Optimal dynamic output feedback control of unknown linear continuous-time systems by adaptive dynamic programming

In this paper, we present an approximate optimal dynamic output feedback control learning algorithm to solve the linear quadratic regulation problem for unknown linear continuous-time systems. First, a dynamic output feedback controller is designed by constructing the internal state. Then, an adapti...

Full description

Saved in:
Bibliographic Details
Published in:Automatica (Oxford) Vol. 163; p. 111601
Main Authors: Xie, Kedi, Zheng, Yiwei, Jiang, Yi, Lan, Weiyao, Yu, Xiao
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.05.2024
Subjects:
ISSN:0005-1098, 1873-2836
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we present an approximate optimal dynamic output feedback control learning algorithm to solve the linear quadratic regulation problem for unknown linear continuous-time systems. First, a dynamic output feedback controller is designed by constructing the internal state. Then, an adaptive dynamic programming based learning algorithm is proposed to estimate the optimal feedback control gain by only accessing the input and output data. By adding a constructed virtual observer error into the iterative learning equation, the proposed learning algorithm with the new iterative learning equation is immune to the observer error. In addition, the value iteration based learning equation is established without storing a series of past data, which could lead to a reduction of demands on the usage of memory storage. Besides, the proposed algorithm eliminates the requirement of repeated finite window integrals, which may reduce the computational load. Moreover, the convergence analysis shows that the estimated control policy converges to the optimal control policy. Finally, a physical experiment on an unmanned quadrotor is given to illustrate the effectiveness of the proposed approach.
AbstractList In this paper, we present an approximate optimal dynamic output feedback control learning algorithm to solve the linear quadratic regulation problem for unknown linear continuous-time systems. First, a dynamic output feedback controller is designed by constructing the internal state. Then, an adaptive dynamic programming based learning algorithm is proposed to estimate the optimal feedback control gain by only accessing the input and output data. By adding a constructed virtual observer error into the iterative learning equation, the proposed learning algorithm with the new iterative learning equation is immune to the observer error. In addition, the value iteration based learning equation is established without storing a series of past data, which could lead to a reduction of demands on the usage of memory storage. Besides, the proposed algorithm eliminates the requirement of repeated finite window integrals, which may reduce the computational load. Moreover, the convergence analysis shows that the estimated control policy converges to the optimal control policy. Finally, a physical experiment on an unmanned quadrotor is given to illustrate the effectiveness of the proposed approach.
ArticleNumber 111601
Author Zheng, Yiwei
Jiang, Yi
Lan, Weiyao
Yu, Xiao
Xie, Kedi
Author_xml – sequence: 1
  givenname: Kedi
  surname: Xie
  fullname: Xie, Kedi
  email: kedixie@bit.edu.cn
  organization: Department of Automation, Xiamen University, Xiamen 361005, China
– sequence: 2
  givenname: Yiwei
  surname: Zheng
  fullname: Zheng, Yiwei
  email: ywzheng1201@stu.xmu.edu.cn
  organization: Department of Automation, Xiamen University, Xiamen 361005, China
– sequence: 3
  givenname: Yi
  surname: Jiang
  fullname: Jiang, Yi
  email: yjian22@cityu.edu.hk
  organization: Department of Electrical Engineering and Centre for Complexity and Complex Networks, City University of Hong Kong, Hong Kong SAR, China
– sequence: 4
  givenname: Weiyao
  surname: Lan
  fullname: Lan, Weiyao
  email: wylan@xmu.edu.cn
  organization: Department of Automation, Xiamen University, Xiamen 361005, China
– sequence: 5
  givenname: Xiao
  surname: Yu
  fullname: Yu, Xiao
  email: xiaoyu@xmu.edu.cn
  organization: Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
BookMark eNqNkN9KwzAUh4NMcJu-Q16gNUm7Nr0RdPgPBrvR65CmJyNbm9Qknezt7ZwoeKNXh8M55-P8vhmaWGcBIUxJSgktrrepHKLrZDRKpoywPKWUFoSeoSnlZZYwnhUTNCWELBJKKn6BZiFsxzannE3R27qPppMtbg5WdkZhN8R-iFgDNLVUO6ycjd612Gk82J117xa3xoL0nxNjBzeEZEQADocQoQu4PmDZyBG7h29q793Gy64zdnOJzrVsA1x91Tl6fbh_WT4lq_Xj8_J2laiM8pgoXWkgtVZMy5rw8d-SKV0uSk7yLGccWAVqwZtSF2UtZZOTTNdVpTIgrCakzuaIn7jKuxA8aNH7Mak_CErEUZ3Yih914qhOnNSNpze_TpWJ49pRhTTtfwB3JwCMAfcGvAjKgFXQGA8qisaZvyEftySXxQ
CitedBy_id crossref_primary_10_1016_j_jfranklin_2025_107519
crossref_primary_10_1109_TAC_2024_3441668
crossref_primary_10_1016_j_automatica_2025_112620
crossref_primary_10_1007_s11432_024_4209_9
crossref_primary_10_1016_j_chaos_2025_116459
crossref_primary_10_1007_s11424_025_4535_3
crossref_primary_10_1109_TCSII_2024_3483909
crossref_primary_10_1109_JSYST_2025_3533880
Cites_doi 10.1109/TNNLS.2017.2761718
10.1109/TCYB.2018.2886735
10.1016/j.neucom.2017.09.020
10.1016/j.automatica.2016.05.008
10.1109/TAC.2019.2905215
10.1109/MCAS.2009.933854
10.1109/TNNLS.2013.2249668
10.1109/TAC.2019.2912828
10.1049/iet-cta.2019.0560
10.1109/TNNLS.2018.2850520
10.1109/TCYB.2018.2821369
10.1109/TCYB.2015.2477810
10.1109/TSMC.2020.3042876
10.1109/TSMCB.2010.2043839
10.1016/j.automatica.2010.02.018
10.1109/TAC.2022.3172590
10.1016/j.automatica.2020.109272
10.1109/TAC.2017.2725955
10.1109/TNNLS.2021.3085358
10.1109/TAC.2018.2799526
10.1049/iet-cta.2020.0255
10.1016/j.automatica.2016.05.003
10.1109/TAC.2016.2548662
10.1016/j.automatica.2012.06.096
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.automatica.2024.111601
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2836
ExternalDocumentID 10_1016_j_automatica_2024_111601
S0005109824000943
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c318t-cf9fe0bfc2fab0800472cf7578043428e29ec58d7f67baad403fb99c3e02b00b3
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001221437400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0005-1098
IngestDate Sat Nov 29 01:51:04 EST 2025
Tue Nov 18 22:23:44 EST 2025
Sat May 11 15:33:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic output feedback control
Value iteration
Linear quadratic regulation
Adaptive dynamic programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-cf9fe0bfc2fab0800472cf7578043428e29ec58d7f67baad403fb99c3e02b00b3
ParticipantIDs crossref_primary_10_1016_j_automatica_2024_111601
crossref_citationtrail_10_1016_j_automatica_2024_111601
elsevier_sciencedirect_doi_10_1016_j_automatica_2024_111601
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Automatica (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gao, Jiang (b5) 2018; 29
Roy, Bhasin, Kar (b28) 2018; 63
Vamvoudakis, Lewis (b31) 2010; 46
Jiang, Jiang (b13) 2017
Liu, Wei, Ding, Yang, Li (b19) 2017
Peng, Meng, Sun (b23) 2020; 14
Rizvi, Lin (b25) 2020; 122
Chen, Modares, Xie, Lewis, Wan, Xie (b2) 2019; 64
Gao, Jiang, Davari (b7) 2019; 66
Luo, Yang, Liu (b21) 2018; 48
Gao, Jiang, Jiang, Chai (b8) 2016; 72
Gao, Jiang, Lewis (b9) 2018; 63
Jiang, Jiang (b12) 2013; 24
Gao, Jiang (b4) 2016; 61
Sun, Zhao, Peng (b29) 2019; 13
Chen, Xie, Jiang, Xie, Xie (b3) 2023; 68
Lewis, Vrabie (b17) 2009; 9
Rizvi, Pertzborn, Lin (b27) 2022; 33
Jiang, Jiang (b11) 2012; 48
Liu, Xue, Zhao, Luo, Wei (b20) 2021; 51
Bian, Jiang (b1) 2016; 71
Gao, Jiang (b6) 2019; 30
Lewis, Vrabie, Syrmos (b18) 2012
Lewis, Vamvoudakis (b16) 2011; 41
Rizvi, Lin (b26) 2020; 50
Powell (b24) 2004
Lancaster, Rodman (b15) 1995
Modares, Lewis, Jiang (b22) 2016; 46
Sutton, Barto (b30) 1998
Jiang, Zhang, Zhang, Cui (b14) 2018; 275
Jha, Roy, Bhasin (b10) 2019; 64
Lewis (10.1016/j.automatica.2024.111601_b18) 2012
Vamvoudakis (10.1016/j.automatica.2024.111601_b31) 2010; 46
Lancaster (10.1016/j.automatica.2024.111601_b15) 1995
Liu (10.1016/j.automatica.2024.111601_b19) 2017
Gao (10.1016/j.automatica.2024.111601_b5) 2018; 29
Jiang (10.1016/j.automatica.2024.111601_b12) 2013; 24
Rizvi (10.1016/j.automatica.2024.111601_b25) 2020; 122
Jiang (10.1016/j.automatica.2024.111601_b13) 2017
Gao (10.1016/j.automatica.2024.111601_b8) 2016; 72
Jiang (10.1016/j.automatica.2024.111601_b11) 2012; 48
Rizvi (10.1016/j.automatica.2024.111601_b26) 2020; 50
Chen (10.1016/j.automatica.2024.111601_b2) 2019; 64
Sun (10.1016/j.automatica.2024.111601_b29) 2019; 13
Powell (10.1016/j.automatica.2024.111601_b24) 2004
Rizvi (10.1016/j.automatica.2024.111601_b27) 2022; 33
Modares (10.1016/j.automatica.2024.111601_b22) 2016; 46
Luo (10.1016/j.automatica.2024.111601_b21) 2018; 48
Gao (10.1016/j.automatica.2024.111601_b9) 2018; 63
Gao (10.1016/j.automatica.2024.111601_b7) 2019; 66
Gao (10.1016/j.automatica.2024.111601_b6) 2019; 30
Peng (10.1016/j.automatica.2024.111601_b23) 2020; 14
Jha (10.1016/j.automatica.2024.111601_b10) 2019; 64
Jiang (10.1016/j.automatica.2024.111601_b14) 2018; 275
Sutton (10.1016/j.automatica.2024.111601_b30) 1998
Lewis (10.1016/j.automatica.2024.111601_b17) 2009; 9
Lewis (10.1016/j.automatica.2024.111601_b16) 2011; 41
Chen (10.1016/j.automatica.2024.111601_b3) 2023; 68
Gao (10.1016/j.automatica.2024.111601_b4) 2016; 61
Liu (10.1016/j.automatica.2024.111601_b20) 2021; 51
Bian (10.1016/j.automatica.2024.111601_b1) 2016; 71
Roy (10.1016/j.automatica.2024.111601_b28) 2018; 63
References_xml – volume: 46
  start-page: 2401
  year: 2016
  end-page: 2410
  ident: b22
  article-title: Optimal output-feedback control of unknown continuous-time linear systems using off-policy reinforcement learning
  publication-title: IEEE Transactions on Cybernetics
– year: 2012
  ident: b18
  article-title: Optimal control
– volume: 33
  start-page: 7523
  year: 2022
  end-page: 7533
  ident: b27
  article-title: Reinforcement learning based optimal tracking control under unmeasurable disturbances with application to HVAC systems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 63
  start-page: 3581
  year: 2018
  end-page: 3588
  ident: b9
  article-title: Leader-to-formation stability of multi-agent systems: an adaptive optimal control approach
  publication-title: IEEE Transactions on Automatic Control
– year: 1998
  ident: b30
  article-title: Introduction to reinforcement learning
– year: 1995
  ident: b15
  article-title: Algebraic riccati equations
– volume: 66
  start-page: 447
  year: 2019
  end-page: 451
  ident: b7
  article-title: Data-driven cooperative output regulation of multi-agent systems via robust adaptive dynamic programming
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 50
  start-page: 4670
  year: 2020
  end-page: 4679
  ident: b26
  article-title: Reinforcement learning-based linear quadratic regulation of continuous-time systems using dynamic output feedback
  publication-title: IEEE Transactions on Cybernetics
– volume: 48
  start-page: 2699
  year: 2012
  end-page: 2704
  ident: b11
  article-title: Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics
  publication-title: Automatica
– volume: 64
  start-page: 5230
  year: 2019
  end-page: 5237
  ident: b10
  article-title: Initial excitation-based iterative algorithm for approximate optimal control of completely unknown LTI systems
  publication-title: IEEE Transactions on Automatic Control
– volume: 24
  start-page: 1150
  year: 2013
  end-page: 1156
  ident: b12
  article-title: Robust adaptive dynamic programming with an application to power systems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2004
  ident: b24
  article-title: Approximate dynamic programming: solving the curse of dimensionality
– volume: 51
  start-page: 142
  year: 2021
  end-page: 160
  ident: b20
  article-title: Adaptive dynamic programming for control: A survey and recent advances
  publication-title: IEEE Transactions on System Man Cybernetics: System
– volume: 68
  start-page: 2391
  year: 2023
  end-page: 2398
  ident: b3
  article-title: Robust output regulation and reinforcement learning-based output tracking design for unknown linear discrete-time systems
  publication-title: IEEE Transactions on Automatic Control
– volume: 122
  year: 2020
  ident: b25
  article-title: Output feedback adaptive dynamic programming for linear differential zero-sum games
  publication-title: Automatica
– volume: 275
  start-page: 649
  year: 2018
  end-page: 658
  ident: b14
  article-title: Data-driven adaptive dynamic programming schemes for non-zero-sum games of unknown discrete-time nonlinear systems
  publication-title: Neurocomputing
– year: 2017
  ident: b19
  article-title: Adaptive dynamic programming with applications in optimal control
– volume: 30
  start-page: 938
  year: 2019
  end-page: 945
  ident: b6
  article-title: Adaptive optimal output regulation of time-delay systems via measurement feedback
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 29
  start-page: 2614
  year: 2018
  end-page: 2624
  ident: b5
  article-title: Learning-based adaptive optimal tracking control of strict-feedback nonlinear systems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 41
  start-page: 14
  year: 2011
  end-page: 25
  ident: b16
  article-title: Reinforcement learning for partially observable dynamic processes: Adaptive dynamic programming using measured output data
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
– volume: 64
  start-page: 4423
  year: 2019
  end-page: 4438
  ident: b2
  article-title: Reinforcement learning-based adaptive optimal exponential tracking control of linear systems with unknown dynamics
  publication-title: IEEE Transactions on Automatic Control
– volume: 61
  start-page: 4164
  year: 2016
  end-page: 4169
  ident: b4
  article-title: Adaptive dynamic programming and adaptive optimal output regulation of linear systems
  publication-title: IEEE Transactions on Automatic Control
– volume: 63
  start-page: 283
  year: 2018
  end-page: 290
  ident: b28
  article-title: Combined MRAC for unknown MIMO LTI systems with parameter convergence
  publication-title: IEEE Transactions on Automatic Control
– volume: 13
  start-page: 3075
  year: 2019
  end-page: 3086
  ident: b29
  article-title: Adaptive optimal output feedback tracking control for unknown discrete-time linear systems using a combined reinforcement Q-learning and internal model method
  publication-title: IET Control Theory & Applications
– volume: 9
  start-page: 32
  year: 2009
  end-page: 50
  ident: b17
  article-title: Reinforcement learning and adaptive dynamic programming for feedback control
  publication-title: IEEE Circuits and Systems Magazine
– volume: 46
  start-page: 878
  year: 2010
  end-page: 888
  ident: b31
  article-title: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem
  publication-title: Automatica
– volume: 72
  start-page: 37
  year: 2016
  end-page: 45
  ident: b8
  article-title: Output-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming
  publication-title: Automatica
– year: 2017
  ident: b13
  article-title: Robust adaptive dynamic programming
– volume: 14
  start-page: 3621
  year: 2020
  end-page: 3631
  ident: b23
  article-title: Adaptive output-feedback quadratic tracking control of continuous-time systems via value iteration with its application
  publication-title: IET Control Theory & Applications
– volume: 71
  start-page: 348
  year: 2016
  end-page: 360
  ident: b1
  article-title: Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design
  publication-title: Automatica
– volume: 48
  start-page: 3337
  year: 2018
  end-page: 3348
  ident: b21
  article-title: Adaptive Q-learning for data-based optimal output regulation with experience replay
  publication-title: IEEE Transactions on Cybernetics
– volume: 29
  start-page: 2614
  issue: 6
  year: 2018
  ident: 10.1016/j.automatica.2024.111601_b5
  article-title: Learning-based adaptive optimal tracking control of strict-feedback nonlinear systems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2017.2761718
– year: 2004
  ident: 10.1016/j.automatica.2024.111601_b24
– volume: 50
  start-page: 4670
  issue: 11
  year: 2020
  ident: 10.1016/j.automatica.2024.111601_b26
  article-title: Reinforcement learning-based linear quadratic regulation of continuous-time systems using dynamic output feedback
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2886735
– volume: 275
  start-page: 649
  year: 2018
  ident: 10.1016/j.automatica.2024.111601_b14
  article-title: Data-driven adaptive dynamic programming schemes for non-zero-sum games of unknown discrete-time nonlinear systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.020
– year: 2012
  ident: 10.1016/j.automatica.2024.111601_b18
– year: 1995
  ident: 10.1016/j.automatica.2024.111601_b15
– volume: 72
  start-page: 37
  year: 2016
  ident: 10.1016/j.automatica.2024.111601_b8
  article-title: Output-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.05.008
– volume: 64
  start-page: 4423
  issue: 11
  year: 2019
  ident: 10.1016/j.automatica.2024.111601_b2
  article-title: Reinforcement learning-based adaptive optimal exponential tracking control of linear systems with unknown dynamics
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2019.2905215
– volume: 9
  start-page: 32
  issue: 3
  year: 2009
  ident: 10.1016/j.automatica.2024.111601_b17
  article-title: Reinforcement learning and adaptive dynamic programming for feedback control
  publication-title: IEEE Circuits and Systems Magazine
  doi: 10.1109/MCAS.2009.933854
– volume: 24
  start-page: 1150
  issue: 7
  year: 2013
  ident: 10.1016/j.automatica.2024.111601_b12
  article-title: Robust adaptive dynamic programming with an application to power systems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2249668
– volume: 64
  start-page: 5230
  issue: 12
  year: 2019
  ident: 10.1016/j.automatica.2024.111601_b10
  article-title: Initial excitation-based iterative algorithm for approximate optimal control of completely unknown LTI systems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2019.2912828
– year: 1998
  ident: 10.1016/j.automatica.2024.111601_b30
– volume: 13
  start-page: 3075
  issue: 18
  year: 2019
  ident: 10.1016/j.automatica.2024.111601_b29
  article-title: Adaptive optimal output feedback tracking control for unknown discrete-time linear systems using a combined reinforcement Q-learning and internal model method
  publication-title: IET Control Theory & Applications
  doi: 10.1049/iet-cta.2019.0560
– volume: 30
  start-page: 938
  issue: 3
  year: 2019
  ident: 10.1016/j.automatica.2024.111601_b6
  article-title: Adaptive optimal output regulation of time-delay systems via measurement feedback
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2850520
– volume: 66
  start-page: 447
  issue: 3
  year: 2019
  ident: 10.1016/j.automatica.2024.111601_b7
  article-title: Data-driven cooperative output regulation of multi-agent systems via robust adaptive dynamic programming
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 48
  start-page: 3337
  issue: 12
  year: 2018
  ident: 10.1016/j.automatica.2024.111601_b21
  article-title: Adaptive Q-learning for data-based optimal output regulation with experience replay
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2821369
– volume: 46
  start-page: 2401
  issue: 11
  year: 2016
  ident: 10.1016/j.automatica.2024.111601_b22
  article-title: Optimal output-feedback control of unknown continuous-time linear systems using off-policy reinforcement learning
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2477810
– volume: 51
  start-page: 142
  issue: 1
  year: 2021
  ident: 10.1016/j.automatica.2024.111601_b20
  article-title: Adaptive dynamic programming for control: A survey and recent advances
  publication-title: IEEE Transactions on System Man Cybernetics: System
  doi: 10.1109/TSMC.2020.3042876
– volume: 41
  start-page: 14
  issue: 1
  year: 2011
  ident: 10.1016/j.automatica.2024.111601_b16
  article-title: Reinforcement learning for partially observable dynamic processes: Adaptive dynamic programming using measured output data
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2010.2043839
– volume: 46
  start-page: 878
  issue: 5
  year: 2010
  ident: 10.1016/j.automatica.2024.111601_b31
  article-title: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.02.018
– volume: 68
  start-page: 2391
  issue: 4
  year: 2023
  ident: 10.1016/j.automatica.2024.111601_b3
  article-title: Robust output regulation and reinforcement learning-based output tracking design for unknown linear discrete-time systems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2022.3172590
– year: 2017
  ident: 10.1016/j.automatica.2024.111601_b19
– volume: 122
  year: 2020
  ident: 10.1016/j.automatica.2024.111601_b25
  article-title: Output feedback adaptive dynamic programming for linear differential zero-sum games
  publication-title: Automatica
  doi: 10.1016/j.automatica.2020.109272
– volume: 63
  start-page: 283
  issue: 1
  year: 2018
  ident: 10.1016/j.automatica.2024.111601_b28
  article-title: Combined MRAC for unknown MIMO LTI systems with parameter convergence
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2017.2725955
– volume: 33
  start-page: 7523
  issue: 12
  year: 2022
  ident: 10.1016/j.automatica.2024.111601_b27
  article-title: Reinforcement learning based optimal tracking control under unmeasurable disturbances with application to HVAC systems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3085358
– volume: 63
  start-page: 3581
  issue: 10
  year: 2018
  ident: 10.1016/j.automatica.2024.111601_b9
  article-title: Leader-to-formation stability of multi-agent systems: an adaptive optimal control approach
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2018.2799526
– volume: 14
  start-page: 3621
  issue: 20
  year: 2020
  ident: 10.1016/j.automatica.2024.111601_b23
  article-title: Adaptive output-feedback quadratic tracking control of continuous-time systems via value iteration with its application
  publication-title: IET Control Theory & Applications
  doi: 10.1049/iet-cta.2020.0255
– volume: 71
  start-page: 348
  year: 2016
  ident: 10.1016/j.automatica.2024.111601_b1
  article-title: Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.05.003
– year: 2017
  ident: 10.1016/j.automatica.2024.111601_b13
– volume: 61
  start-page: 4164
  issue: 12
  year: 2016
  ident: 10.1016/j.automatica.2024.111601_b4
  article-title: Adaptive dynamic programming and adaptive optimal output regulation of linear systems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2548662
– volume: 48
  start-page: 2699
  issue: 10
  year: 2012
  ident: 10.1016/j.automatica.2024.111601_b11
  article-title: Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.06.096
SSID ssj0004182
Score 2.5192108
Snippet In this paper, we present an approximate optimal dynamic output feedback control learning algorithm to solve the linear quadratic regulation problem for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111601
SubjectTerms Adaptive dynamic programming
Dynamic output feedback control
Linear quadratic regulation
Value iteration
Title Optimal dynamic output feedback control of unknown linear continuous-time systems by adaptive dynamic programming
URI https://dx.doi.org/10.1016/j.automatica.2024.111601
Volume 163
WOSCitedRecordID wos001221437400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6ivOQDt1WqbJJNYnGqUBGUqnAosJwi27GllDZZdpOy_RH8Z8YZ21lKpRYkLlE0q5lsMl9mxpPxDCEvBcTw4BemgQbfGCRmDzBXcT-0TpW5VknWj-n8fJAdHubzOfs4Gv10e2HOTrK6ztdrtvivqgYaKNtsnf0LdXuhQIBzUDocQe1wvJbiP4ARODWfXnDW_KTp2kXXTjS4KcHlN1-cDlFiV5uUWj0xoSZf9r9Uddd0q8CMnLddnlcmQuUlX_RFRk6qres6dZ7PNbLt2qZvAsv7PqZrLJ33yYY5fg15Dx5zyFgrNDdfqx_KU_cr7qiOdICp2i-qOufNZrIiSobSQG-ATeNTHDztDbA1cWhCwfimyPKHdcdEw7Gp7bH3smMusjOw_N5Q-4Kj8-WHrrLtuBgkFUZSgZJukK0om7F8TLZ23-3N94eNttMc28_bu7ClYVgwePm_ujze2Yhhju6SO3bxQXcRNPfISNX3ye2NlpQPyHcLH2oVTRE-1MGHWvjQRlMLH4rwoRfgQy18qDinDj5e6gZ8HpJPb_aOXr8N7FiOQIIDaAOpmVah0DLSXJgFB7zPUpu5CGESw2pWRUzJWV5mOs0E52USxlowJmMVRmDkRfyIjOumVo8J1fFUhro0AwVhoc8zztIkZZKnnKlZLtJtkrmHV0jbs96MTjkprlLhNpl6zgX2bbkGzyunn8LGnxhXFgDAK7mf_MMVn5Jbw1vyjIzbZaeek5vyrK1WyxcWfb8AclKxFg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+dynamic+output+feedback+control+of+unknown+linear+continuous-time+systems+by+adaptive+dynamic+programming&rft.jtitle=Automatica+%28Oxford%29&rft.au=Xie%2C+Kedi&rft.au=Zheng%2C+Yiwei&rft.au=Jiang%2C+Yi&rft.au=Lan%2C+Weiyao&rft.date=2024-05-01&rft.issn=0005-1098&rft.volume=163&rft.spage=111601&rft_id=info:doi/10.1016%2Fj.automatica.2024.111601&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2024_111601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon