Analog Coherent Detection for Energy Efficient Intra-Data Center Links at 200 Gbps Per Wavelength

As datacenters continue to scale in size, energy efficiency for short reach (<; 2 km) links is a major factor for networks that may connect hundreds of thousands of servers. We demonstrate that links based on analog coherent detection (ACD) offer a promising path to simultaneously achieving signi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology Jg. 39; H. 2; S. 520 - 531
Hauptverfasser: Hirokawa, Takako, Pinna, Sergio, Hosseinzadeh, Navid, Maharry, Aaron, Andrade, Hector, Liu, Junqian, Meissner, Thomas, Misak, Stephen, Movaghar, Ghazal, Valenzuela, Luis A., Xia, Yujie, Bhat, Shireesh, Gambini, Fabrizio, Klamkin, Jonathan, Saleh, Adel A. M., Coldren, Larry, Buckwalter, James F., Schow, Clint L.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 15.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0733-8724, 1558-2213
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As datacenters continue to scale in size, energy efficiency for short reach (<; 2 km) links is a major factor for networks that may connect hundreds of thousands of servers. We demonstrate that links based on analog coherent detection (ACD) offer a promising path to simultaneously achieving significantly larger link budgets and improved link energy efficiency. A complete analysis is presented that considers the power consumption of all the photonic and electronic components necessary to realize an ACD link architecture based on 50 Gbaud (GBd) quadrature phase-shift keying (QPSK) signaling combined with polarization multiplexing to achieve 200 Gb/s/λ. These links utilize receivers that incorporate an optical phase-locked loop (OPLL) to frequency- and phase-lock the local oscillator (LO) laser to the incoming signal. QPSK modulation offers compelling advantages both in achievable link budget and in energy efficiency. Indeed, low-complexity electronics based on limiting amplifiers can be used as opposed to the linear front-ends, A/D converters, and digital signal processing (DSP) required for higher-order QAM or PAM formats. Our analysis indicates that links with 13 dB of unallocated budget operating at error rates of <; 10 -12 can be achieved and is compatible with higher error rates that require forward error correction (FEC). We present a comparison of silicon and InP platforms and evaluate both traveling-wave and segmented modulator designs, providing an illustration of the wide design space before converging on the most promising architectures that maximize energy efficiency and minimize laser power. We establish the theoretical potential to achieve picojoule-per-bit energy efficiency targets.
AbstractList As datacenters continue to scale in size, energy efficiency for short reach (<; 2 km) links is a major factor for networks that may connect hundreds of thousands of servers. We demonstrate that links based on analog coherent detection (ACD) offer a promising path to simultaneously achieving significantly larger link budgets and improved link energy efficiency. A complete analysis is presented that considers the power consumption of all the photonic and electronic components necessary to realize an ACD link architecture based on 50 Gbaud (GBd) quadrature phase-shift keying (QPSK) signaling combined with polarization multiplexing to achieve 200 Gb/s/λ. These links utilize receivers that incorporate an optical phase-locked loop (OPLL) to frequency- and phase-lock the local oscillator (LO) laser to the incoming signal. QPSK modulation offers compelling advantages both in achievable link budget and in energy efficiency. Indeed, low-complexity electronics based on limiting amplifiers can be used as opposed to the linear front-ends, A/D converters, and digital signal processing (DSP) required for higher-order QAM or PAM formats. Our analysis indicates that links with 13 dB of unallocated budget operating at error rates of <; 10 -12 can be achieved and is compatible with higher error rates that require forward error correction (FEC). We present a comparison of silicon and InP platforms and evaluate both traveling-wave and segmented modulator designs, providing an illustration of the wide design space before converging on the most promising architectures that maximize energy efficiency and minimize laser power. We establish the theoretical potential to achieve picojoule-per-bit energy efficiency targets.
Not provided.
As datacenters continue to scale in size, energy efficiency for short reach (<2 km) links is a major factor for networks that may connect hundreds of thousands of servers. We demonstrate that links based on analog coherent detection (ACD) offer a promising path to simultaneously achieving significantly larger link budgets and improved link energy efficiency. A complete analysis is presented that considers the power consumption of all the photonic and electronic components necessary to realize an ACD link architecture based on 50 Gbaud (GBd) quadrature phase-shift keying (QPSK) signaling combined with polarization multiplexing to achieve 200 Gb/s/λ. These links utilize receivers that incorporate an optical phase-locked loop (OPLL) to frequency- and phase-lock the local oscillator (LO) laser to the incoming signal. QPSK modulation offers compelling advantages both in achievable link budget and in energy efficiency. Indeed, low-complexity electronics based on limiting amplifiers can be used as opposed to the linear front-ends, A/D converters, and digital signal processing (DSP) required for higher-order QAM or PAM formats. Our analysis indicates that links with 13 dB of unallocated budget operating at error rates of <10−12 can be achieved and is compatible with higher error rates that require forward error correction (FEC). We present a comparison of silicon and InP platforms and evaluate both traveling-wave and segmented modulator designs, providing an illustration of the wide design space before converging on the most promising architectures that maximize energy efficiency and minimize laser power. We establish the theoretical potential to achieve picojoule-per-bit energy efficiency targets.
Author Buckwalter, James F.
Movaghar, Ghazal
Liu, Junqian
Maharry, Aaron
Xia, Yujie
Meissner, Thomas
Misak, Stephen
Gambini, Fabrizio
Klamkin, Jonathan
Valenzuela, Luis A.
Bhat, Shireesh
Saleh, Adel A. M.
Hirokawa, Takako
Hosseinzadeh, Navid
Andrade, Hector
Schow, Clint L.
Pinna, Sergio
Coldren, Larry
Author_xml – sequence: 1
  givenname: Takako
  orcidid: 0000-0002-1452-082X
  surname: Hirokawa
  fullname: Hirokawa, Takako
  email: takako@ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 2
  givenname: Sergio
  orcidid: 0000-0001-6106-3775
  surname: Pinna
  fullname: Pinna, Sergio
  email: pinna@ece.ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 3
  givenname: Navid
  orcidid: 0000-0003-1024-9435
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, Navid
  email: hosseinzadeh@ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 4
  givenname: Aaron
  orcidid: 0000-0002-7373-2697
  surname: Maharry
  fullname: Maharry, Aaron
  email: amaharry@ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 5
  givenname: Hector
  orcidid: 0000-0002-1997-3983
  surname: Andrade
  fullname: Andrade, Hector
  email: handrade@ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 6
  givenname: Junqian
  surname: Liu
  fullname: Liu, Junqian
  email: junqian@ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 7
  givenname: Thomas
  surname: Meissner
  fullname: Meissner, Thomas
  email: thomas_meissner@ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 8
  givenname: Stephen
  orcidid: 0000-0001-5497-3084
  surname: Misak
  fullname: Misak, Stephen
  email: smisak@ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 9
  givenname: Ghazal
  surname: Movaghar
  fullname: Movaghar, Ghazal
  email: ghazalmovaghar@ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 10
  givenname: Luis A.
  orcidid: 0000-0002-5560-8705
  surname: Valenzuela
  fullname: Valenzuela, Luis A.
  email: valenzuela@ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 11
  givenname: Yujie
  surname: Xia
  fullname: Xia, Yujie
  email: yujiexia@ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 12
  givenname: Shireesh
  surname: Bhat
  fullname: Bhat, Shireesh
  email: sbhat@ece.ucsb.edu
  organization: University of California, Santa Barbara, CA, USA
– sequence: 13
  givenname: Fabrizio
  surname: Gambini
  fullname: Gambini, Fabrizio
  email: fgambini@ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 14
  givenname: Jonathan
  surname: Klamkin
  fullname: Klamkin, Jonathan
  email: klamkin@ece.ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 15
  givenname: Adel A. M.
  orcidid: 0000-0001-8245-1136
  surname: Saleh
  fullname: Saleh, Adel A. M.
  email: adelsaleh@ece.ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 16
  givenname: Larry
  orcidid: 0000-0002-1977-3826
  surname: Coldren
  fullname: Coldren, Larry
  email: coldren@ece.ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 17
  givenname: James F.
  orcidid: 0000-0002-9390-0897
  surname: Buckwalter
  fullname: Buckwalter, James F.
  email: buckwalter@ece.ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
– sequence: 18
  givenname: Clint L.
  surname: Schow
  fullname: Schow, Clint L.
  email: schow@ece.ucsb.edu
  organization: Electrical and Computer Engineering Department, University of California, Santa Barbara, CA, USA
BackLink https://www.osti.gov/biblio/1848287$$D View this record in Osti.gov
BookMark eNp9kcFPHCEUh0ljk67aexMvRM-zPmBmeHM062o1m9iDxiOBGWYXXWELaOJ_L5M1PfTgicD7fi_5fRySAx-8JeQXgzlj0J3fru7nHDjMBfBOIn4jM9Y0WHHOxAGZgRSiQsnrH-QwpScAVtcoZ0RfeL0Na7oIGxutz_TSZttnFzwdQ6RLb-P6nS7H0fVuGt_4HHV1qbOmi3K3ka6cf05UZ8oB6LXZJfqnvD7qN7u1fp03x-T7qLfJ_vw8j8jD1fJ-8bta3V3fLC5WVS8Y5mowrOl1OwIOHZhh6Bh2RrSMM2NGLTV0MKBpBGhh2nZEi7UwArGVQz20TIojcrrfG1J2KvWu9Nj0wftSRzGskeMEne2hXQx_X23K6im8xqIgKV7LGptWcixUu6f6GFKKdlRlm56klPJuqxioybkqztXkXH06L0H4L7iL7kXH968iJ_uIs9b-wzvOoStf9gGfroxJ
CODEN JLTEDG
CitedBy_id crossref_primary_10_1007_s12200_022_00013_8
crossref_primary_10_1109_TCSII_2022_3167673
crossref_primary_10_1109_JSTQE_2022_3172630
crossref_primary_10_1109_JLT_2023_3290487
crossref_primary_10_1038_s41566_025_01686_1
crossref_primary_10_1109_ACCESS_2024_3513214
crossref_primary_10_1109_LSSC_2022_3232340
crossref_primary_10_1364_JOCN_437858
crossref_primary_10_1109_JPHOT_2022_3144298
crossref_primary_10_1109_JSSC_2023_3339494
crossref_primary_10_1109_JLT_2024_3444480
crossref_primary_10_1109_JLT_2024_3460074
crossref_primary_10_3390_biomimetics9020103
crossref_primary_10_1109_JLT_2024_3522039
crossref_primary_10_1109_JLT_2024_3519252
crossref_primary_10_1016_j_optlastec_2024_112164
crossref_primary_10_1109_JLT_2021_3096605
crossref_primary_10_1109_JPHOT_2023_3272476
crossref_primary_10_1109_TIM_2023_3336434
crossref_primary_10_1109_JLT_2021_3135857
crossref_primary_10_1109_JLT_2024_3386700
crossref_primary_10_1109_JLT_2021_3115403
crossref_primary_10_1109_JLT_2025_3532994
crossref_primary_10_1109_JLT_2022_3218764
crossref_primary_10_1109_JLT_2025_3533422
crossref_primary_10_1109_JSTQE_2024_3523402
crossref_primary_10_1109_JLT_2022_3192904
crossref_primary_10_1109_JLT_2024_3511939
crossref_primary_10_1109_JLT_2022_3200632
crossref_primary_10_1038_s41467_024_44750_0
crossref_primary_10_1109_LSSC_2022_3231238
crossref_primary_10_1109_JLT_2023_3273479
crossref_primary_10_1109_JSTQE_2021_3108573
Cites_doi 10.1109/JSSC.2018.2884352
10.1109/JLT.2019.2908655
10.1109/TMTT.2019.2941204
10.1109/PIERS-Spring46901.2019.9017450
10.1364/OFC.2019.W1F.2
10.1109/OIC.2019.8714461
10.1109/JLT.2019.2945678
10.1364/IPRSN.2014.JM4B.5
10.1002/9780470918524
10.1364/OFC.2014.Tu2H.4
10.1109/JSSC.2018.2859757
10.1109/JSSC.2018.2885531
10.1109/IMS30576.2020.9223845
10.1109/MWSYM.2019.8700903
10.1109/JLT.2017.2752079
10.1145/3295500.3356145
10.1364/OE.20.021181
10.1364/OE.23.014263
10.1109/JSTQE.2019.2915949
10.1364/OFC.2013.OW1G.2
10.1364/OFC.2013.OW4J.4
10.1109/CSICS.2014.6978571
10.1109/JLT.2019.2934763
10.1109/JLT.2009.2030341
10.1364/CLEO_SI.2020.SF1L.2
10.1364/PRJ.6.000109
10.1109/CSICS.2012.6340090
10.1109/JLT.2019.2962322
10.3390/app8112055
10.1364/OFC.2017.Th1B.1
10.1364/OE.20.012926
10.1109/JLT.2020.3011944
10.1364/OFC.2014.W1I.2
10.1109/JLT.2013.2265075
10.1364/OE.21.030350
10.1364/OFC.2017.W4G.3
10.1109/JLT.2019.2956779
10.1364/OFC.2013.OW3D.1
10.1109/JLT.2014.2323954
10.1109/JSTQE.2019.2935698
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
CorporateAuthor Univ. of California, Santa Barbara, CA (United States)
CorporateAuthor_xml – name: Univ. of California, Santa Barbara, CA (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
OTOTI
DOI 10.1109/JLT.2020.3029788
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
Engineering
EISSN 1558-2213
EndPage 531
ExternalDocumentID 1848287
10_1109_JLT_2020_3029788
9220973
Genre orig-research
GrantInformation_xml – fundername: Advanced Research Projects Agency - Energy; Advanced Research Projects Agency-Energy
  funderid: 10.13039/100006133
– fundername: U.S. Department of Energy
  grantid: DE-AR0000848
  funderid: 10.13039/100000015
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
OTOTI
ROP
ID FETCH-LOGICAL-c318t-db15ca6f08d90bdd9189b36121bbfa7a090d8b530a3b66f8e843b38867d4d6173
IEDL.DBID RIE
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604853500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8724
IngestDate Fri May 19 00:47:14 EDT 2023
Mon Jun 30 10:15:14 EDT 2025
Tue Nov 18 22:30:41 EST 2025
Sat Nov 29 02:11:29 EST 2025
Wed Aug 27 02:28:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-db15ca6f08d90bdd9189b36121bbfa7a090d8b530a3b66f8e843b38867d4d6173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AR0000848
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
ORCID 0000-0002-5560-8705
0000-0003-1024-9435
0000-0002-1452-082X
0000-0002-7373-2697
0000-0001-6106-3775
0000-0002-1997-3983
0000-0002-9390-0897
0000-0001-8245-1136
0000-0001-5497-3084
0000-0002-1977-3826
0000000310249435
0000000293900897
0000000219773826
000000021452082X
0000000255608705
0000000273732697
0000000219973983
0000000154973084
0000000182451136
0000000161063775
PQID 2474856728
PQPubID 85485
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_JLT_2020_3029788
crossref_primary_10_1109_JLT_2020_3029788
proquest_journals_2474856728
osti_scitechconnect_1848287
ieee_primary_9220973
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
hosseinzadeh (ref25) 2019
ref31
ref30
ref33
ref11
ref10
ref2
ref1
ref39
ref17
ref16
ref19
ref18
evans (ref24) 2011
ref46
ref45
ref23
ref26
ref47
ref20
ref42
ref41
ref44
ref21
testa (ref43) 2017
saleh (ref40) 2016
ref28
ref27
ref29
giesecke (ref38) 2016
ref8
ref7
yamada (ref22) 0
ref9
ref4
ref3
ref6
ref5
rakowski (ref32) 2020
References_xml – ident: ref14
  doi: 10.1109/JSSC.2018.2884352
– ident: ref29
  doi: 10.1109/JLT.2019.2908655
– ident: ref26
  doi: 10.1109/TMTT.2019.2941204
– year: 2017
  ident: ref43
  publication-title: Optical Switching in Next Generation Data Centers
– ident: ref45
  doi: 10.1109/PIERS-Spring46901.2019.9017450
– start-page: 99
  year: 2019
  ident: ref25
  article-title: A 0.5-20 GHz RF silicon photonic receiver with 120 dB*Hz2/3 SFDR using broadband distributed IM3 injection linearization
  publication-title: Proc IEEE Radio Freq Integr Circ Symp
– ident: ref4
  doi: 10.1364/OFC.2019.W1F.2
– ident: ref3
  doi: 10.1109/OIC.2019.8714461
– ident: ref42
  doi: 10.1109/JLT.2019.2945678
– ident: ref39
  doi: 10.1364/IPRSN.2014.JM4B.5
– ident: ref34
  doi: 10.1002/9780470918524
– start-page: 1
  year: 2016
  ident: ref38
  article-title: Ultra-efficient interleaved depletion modulators by using advanced fabrication technology
  publication-title: Proc 42nd Eur Conf Opt Commun
– ident: ref7
  doi: 10.1364/OFC.2014.Tu2H.4
– start-page: 1
  year: 2020
  ident: ref32
  article-title: 45nm CMOS - Silicon photonics monolithic technology (45CLO) for next-generation, low power and high speed optical interconnects
  publication-title: Proc Opt Fiber Commun Conf Exhib
– ident: ref13
  doi: 10.1109/JSSC.2018.2859757
– ident: ref12
  doi: 10.1109/JSSC.2018.2885531
– ident: ref47
  doi: 10.1109/IMS30576.2020.9223845
– ident: ref27
  doi: 10.1109/MWSYM.2019.8700903
– ident: ref2
  doi: 10.1109/JLT.2017.2752079
– ident: ref41
  doi: 10.1145/3295500.3356145
– ident: ref19
  doi: 10.1364/OE.20.021181
– ident: ref28
  doi: 10.1364/OE.23.014263
– ident: ref37
  doi: 10.1109/JSTQE.2019.2915949
– ident: ref21
  doi: 10.1364/OFC.2013.OW1G.2
– year: 2011
  ident: ref24
  article-title: Multi-channel coherent PM-QPSK InP transmitter photonic integrated circuit (PIC) operating at 112 Gb/s per wavelength
  publication-title: Proc Opt Fiber Commun Conf /Nat Fiber Opt Eng Conf
– ident: ref20
  doi: 10.1364/OFC.2013.OW4J.4
– ident: ref9
  doi: 10.1109/CSICS.2014.6978571
– ident: ref44
  doi: 10.1109/JLT.2019.2934763
– ident: ref6
  doi: 10.1109/JLT.2009.2030341
– ident: ref46
  doi: 10.1364/CLEO_SI.2020.SF1L.2
– year: 0
  ident: ref22
  article-title: 112-Gb/s InP DP-QPSK modulator integrated with a silica-PLC polarization multiplexing circuit
  publication-title: Proc Nat Fiber Opt Eng Conf
– ident: ref31
  doi: 10.1364/PRJ.6.000109
– start-page: 1
  year: 2016
  ident: ref40
  article-title: Elastic WDM switching for scalable data center and HPC interconnect networks
  publication-title: Proc 21st Opto Electron Commun Conf
– ident: ref23
  doi: 10.1109/CSICS.2012.6340090
– ident: ref1
  doi: 10.1109/JLT.2019.2962322
– ident: ref15
  doi: 10.3390/app8112055
– ident: ref17
  doi: 10.1364/OFC.2017.Th1B.1
– ident: ref36
  doi: 10.1364/OE.20.012926
– ident: ref33
  doi: 10.1109/JLT.2020.3011944
– ident: ref18
  doi: 10.1364/OFC.2014.W1I.2
– ident: ref10
  doi: 10.1109/JLT.2013.2265075
– ident: ref16
  doi: 10.1364/OE.21.030350
– ident: ref11
  doi: 10.1364/OFC.2017.W4G.3
– ident: ref5
  doi: 10.1109/JLT.2019.2956779
– ident: ref8
  doi: 10.1364/OFC.2013.OW3D.1
– ident: ref30
  doi: 10.1109/JLT.2014.2323954
– ident: ref35
  doi: 10.1109/JSTQE.2019.2935698
SSID ssj0014487
Score 2.5901918
Snippet As datacenters continue to scale in size, energy efficiency for short reach (<; 2 km) links is a major factor for networks that may connect hundreds of...
As datacenters continue to scale in size, energy efficiency for short reach (<2 km) links is a major factor for networks that may connect hundreds of thousands...
Not provided.
SourceID osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 520
SubjectTerms Budgets
Coherent detection
Converters
data center
Data centers
Digital signal processing
Electronic components
Energy conversion efficiency
Energy efficiency
Engineering
Error correction
Links
Multiplexing
Optical losses
Optical receivers
Optical transmitters
Optics
Phase locked loops
Phase shift keying
Power consumption
Quadrature phase shift keying
Telecommunications
Title Analog Coherent Detection for Energy Efficient Intra-Data Center Links at 200 Gbps Per Wavelength
URI https://ieeexplore.ieee.org/document/9220973
https://www.proquest.com/docview/2474856728
https://www.osti.gov/biblio/1848287
Volume 39
WOSCitedRecordID wos000604853500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2213
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014487
  issn: 0733-8724
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FUhcKLQglhbkAxckzDp2EttHRLd8qKp6KNCb5a-0SChbbVJ-PzPe7HIAIXFKlDiRleeJ39gzbwBeddl2QmbPqxwzr2upubdGcBIrUjY2uStiz1_P9Pm5ubqyFzvwZpsLk3MuwWf5LZ2Wvfy0jHe0VDa3UpK6zC7sat2uc7W2OwboZpTUaK0UWrisN1uSws4_n12iIyjRP6VKTaXGyu8pqNRUwcMSLeqP_3GZZE73_697j-DhRCbZuzX6j2En9wewPxFLNpntcAD3S5xnHA7BkwjJ8ppRVgbpMrGTPJZgrJ4he2WLkgnIFkVXgm5_orVffuJHz2gdOK8YOa8D8yPDgc8-hNuBXeDVb54KWPTX480T-HK6uHz_kU9VFnhEex55ClUTfdsJk6wIKdnK2KBIWCyEzmsvrEgmNEp4Fdq2M9nUKihjWp3qhPxHPYW9ftnnZ8Aqmdo6IwFA1lWbNhoVpEeXSSJP6ZBIzmC--fAuThLkVAnjhyuuiLAOoXIElZugmsHr7RO3a_mNf7Q9JEy27SY4ZnBE2DpkFCSLGyl-KI4OPVvS-p_B8QZyN1nv4GSta9O0Wprnf3_nETyQFNsiKl41x7A3ru7yC7gXf47fh9XLMjB_Aef63ME
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VAoILhbaIpQV84IJEWMfOh31E7ZYWllUPC_Rm-SsFCWWrTcrvZ8abXQ6tKnFKlDhWlOeJ39gzbwDeNlE3XESb5dHHrChEnVmteEZiRVL7MjZJ7Pn7tJ7N1MWFPt-C95tcmBhjCj6LH-g07eWHhb-mpbKxFoLUZe7B_RJ75atsrc2eAToaKTm6lhJtXBTrTUmux5-nc3QFBXqoVKspVVn5Nwmlqip4WKBN3fgjp2nmZOf_XvApPBnoJPu4wv8ZbMV2F3YGaskGw-124WGK9PTdHliSIVlcMsrLIGUmdhz7FI7VMuSvbJJyAdkkKUvQ7TNa_c2ObW8ZrQTHJSP3tWO2Zzj02Sd31bFzvPrDUgmL9rL_uQ_fTibzo9NsqLOQebToPgsuL72tGq6C5i4EnSvtJEmLOdfY2nLNg3Kl5Fa6qmpUVIV0UqmqDkVABiSfw3a7aOMLYLkIVRGRAiDvKlTllXTCotMkkKk0SCVHMF5_eOMHEXKqhfHbJGeEa4NQGYLKDFCN4N3miauVAMcdbfcIk027AY4RHBC2BjkFCeN6iiDyvUHfltT-R3C4htwM9tsZUdSFKqtaqJe39_kGHp3Ov07N9Gz25QAeC4p04XmWl4ew3S-v4yt44P_0v7rl6zRI_wKNt-AI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analog+Coherent+Detection+for+Energy+Efficient+Intra-Data+Center+Links+at+200+Gbps+Per+Wavelength&rft.jtitle=Journal+of+lightwave+technology&rft.au=Hirokawa%2C+Takako&rft.au=Pinna%2C+Sergio&rft.au=Hosseinzadeh%2C+Navid&rft.au=Maharry%2C+Aaron&rft.date=2021-01-15&rft.pub=IEEE&rft.issn=0733-8724&rft.volume=39&rft.issue=2&rft.spage=520&rft.epage=531&rft_id=info:doi/10.1109%2FJLT.2020.3029788&rft.externalDocID=9220973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon