budget operating at error rates of <10−12 can be achieved and is compatible with higher error rates that require forward error correction (FEC). We present a comparison of silicon and InP platforms and evaluate both traveling-wave and segmented modulator designs, providing an illustration of the wide design space before converging on the most promising architectures that maximize energy efficiency and minimize laser power. We establish the theoretical potential to achieve picojoule-per-bit energy efficiency targets. |
| Author | Buckwalter, James F. Movaghar, Ghazal Liu, Junqian Maharry, Aaron Xia, Yujie Meissner, Thomas Misak, Stephen Gambini, Fabrizio Klamkin, Jonathan Valenzuela, Luis A. Bhat, Shireesh Saleh, Adel A. M. Hirokawa, Takako Hosseinzadeh, Navid Andrade, Hector Schow, Clint L. Pinna, Sergio Coldren, Larry |
| Author_xml | – sequence: 1 givenname: Takako orcidid: 0000-0002-1452-082X surname: Hirokawa fullname: Hirokawa, Takako email: takako@ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 2 givenname: Sergio orcidid: 0000-0001-6106-3775 surname: Pinna fullname: Pinna, Sergio email: pinna@ece.ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 3 givenname: Navid orcidid: 0000-0003-1024-9435 surname: Hosseinzadeh fullname: Hosseinzadeh, Navid email: hosseinzadeh@ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 4 givenname: Aaron orcidid: 0000-0002-7373-2697 surname: Maharry fullname: Maharry, Aaron email: amaharry@ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 5 givenname: Hector orcidid: 0000-0002-1997-3983 surname: Andrade fullname: Andrade, Hector email: handrade@ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 6 givenname: Junqian surname: Liu fullname: Liu, Junqian email: junqian@ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 7 givenname: Thomas surname: Meissner fullname: Meissner, Thomas email: thomas_meissner@ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 8 givenname: Stephen orcidid: 0000-0001-5497-3084 surname: Misak fullname: Misak, Stephen email: smisak@ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 9 givenname: Ghazal surname: Movaghar fullname: Movaghar, Ghazal email: ghazalmovaghar@ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 10 givenname: Luis A. orcidid: 0000-0002-5560-8705 surname: Valenzuela fullname: Valenzuela, Luis A. email: valenzuela@ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 11 givenname: Yujie surname: Xia fullname: Xia, Yujie email: yujiexia@ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 12 givenname: Shireesh surname: Bhat fullname: Bhat, Shireesh email: sbhat@ece.ucsb.edu organization: University of California, Santa Barbara, CA, USA – sequence: 13 givenname: Fabrizio surname: Gambini fullname: Gambini, Fabrizio email: fgambini@ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 14 givenname: Jonathan surname: Klamkin fullname: Klamkin, Jonathan email: klamkin@ece.ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 15 givenname: Adel A. M. orcidid: 0000-0001-8245-1136 surname: Saleh fullname: Saleh, Adel A. M. email: adelsaleh@ece.ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 16 givenname: Larry orcidid: 0000-0002-1977-3826 surname: Coldren fullname: Coldren, Larry email: coldren@ece.ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 17 givenname: James F. orcidid: 0000-0002-9390-0897 surname: Buckwalter fullname: Buckwalter, James F. email: buckwalter@ece.ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA – sequence: 18 givenname: Clint L. surname: Schow fullname: Schow, Clint L. email: schow@ece.ucsb.edu organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA |
| BackLink | https://www.osti.gov/biblio/1848287$$D View this record in Osti.gov |
| BookMark | eNp9kcFPHCEUh0ljk67aexMvRM-zPmBmeHM062o1m9iDxiOBGWYXXWELaOJ_L5M1PfTgicD7fi_5fRySAx-8JeQXgzlj0J3fru7nHDjMBfBOIn4jM9Y0WHHOxAGZgRSiQsnrH-QwpScAVtcoZ0RfeL0Na7oIGxutz_TSZttnFzwdQ6RLb-P6nS7H0fVuGt_4HHV1qbOmi3K3ka6cf05UZ8oB6LXZJfqnvD7qN7u1fp03x-T7qLfJ_vw8j8jD1fJ-8bta3V3fLC5WVS8Y5mowrOl1OwIOHZhh6Bh2RrSMM2NGLTV0MKBpBGhh2nZEi7UwArGVQz20TIojcrrfG1J2KvWu9Nj0wftSRzGskeMEne2hXQx_X23K6im8xqIgKV7LGptWcixUu6f6GFKKdlRlm56klPJuqxioybkqztXkXH06L0H4L7iL7kXH968iJ_uIs9b-wzvOoStf9gGfroxJ |
| CODEN | JLTEDG |
| CitedBy_id | crossref_primary_10_1007_s12200_022_00013_8 crossref_primary_10_1109_TCSII_2022_3167673 crossref_primary_10_1109_JSTQE_2022_3172630 crossref_primary_10_1109_JLT_2023_3290487 crossref_primary_10_1038_s41566_025_01686_1 crossref_primary_10_1109_ACCESS_2024_3513214 crossref_primary_10_1109_LSSC_2022_3232340 crossref_primary_10_1364_JOCN_437858 crossref_primary_10_1109_JPHOT_2022_3144298 crossref_primary_10_1109_JSSC_2023_3339494 crossref_primary_10_1109_JLT_2024_3444480 crossref_primary_10_1109_JLT_2024_3460074 crossref_primary_10_3390_biomimetics9020103 crossref_primary_10_1109_JLT_2024_3522039 crossref_primary_10_1109_JLT_2024_3519252 crossref_primary_10_1016_j_optlastec_2024_112164 crossref_primary_10_1109_JLT_2021_3096605 crossref_primary_10_1109_JPHOT_2023_3272476 crossref_primary_10_1109_TIM_2023_3336434 crossref_primary_10_1109_JLT_2021_3135857 crossref_primary_10_1109_JLT_2024_3386700 crossref_primary_10_1109_JLT_2021_3115403 crossref_primary_10_1109_JLT_2025_3532994 crossref_primary_10_1109_JLT_2022_3218764 crossref_primary_10_1109_JLT_2025_3533422 crossref_primary_10_1109_JSTQE_2024_3523402 crossref_primary_10_1109_JLT_2022_3192904 crossref_primary_10_1109_JLT_2024_3511939 crossref_primary_10_1109_JLT_2022_3200632 crossref_primary_10_1038_s41467_024_44750_0 crossref_primary_10_1109_LSSC_2022_3231238 crossref_primary_10_1109_JLT_2023_3273479 crossref_primary_10_1109_JSTQE_2021_3108573 |
| Cites_doi | 10.1109/JSSC.2018.2884352 10.1109/JLT.2019.2908655 10.1109/TMTT.2019.2941204 10.1109/PIERS-Spring46901.2019.9017450 10.1364/OFC.2019.W1F.2 10.1109/OIC.2019.8714461 10.1109/JLT.2019.2945678 10.1364/IPRSN.2014.JM4B.5 10.1002/9780470918524 10.1364/OFC.2014.Tu2H.4 10.1109/JSSC.2018.2859757 10.1109/JSSC.2018.2885531 10.1109/IMS30576.2020.9223845 10.1109/MWSYM.2019.8700903 10.1109/JLT.2017.2752079 10.1145/3295500.3356145 10.1364/OE.20.021181 10.1364/OE.23.014263 10.1109/JSTQE.2019.2915949 10.1364/OFC.2013.OW1G.2 10.1364/OFC.2013.OW4J.4 10.1109/CSICS.2014.6978571 10.1109/JLT.2019.2934763 10.1109/JLT.2009.2030341 10.1364/CLEO_SI.2020.SF1L.2 10.1364/PRJ.6.000109 10.1109/CSICS.2012.6340090 10.1109/JLT.2019.2962322 10.3390/app8112055 10.1364/OFC.2017.Th1B.1 10.1364/OE.20.012926 10.1109/JLT.2020.3011944 10.1364/OFC.2014.W1I.2 10.1109/JLT.2013.2265075 10.1364/OE.21.030350 10.1364/OFC.2017.W4G.3 10.1109/JLT.2019.2956779 10.1364/OFC.2013.OW3D.1 10.1109/JLT.2014.2323954 10.1109/JSTQE.2019.2935698 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| CorporateAuthor | Univ. of California, Santa Barbara, CA (United States) |
| CorporateAuthor_xml | – name: Univ. of California, Santa Barbara, CA (United States) |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD H8D L7M OTOTI |
| DOI | 10.1109/JLT.2020.3029788 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics Engineering |
| EISSN | 1558-2213 |
| EndPage | 531 |
| ExternalDocumentID | 1848287 10_1109_JLT_2020_3029788 9220973 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Advanced Research Projects Agency - Energy; Advanced Research Projects Agency-Energy funderid: 10.13039/100006133 – fundername: U.S. Department of Energy grantid: DE-AR0000848 funderid: 10.13039/100000015 |
| GroupedDBID | -~X 0R~ 29K 4.4 5GY 6IK 85S 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK AEDJG AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 D-I DSZJF DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL OFLFD OPJBK P2P RIA RIE RNS ROL ROS TN5 TR6 ZCA AAYXX CITATION 7SP 7U5 8FD H8D L7M OTOTI ROP |
| ID | FETCH-LOGICAL-c318t-db15ca6f08d90bdd9189b36121bbfa7a090d8b530a3b66f8e843b38867d4d6173 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604853500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0733-8724 |
| IngestDate | Fri May 19 00:47:14 EDT 2023 Mon Jun 30 10:15:14 EDT 2025 Tue Nov 18 22:30:41 EST 2025 Sat Nov 29 02:11:29 EST 2025 Wed Aug 27 02:28:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c318t-db15ca6f08d90bdd9189b36121bbfa7a090d8b530a3b66f8e843b38867d4d6173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AR0000848 USDOE Advanced Research Projects Agency - Energy (ARPA-E) |
| ORCID | 0000-0002-5560-8705 0000-0003-1024-9435 0000-0002-1452-082X 0000-0002-7373-2697 0000-0001-6106-3775 0000-0002-1997-3983 0000-0002-9390-0897 0000-0001-8245-1136 0000-0001-5497-3084 0000-0002-1977-3826 0000000310249435 0000000293900897 0000000219773826 000000021452082X 0000000255608705 0000000273732697 0000000219973983 0000000154973084 0000000182451136 0000000161063775 |
| PQID | 2474856728 |
| PQPubID | 85485 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_JLT_2020_3029788 crossref_primary_10_1109_JLT_2020_3029788 proquest_journals_2474856728 osti_scitechconnect_1848287 ieee_primary_9220973 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-15 |
| PublicationDateYYYYMMDD | 2021-01-15 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Journal of lightwave technology |
| PublicationTitleAbbrev | JLT |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 hosseinzadeh (ref25) 2019 ref31 ref30 ref33 ref11 ref10 ref2 ref1 ref39 ref17 ref16 ref19 ref18 evans (ref24) 2011 ref46 ref45 ref23 ref26 ref47 ref20 ref42 ref41 ref44 ref21 testa (ref43) 2017 saleh (ref40) 2016 ref28 ref27 ref29 giesecke (ref38) 2016 ref8 ref7 yamada (ref22) 0 ref9 ref4 ref3 ref6 ref5 rakowski (ref32) 2020 |
| References_xml | – ident: ref14 doi: 10.1109/JSSC.2018.2884352 – ident: ref29 doi: 10.1109/JLT.2019.2908655 – ident: ref26 doi: 10.1109/TMTT.2019.2941204 – year: 2017 ident: ref43 publication-title: Optical Switching in Next Generation Data Centers – ident: ref45 doi: 10.1109/PIERS-Spring46901.2019.9017450 – start-page: 99 year: 2019 ident: ref25 article-title: A 0.5-20 GHz RF silicon photonic receiver with 120 dB*Hz2/3 SFDR using broadband distributed IM3 injection linearization publication-title: Proc IEEE Radio Freq Integr Circ Symp – ident: ref4 doi: 10.1364/OFC.2019.W1F.2 – ident: ref3 doi: 10.1109/OIC.2019.8714461 – ident: ref42 doi: 10.1109/JLT.2019.2945678 – ident: ref39 doi: 10.1364/IPRSN.2014.JM4B.5 – ident: ref34 doi: 10.1002/9780470918524 – start-page: 1 year: 2016 ident: ref38 article-title: Ultra-efficient interleaved depletion modulators by using advanced fabrication technology publication-title: Proc 42nd Eur Conf Opt Commun – ident: ref7 doi: 10.1364/OFC.2014.Tu2H.4 – start-page: 1 year: 2020 ident: ref32 article-title: 45nm CMOS - Silicon photonics monolithic technology (45CLO) for next-generation, low power and high speed optical interconnects publication-title: Proc Opt Fiber Commun Conf Exhib – ident: ref13 doi: 10.1109/JSSC.2018.2859757 – ident: ref12 doi: 10.1109/JSSC.2018.2885531 – ident: ref47 doi: 10.1109/IMS30576.2020.9223845 – ident: ref27 doi: 10.1109/MWSYM.2019.8700903 – ident: ref2 doi: 10.1109/JLT.2017.2752079 – ident: ref41 doi: 10.1145/3295500.3356145 – ident: ref19 doi: 10.1364/OE.20.021181 – ident: ref28 doi: 10.1364/OE.23.014263 – ident: ref37 doi: 10.1109/JSTQE.2019.2915949 – ident: ref21 doi: 10.1364/OFC.2013.OW1G.2 – year: 2011 ident: ref24 article-title: Multi-channel coherent PM-QPSK InP transmitter photonic integrated circuit (PIC) operating at 112 Gb/s per wavelength publication-title: Proc Opt Fiber Commun Conf /Nat Fiber Opt Eng Conf – ident: ref20 doi: 10.1364/OFC.2013.OW4J.4 – ident: ref9 doi: 10.1109/CSICS.2014.6978571 – ident: ref44 doi: 10.1109/JLT.2019.2934763 – ident: ref6 doi: 10.1109/JLT.2009.2030341 – ident: ref46 doi: 10.1364/CLEO_SI.2020.SF1L.2 – year: 0 ident: ref22 article-title: 112-Gb/s InP DP-QPSK modulator integrated with a silica-PLC polarization multiplexing circuit publication-title: Proc Nat Fiber Opt Eng Conf – ident: ref31 doi: 10.1364/PRJ.6.000109 – start-page: 1 year: 2016 ident: ref40 article-title: Elastic WDM switching for scalable data center and HPC interconnect networks publication-title: Proc 21st Opto Electron Commun Conf – ident: ref23 doi: 10.1109/CSICS.2012.6340090 – ident: ref1 doi: 10.1109/JLT.2019.2962322 – ident: ref15 doi: 10.3390/app8112055 – ident: ref17 doi: 10.1364/OFC.2017.Th1B.1 – ident: ref36 doi: 10.1364/OE.20.012926 – ident: ref33 doi: 10.1109/JLT.2020.3011944 – ident: ref18 doi: 10.1364/OFC.2014.W1I.2 – ident: ref10 doi: 10.1109/JLT.2013.2265075 – ident: ref16 doi: 10.1364/OE.21.030350 – ident: ref11 doi: 10.1364/OFC.2017.W4G.3 – ident: ref5 doi: 10.1109/JLT.2019.2956779 – ident: ref8 doi: 10.1364/OFC.2013.OW3D.1 – ident: ref30 doi: 10.1109/JLT.2014.2323954 – ident: ref35 doi: 10.1109/JSTQE.2019.2935698 |
| SSID | ssj0014487 |
| Score | 2.5901918 |
| Snippet | As datacenters continue to scale in size, energy efficiency for short reach (<; 2 km) links is a major factor for networks that may connect hundreds of... As datacenters continue to scale in size, energy efficiency for short reach (<2 km) links is a major factor for networks that may connect hundreds of thousands... Not provided. |
| SourceID | osti proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 520 |
| SubjectTerms | Budgets Coherent detection Converters data center Data centers Digital signal processing Electronic components Energy conversion efficiency Energy efficiency Engineering Error correction Links Multiplexing Optical losses Optical receivers Optical transmitters Optics Phase locked loops Phase shift keying Power consumption Quadrature phase shift keying Telecommunications |
| Title | Analog Coherent Detection for Energy Efficient Intra-Data Center Links at 200 Gbps Per Wavelength |
| URI | https://ieeexplore.ieee.org/document/9220973 https://www.proquest.com/docview/2474856728 https://www.osti.gov/biblio/1848287 |
| Volume | 39 |
| WOSCitedRecordID | wos000604853500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2213 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014487 issn: 0733-8724 databaseCode: RIE dateStart: 19830101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FUhcKLQglhbkAxckzDp2EttHRLd8qKp6KNCb5a-0SChbbVJ-PzPe7HIAIXFKlDiRleeJ39gzbwBeddl2QmbPqxwzr2upubdGcBIrUjY2uStiz1_P9Pm5ubqyFzvwZpsLk3MuwWf5LZ2Wvfy0jHe0VDa3UpK6zC7sat2uc7W2OwboZpTUaK0UWrisN1uSws4_n12iIyjRP6VKTaXGyu8pqNRUwcMSLeqP_3GZZE73_697j-DhRCbZuzX6j2En9wewPxFLNpntcAD3S5xnHA7BkwjJ8ppRVgbpMrGTPJZgrJ4he2WLkgnIFkVXgm5_orVffuJHz2gdOK8YOa8D8yPDgc8-hNuBXeDVb54KWPTX480T-HK6uHz_kU9VFnhEex55ClUTfdsJk6wIKdnK2KBIWCyEzmsvrEgmNEp4Fdq2M9nUKihjWp3qhPxHPYW9ftnnZ8Aqmdo6IwFA1lWbNhoVpEeXSSJP6ZBIzmC--fAuThLkVAnjhyuuiLAOoXIElZugmsHr7RO3a_mNf7Q9JEy27SY4ZnBE2DpkFCSLGyl-KI4OPVvS-p_B8QZyN1nv4GSta9O0Wprnf3_nETyQFNsiKl41x7A3ru7yC7gXf47fh9XLMjB_Aef63ME |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VAoILhbaIpQV84IJEWMfOh31E7ZYWllUPC_Rm-SsFCWWrTcrvZ8abXQ6tKnFKlDhWlOeJ39gzbwDeNlE3XESb5dHHrChEnVmteEZiRVL7MjZJ7Pn7tJ7N1MWFPt-C95tcmBhjCj6LH-g07eWHhb-mpbKxFoLUZe7B_RJ75atsrc2eAToaKTm6lhJtXBTrTUmux5-nc3QFBXqoVKspVVn5Nwmlqip4WKBN3fgjp2nmZOf_XvApPBnoJPu4wv8ZbMV2F3YGaskGw-124WGK9PTdHliSIVlcMsrLIGUmdhz7FI7VMuSvbJJyAdkkKUvQ7TNa_c2ObW8ZrQTHJSP3tWO2Zzj02Sd31bFzvPrDUgmL9rL_uQ_fTibzo9NsqLOQebToPgsuL72tGq6C5i4EnSvtJEmLOdfY2nLNg3Kl5Fa6qmpUVIV0UqmqDkVABiSfw3a7aOMLYLkIVRGRAiDvKlTllXTCotMkkKk0SCVHMF5_eOMHEXKqhfHbJGeEa4NQGYLKDFCN4N3miauVAMcdbfcIk027AY4RHBC2BjkFCeN6iiDyvUHfltT-R3C4htwM9tsZUdSFKqtaqJe39_kGHp3Ov07N9Gz25QAeC4p04XmWl4ew3S-v4yt44P_0v7rl6zRI_wKNt-AI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analog+Coherent+Detection+for+Energy+Efficient+Intra-Data+Center+Links+at+200+Gbps+Per+Wavelength&rft.jtitle=Journal+of+lightwave+technology&rft.au=Hirokawa%2C+Takako&rft.au=Pinna%2C+Sergio&rft.au=Hosseinzadeh%2C+Navid&rft.au=Maharry%2C+Aaron&rft.date=2021-01-15&rft.pub=IEEE&rft.issn=0733-8724&rft.volume=39&rft.issue=2&rft.spage=520&rft.epage=531&rft_id=info:doi/10.1109%2FJLT.2020.3029788&rft.externalDocID=9220973 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon |