Optimal dynamic output feedback control of unknown linear continuous-time systems by adaptive dynamic programming
In this paper, we present an approximate optimal dynamic output feedback control learning algorithm to solve the linear quadratic regulation problem for unknown linear continuous-time systems. First, a dynamic output feedback controller is designed by constructing the internal state. Then, an adapti...
Saved in:
| Published in: | Automatica (Oxford) Vol. 163; p. 111601 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.05.2024
|
| Subjects: | |
| ISSN: | 0005-1098, 1873-2836 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we present an approximate optimal dynamic output feedback control learning algorithm to solve the linear quadratic regulation problem for unknown linear continuous-time systems. First, a dynamic output feedback controller is designed by constructing the internal state. Then, an adaptive dynamic programming based learning algorithm is proposed to estimate the optimal feedback control gain by only accessing the input and output data. By adding a constructed virtual observer error into the iterative learning equation, the proposed learning algorithm with the new iterative learning equation is immune to the observer error. In addition, the value iteration based learning equation is established without storing a series of past data, which could lead to a reduction of demands on the usage of memory storage. Besides, the proposed algorithm eliminates the requirement of repeated finite window integrals, which may reduce the computational load. Moreover, the convergence analysis shows that the estimated control policy converges to the optimal control policy. Finally, a physical experiment on an unmanned quadrotor is given to illustrate the effectiveness of the proposed approach. |
|---|---|
| AbstractList | In this paper, we present an approximate optimal dynamic output feedback control learning algorithm to solve the linear quadratic regulation problem for unknown linear continuous-time systems. First, a dynamic output feedback controller is designed by constructing the internal state. Then, an adaptive dynamic programming based learning algorithm is proposed to estimate the optimal feedback control gain by only accessing the input and output data. By adding a constructed virtual observer error into the iterative learning equation, the proposed learning algorithm with the new iterative learning equation is immune to the observer error. In addition, the value iteration based learning equation is established without storing a series of past data, which could lead to a reduction of demands on the usage of memory storage. Besides, the proposed algorithm eliminates the requirement of repeated finite window integrals, which may reduce the computational load. Moreover, the convergence analysis shows that the estimated control policy converges to the optimal control policy. Finally, a physical experiment on an unmanned quadrotor is given to illustrate the effectiveness of the proposed approach. |
| ArticleNumber | 111601 |
| Author | Zheng, Yiwei Jiang, Yi Lan, Weiyao Yu, Xiao Xie, Kedi |
| Author_xml | – sequence: 1 givenname: Kedi surname: Xie fullname: Xie, Kedi email: kedixie@bit.edu.cn organization: Department of Automation, Xiamen University, Xiamen 361005, China – sequence: 2 givenname: Yiwei surname: Zheng fullname: Zheng, Yiwei email: ywzheng1201@stu.xmu.edu.cn organization: Department of Automation, Xiamen University, Xiamen 361005, China – sequence: 3 givenname: Yi surname: Jiang fullname: Jiang, Yi email: yjian22@cityu.edu.hk organization: Department of Electrical Engineering and Centre for Complexity and Complex Networks, City University of Hong Kong, Hong Kong SAR, China – sequence: 4 givenname: Weiyao surname: Lan fullname: Lan, Weiyao email: wylan@xmu.edu.cn organization: Department of Automation, Xiamen University, Xiamen 361005, China – sequence: 5 givenname: Xiao surname: Yu fullname: Yu, Xiao email: xiaoyu@xmu.edu.cn organization: Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China |
| BookMark | eNqNkN9KwzAUh4NMcJu-Q16gNUm7Nr0RdPgPBrvR65CmJyNbm9Qknezt7ZwoeKNXh8M55-P8vhmaWGcBIUxJSgktrrepHKLrZDRKpoywPKWUFoSeoSnlZZYwnhUTNCWELBJKKn6BZiFsxzannE3R27qPppMtbg5WdkZhN8R-iFgDNLVUO6ycjd612Gk82J117xa3xoL0nxNjBzeEZEQADocQoQu4PmDZyBG7h29q793Gy64zdnOJzrVsA1x91Tl6fbh_WT4lq_Xj8_J2laiM8pgoXWkgtVZMy5rw8d-SKV0uSk7yLGccWAVqwZtSF2UtZZOTTNdVpTIgrCakzuaIn7jKuxA8aNH7Mak_CErEUZ3Yih914qhOnNSNpze_TpWJ49pRhTTtfwB3JwCMAfcGvAjKgFXQGA8qisaZvyEftySXxQ |
| CitedBy_id | crossref_primary_10_1016_j_jfranklin_2025_107519 crossref_primary_10_1109_TAC_2024_3441668 crossref_primary_10_1016_j_automatica_2025_112620 crossref_primary_10_1007_s11432_024_4209_9 crossref_primary_10_1016_j_chaos_2025_116459 crossref_primary_10_1007_s11424_025_4535_3 crossref_primary_10_1109_TCSII_2024_3483909 crossref_primary_10_1109_JSYST_2025_3533880 |
| Cites_doi | 10.1109/TNNLS.2017.2761718 10.1109/TCYB.2018.2886735 10.1016/j.neucom.2017.09.020 10.1016/j.automatica.2016.05.008 10.1109/TAC.2019.2905215 10.1109/MCAS.2009.933854 10.1109/TNNLS.2013.2249668 10.1109/TAC.2019.2912828 10.1049/iet-cta.2019.0560 10.1109/TNNLS.2018.2850520 10.1109/TCYB.2018.2821369 10.1109/TCYB.2015.2477810 10.1109/TSMC.2020.3042876 10.1109/TSMCB.2010.2043839 10.1016/j.automatica.2010.02.018 10.1109/TAC.2022.3172590 10.1016/j.automatica.2020.109272 10.1109/TAC.2017.2725955 10.1109/TNNLS.2021.3085358 10.1109/TAC.2018.2799526 10.1049/iet-cta.2020.0255 10.1016/j.automatica.2016.05.003 10.1109/TAC.2016.2548662 10.1016/j.automatica.2012.06.096 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.automatica.2024.111601 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2836 |
| ExternalDocumentID | 10_1016_j_automatica_2024_111601 S0005109824000943 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XFK XPP ZMT ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c318t-cf9fe0bfc2fab0800472cf7578043428e29ec58d7f67baad403fb99c3e02b00b3 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001221437400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0005-1098 |
| IngestDate | Sat Nov 29 01:51:04 EST 2025 Tue Nov 18 22:23:44 EST 2025 Sat May 11 15:33:01 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dynamic output feedback control Value iteration Linear quadratic regulation Adaptive dynamic programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c318t-cf9fe0bfc2fab0800472cf7578043428e29ec58d7f67baad403fb99c3e02b00b3 |
| ParticipantIDs | crossref_primary_10_1016_j_automatica_2024_111601 crossref_citationtrail_10_1016_j_automatica_2024_111601 elsevier_sciencedirect_doi_10_1016_j_automatica_2024_111601 |
| PublicationCentury | 2000 |
| PublicationDate | May 2024 2024-05-00 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Automatica (Oxford) |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Gao, Jiang (b5) 2018; 29 Roy, Bhasin, Kar (b28) 2018; 63 Vamvoudakis, Lewis (b31) 2010; 46 Jiang, Jiang (b13) 2017 Liu, Wei, Ding, Yang, Li (b19) 2017 Peng, Meng, Sun (b23) 2020; 14 Rizvi, Lin (b25) 2020; 122 Chen, Modares, Xie, Lewis, Wan, Xie (b2) 2019; 64 Gao, Jiang, Davari (b7) 2019; 66 Luo, Yang, Liu (b21) 2018; 48 Gao, Jiang, Jiang, Chai (b8) 2016; 72 Gao, Jiang, Lewis (b9) 2018; 63 Jiang, Jiang (b12) 2013; 24 Gao, Jiang (b4) 2016; 61 Sun, Zhao, Peng (b29) 2019; 13 Chen, Xie, Jiang, Xie, Xie (b3) 2023; 68 Lewis, Vrabie (b17) 2009; 9 Rizvi, Pertzborn, Lin (b27) 2022; 33 Jiang, Jiang (b11) 2012; 48 Liu, Xue, Zhao, Luo, Wei (b20) 2021; 51 Bian, Jiang (b1) 2016; 71 Gao, Jiang (b6) 2019; 30 Lewis, Vrabie, Syrmos (b18) 2012 Lewis, Vamvoudakis (b16) 2011; 41 Rizvi, Lin (b26) 2020; 50 Powell (b24) 2004 Lancaster, Rodman (b15) 1995 Modares, Lewis, Jiang (b22) 2016; 46 Sutton, Barto (b30) 1998 Jiang, Zhang, Zhang, Cui (b14) 2018; 275 Jha, Roy, Bhasin (b10) 2019; 64 Lewis (10.1016/j.automatica.2024.111601_b18) 2012 Vamvoudakis (10.1016/j.automatica.2024.111601_b31) 2010; 46 Lancaster (10.1016/j.automatica.2024.111601_b15) 1995 Liu (10.1016/j.automatica.2024.111601_b19) 2017 Gao (10.1016/j.automatica.2024.111601_b5) 2018; 29 Jiang (10.1016/j.automatica.2024.111601_b12) 2013; 24 Rizvi (10.1016/j.automatica.2024.111601_b25) 2020; 122 Jiang (10.1016/j.automatica.2024.111601_b13) 2017 Gao (10.1016/j.automatica.2024.111601_b8) 2016; 72 Jiang (10.1016/j.automatica.2024.111601_b11) 2012; 48 Rizvi (10.1016/j.automatica.2024.111601_b26) 2020; 50 Chen (10.1016/j.automatica.2024.111601_b2) 2019; 64 Sun (10.1016/j.automatica.2024.111601_b29) 2019; 13 Powell (10.1016/j.automatica.2024.111601_b24) 2004 Rizvi (10.1016/j.automatica.2024.111601_b27) 2022; 33 Modares (10.1016/j.automatica.2024.111601_b22) 2016; 46 Luo (10.1016/j.automatica.2024.111601_b21) 2018; 48 Gao (10.1016/j.automatica.2024.111601_b9) 2018; 63 Gao (10.1016/j.automatica.2024.111601_b7) 2019; 66 Gao (10.1016/j.automatica.2024.111601_b6) 2019; 30 Peng (10.1016/j.automatica.2024.111601_b23) 2020; 14 Jha (10.1016/j.automatica.2024.111601_b10) 2019; 64 Jiang (10.1016/j.automatica.2024.111601_b14) 2018; 275 Sutton (10.1016/j.automatica.2024.111601_b30) 1998 Lewis (10.1016/j.automatica.2024.111601_b17) 2009; 9 Lewis (10.1016/j.automatica.2024.111601_b16) 2011; 41 Chen (10.1016/j.automatica.2024.111601_b3) 2023; 68 Gao (10.1016/j.automatica.2024.111601_b4) 2016; 61 Liu (10.1016/j.automatica.2024.111601_b20) 2021; 51 Bian (10.1016/j.automatica.2024.111601_b1) 2016; 71 Roy (10.1016/j.automatica.2024.111601_b28) 2018; 63 |
| References_xml | – volume: 46 start-page: 2401 year: 2016 end-page: 2410 ident: b22 article-title: Optimal output-feedback control of unknown continuous-time linear systems using off-policy reinforcement learning publication-title: IEEE Transactions on Cybernetics – year: 2012 ident: b18 article-title: Optimal control – volume: 33 start-page: 7523 year: 2022 end-page: 7533 ident: b27 article-title: Reinforcement learning based optimal tracking control under unmeasurable disturbances with application to HVAC systems publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 63 start-page: 3581 year: 2018 end-page: 3588 ident: b9 article-title: Leader-to-formation stability of multi-agent systems: an adaptive optimal control approach publication-title: IEEE Transactions on Automatic Control – year: 1998 ident: b30 article-title: Introduction to reinforcement learning – year: 1995 ident: b15 article-title: Algebraic riccati equations – volume: 66 start-page: 447 year: 2019 end-page: 451 ident: b7 article-title: Data-driven cooperative output regulation of multi-agent systems via robust adaptive dynamic programming publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 50 start-page: 4670 year: 2020 end-page: 4679 ident: b26 article-title: Reinforcement learning-based linear quadratic regulation of continuous-time systems using dynamic output feedback publication-title: IEEE Transactions on Cybernetics – volume: 48 start-page: 2699 year: 2012 end-page: 2704 ident: b11 article-title: Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics publication-title: Automatica – volume: 64 start-page: 5230 year: 2019 end-page: 5237 ident: b10 article-title: Initial excitation-based iterative algorithm for approximate optimal control of completely unknown LTI systems publication-title: IEEE Transactions on Automatic Control – volume: 24 start-page: 1150 year: 2013 end-page: 1156 ident: b12 article-title: Robust adaptive dynamic programming with an application to power systems publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2004 ident: b24 article-title: Approximate dynamic programming: solving the curse of dimensionality – volume: 51 start-page: 142 year: 2021 end-page: 160 ident: b20 article-title: Adaptive dynamic programming for control: A survey and recent advances publication-title: IEEE Transactions on System Man Cybernetics: System – volume: 68 start-page: 2391 year: 2023 end-page: 2398 ident: b3 article-title: Robust output regulation and reinforcement learning-based output tracking design for unknown linear discrete-time systems publication-title: IEEE Transactions on Automatic Control – volume: 122 year: 2020 ident: b25 article-title: Output feedback adaptive dynamic programming for linear differential zero-sum games publication-title: Automatica – volume: 275 start-page: 649 year: 2018 end-page: 658 ident: b14 article-title: Data-driven adaptive dynamic programming schemes for non-zero-sum games of unknown discrete-time nonlinear systems publication-title: Neurocomputing – year: 2017 ident: b19 article-title: Adaptive dynamic programming with applications in optimal control – volume: 30 start-page: 938 year: 2019 end-page: 945 ident: b6 article-title: Adaptive optimal output regulation of time-delay systems via measurement feedback publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 29 start-page: 2614 year: 2018 end-page: 2624 ident: b5 article-title: Learning-based adaptive optimal tracking control of strict-feedback nonlinear systems publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 41 start-page: 14 year: 2011 end-page: 25 ident: b16 article-title: Reinforcement learning for partially observable dynamic processes: Adaptive dynamic programming using measured output data publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) – volume: 64 start-page: 4423 year: 2019 end-page: 4438 ident: b2 article-title: Reinforcement learning-based adaptive optimal exponential tracking control of linear systems with unknown dynamics publication-title: IEEE Transactions on Automatic Control – volume: 61 start-page: 4164 year: 2016 end-page: 4169 ident: b4 article-title: Adaptive dynamic programming and adaptive optimal output regulation of linear systems publication-title: IEEE Transactions on Automatic Control – volume: 63 start-page: 283 year: 2018 end-page: 290 ident: b28 article-title: Combined MRAC for unknown MIMO LTI systems with parameter convergence publication-title: IEEE Transactions on Automatic Control – volume: 13 start-page: 3075 year: 2019 end-page: 3086 ident: b29 article-title: Adaptive optimal output feedback tracking control for unknown discrete-time linear systems using a combined reinforcement Q-learning and internal model method publication-title: IET Control Theory & Applications – volume: 9 start-page: 32 year: 2009 end-page: 50 ident: b17 article-title: Reinforcement learning and adaptive dynamic programming for feedback control publication-title: IEEE Circuits and Systems Magazine – volume: 46 start-page: 878 year: 2010 end-page: 888 ident: b31 article-title: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem publication-title: Automatica – volume: 72 start-page: 37 year: 2016 end-page: 45 ident: b8 article-title: Output-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming publication-title: Automatica – year: 2017 ident: b13 article-title: Robust adaptive dynamic programming – volume: 14 start-page: 3621 year: 2020 end-page: 3631 ident: b23 article-title: Adaptive output-feedback quadratic tracking control of continuous-time systems via value iteration with its application publication-title: IET Control Theory & Applications – volume: 71 start-page: 348 year: 2016 end-page: 360 ident: b1 article-title: Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design publication-title: Automatica – volume: 48 start-page: 3337 year: 2018 end-page: 3348 ident: b21 article-title: Adaptive Q-learning for data-based optimal output regulation with experience replay publication-title: IEEE Transactions on Cybernetics – volume: 29 start-page: 2614 issue: 6 year: 2018 ident: 10.1016/j.automatica.2024.111601_b5 article-title: Learning-based adaptive optimal tracking control of strict-feedback nonlinear systems publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2761718 – year: 2004 ident: 10.1016/j.automatica.2024.111601_b24 – volume: 50 start-page: 4670 issue: 11 year: 2020 ident: 10.1016/j.automatica.2024.111601_b26 article-title: Reinforcement learning-based linear quadratic regulation of continuous-time systems using dynamic output feedback publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2886735 – volume: 275 start-page: 649 year: 2018 ident: 10.1016/j.automatica.2024.111601_b14 article-title: Data-driven adaptive dynamic programming schemes for non-zero-sum games of unknown discrete-time nonlinear systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.020 – year: 2012 ident: 10.1016/j.automatica.2024.111601_b18 – year: 1995 ident: 10.1016/j.automatica.2024.111601_b15 – volume: 72 start-page: 37 year: 2016 ident: 10.1016/j.automatica.2024.111601_b8 article-title: Output-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming publication-title: Automatica doi: 10.1016/j.automatica.2016.05.008 – volume: 64 start-page: 4423 issue: 11 year: 2019 ident: 10.1016/j.automatica.2024.111601_b2 article-title: Reinforcement learning-based adaptive optimal exponential tracking control of linear systems with unknown dynamics publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2019.2905215 – volume: 9 start-page: 32 issue: 3 year: 2009 ident: 10.1016/j.automatica.2024.111601_b17 article-title: Reinforcement learning and adaptive dynamic programming for feedback control publication-title: IEEE Circuits and Systems Magazine doi: 10.1109/MCAS.2009.933854 – volume: 24 start-page: 1150 issue: 7 year: 2013 ident: 10.1016/j.automatica.2024.111601_b12 article-title: Robust adaptive dynamic programming with an application to power systems publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2249668 – volume: 64 start-page: 5230 issue: 12 year: 2019 ident: 10.1016/j.automatica.2024.111601_b10 article-title: Initial excitation-based iterative algorithm for approximate optimal control of completely unknown LTI systems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2019.2912828 – year: 1998 ident: 10.1016/j.automatica.2024.111601_b30 – volume: 13 start-page: 3075 issue: 18 year: 2019 ident: 10.1016/j.automatica.2024.111601_b29 article-title: Adaptive optimal output feedback tracking control for unknown discrete-time linear systems using a combined reinforcement Q-learning and internal model method publication-title: IET Control Theory & Applications doi: 10.1049/iet-cta.2019.0560 – volume: 30 start-page: 938 issue: 3 year: 2019 ident: 10.1016/j.automatica.2024.111601_b6 article-title: Adaptive optimal output regulation of time-delay systems via measurement feedback publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2850520 – volume: 66 start-page: 447 issue: 3 year: 2019 ident: 10.1016/j.automatica.2024.111601_b7 article-title: Data-driven cooperative output regulation of multi-agent systems via robust adaptive dynamic programming publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 48 start-page: 3337 issue: 12 year: 2018 ident: 10.1016/j.automatica.2024.111601_b21 article-title: Adaptive Q-learning for data-based optimal output regulation with experience replay publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2821369 – volume: 46 start-page: 2401 issue: 11 year: 2016 ident: 10.1016/j.automatica.2024.111601_b22 article-title: Optimal output-feedback control of unknown continuous-time linear systems using off-policy reinforcement learning publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2477810 – volume: 51 start-page: 142 issue: 1 year: 2021 ident: 10.1016/j.automatica.2024.111601_b20 article-title: Adaptive dynamic programming for control: A survey and recent advances publication-title: IEEE Transactions on System Man Cybernetics: System doi: 10.1109/TSMC.2020.3042876 – volume: 41 start-page: 14 issue: 1 year: 2011 ident: 10.1016/j.automatica.2024.111601_b16 article-title: Reinforcement learning for partially observable dynamic processes: Adaptive dynamic programming using measured output data publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2010.2043839 – volume: 46 start-page: 878 issue: 5 year: 2010 ident: 10.1016/j.automatica.2024.111601_b31 article-title: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem publication-title: Automatica doi: 10.1016/j.automatica.2010.02.018 – volume: 68 start-page: 2391 issue: 4 year: 2023 ident: 10.1016/j.automatica.2024.111601_b3 article-title: Robust output regulation and reinforcement learning-based output tracking design for unknown linear discrete-time systems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2022.3172590 – year: 2017 ident: 10.1016/j.automatica.2024.111601_b19 – volume: 122 year: 2020 ident: 10.1016/j.automatica.2024.111601_b25 article-title: Output feedback adaptive dynamic programming for linear differential zero-sum games publication-title: Automatica doi: 10.1016/j.automatica.2020.109272 – volume: 63 start-page: 283 issue: 1 year: 2018 ident: 10.1016/j.automatica.2024.111601_b28 article-title: Combined MRAC for unknown MIMO LTI systems with parameter convergence publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2017.2725955 – volume: 33 start-page: 7523 issue: 12 year: 2022 ident: 10.1016/j.automatica.2024.111601_b27 article-title: Reinforcement learning based optimal tracking control under unmeasurable disturbances with application to HVAC systems publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2021.3085358 – volume: 63 start-page: 3581 issue: 10 year: 2018 ident: 10.1016/j.automatica.2024.111601_b9 article-title: Leader-to-formation stability of multi-agent systems: an adaptive optimal control approach publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2018.2799526 – volume: 14 start-page: 3621 issue: 20 year: 2020 ident: 10.1016/j.automatica.2024.111601_b23 article-title: Adaptive output-feedback quadratic tracking control of continuous-time systems via value iteration with its application publication-title: IET Control Theory & Applications doi: 10.1049/iet-cta.2020.0255 – volume: 71 start-page: 348 year: 2016 ident: 10.1016/j.automatica.2024.111601_b1 article-title: Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design publication-title: Automatica doi: 10.1016/j.automatica.2016.05.003 – year: 2017 ident: 10.1016/j.automatica.2024.111601_b13 – volume: 61 start-page: 4164 issue: 12 year: 2016 ident: 10.1016/j.automatica.2024.111601_b4 article-title: Adaptive dynamic programming and adaptive optimal output regulation of linear systems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2548662 – volume: 48 start-page: 2699 issue: 10 year: 2012 ident: 10.1016/j.automatica.2024.111601_b11 article-title: Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics publication-title: Automatica doi: 10.1016/j.automatica.2012.06.096 |
| SSID | ssj0004182 |
| Score | 2.5192108 |
| Snippet | In this paper, we present an approximate optimal dynamic output feedback control learning algorithm to solve the linear quadratic regulation problem for... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 111601 |
| SubjectTerms | Adaptive dynamic programming Dynamic output feedback control Linear quadratic regulation Value iteration |
| Title | Optimal dynamic output feedback control of unknown linear continuous-time systems by adaptive dynamic programming |
| URI | https://dx.doi.org/10.1016/j.automatica.2024.111601 |
| Volume | 163 |
| WOSCitedRecordID | wos001221437400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6ivOQDt1WqbJJNYnGqUBGUqnAosJwi27GllDZZdpOy_RH8Z8YZ21lKpRYkLlE0q5lsMl9mxpPxDCEvBcTw4BemgQbfGCRmDzBXcT-0TpW5VknWj-n8fJAdHubzOfs4Gv10e2HOTrK6ztdrtvivqgYaKNtsnf0LdXuhQIBzUDocQe1wvJbiP4ARODWfXnDW_KTp2kXXTjS4KcHlN1-cDlFiV5uUWj0xoSZf9r9Uddd0q8CMnLddnlcmQuUlX_RFRk6qres6dZ7PNbLt2qZvAsv7PqZrLJ33yYY5fg15Dx5zyFgrNDdfqx_KU_cr7qiOdICp2i-qOufNZrIiSobSQG-ATeNTHDztDbA1cWhCwfimyPKHdcdEw7Gp7bH3smMusjOw_N5Q-4Kj8-WHrrLtuBgkFUZSgZJukK0om7F8TLZ23-3N94eNttMc28_bu7ClYVgwePm_ujze2Yhhju6SO3bxQXcRNPfISNX3ye2NlpQPyHcLH2oVTRE-1MGHWvjQRlMLH4rwoRfgQy18qDinDj5e6gZ8HpJPb_aOXr8N7FiOQIIDaAOpmVah0DLSXJgFB7zPUpu5CGESw2pWRUzJWV5mOs0E52USxlowJmMVRmDkRfyIjOumVo8J1fFUhro0AwVhoc8zztIkZZKnnKlZLtJtkrmHV0jbs96MTjkprlLhNpl6zgX2bbkGzyunn8LGnxhXFgDAK7mf_MMVn5Jbw1vyjIzbZaeek5vyrK1WyxcWfb8AclKxFg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+dynamic+output+feedback+control+of+unknown+linear+continuous-time+systems+by+adaptive+dynamic+programming&rft.jtitle=Automatica+%28Oxford%29&rft.au=Xie%2C+Kedi&rft.au=Zheng%2C+Yiwei&rft.au=Jiang%2C+Yi&rft.au=Lan%2C+Weiyao&rft.date=2024-05-01&rft.issn=0005-1098&rft.volume=163&rft.spage=111601&rft_id=info:doi/10.1016%2Fj.automatica.2024.111601&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2024_111601 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |