Experimental analysis and simulation of low-velocity impact damage of composite laminates
The capability to accurately analyse the response of multi-directional composite laminates during impact events is of high importance for the design of lightweight aircraft structures. In this work, both experimental and numerical analyses are performed covering a large design-space of laminates for...
Saved in:
| Published in: | Composite structures Vol. 287; p. 115278 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.05.2022
|
| Subjects: | |
| ISSN: | 0263-8223, 1879-1085 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The capability to accurately analyse the response of multi-directional composite laminates during impact events is of high importance for the design of lightweight aircraft structures. In this work, both experimental and numerical analyses are performed covering a large design-space of laminates for all aspects from on-set of damage and barely visible impact damage up to clearly visible impact damage and full penetration of the laminates. The impact tests are simulated using a sophisticated three-dimensional continuum damage model, combined with an automated meso-scale model generation algorithm for ply-by-ply, material/fibre-aligned meshing of laminated composite coupons. To assess the accuracy of the predictions, an extensive validation test program of several configurations and impact energies has been performed, thus demonstrating that the simulations are capable of accurately predicting the damage and failure mechanisms under low-velocity impact loading. Not only the evolution of impact loads and energy dissipated are numerically analysed, but the competition of the dominant failure mechanisms from low impact energy and full penetration cases are also macroscopically replicated. |
|---|---|
| AbstractList | The capability to accurately analyse the response of multi-directional composite laminates during impact events is of high importance for the design of lightweight aircraft structures. In this work, both experimental and numerical analyses are performed covering a large design-space of laminates for all aspects from on-set of damage and barely visible impact damage up to clearly visible impact damage and full penetration of the laminates. The impact tests are simulated using a sophisticated three-dimensional continuum damage model, combined with an automated meso-scale model generation algorithm for ply-by-ply, material/fibre-aligned meshing of laminated composite coupons. To assess the accuracy of the predictions, an extensive validation test program of several configurations and impact energies has been performed, thus demonstrating that the simulations are capable of accurately predicting the damage and failure mechanisms under low-velocity impact loading. Not only the evolution of impact loads and energy dissipated are numerically analysed, but the competition of the dominant failure mechanisms from low impact energy and full penetration cases are also macroscopically replicated. |
| ArticleNumber | 115278 |
| Author | Falcó, O. Thomson, D. Ávila, R.L. Tijs, B.H.A.H. Lopes, C.S. Sommer, D.E. |
| Author_xml | – sequence: 1 givenname: O. orcidid: 0000-0002-6671-1505 surname: Falcó fullname: Falcó, O. email: olben.falcosalcines@eng.ox.ac.uk organization: Department of Engineering Science, University of Oxford, Oxford, United Kingdom – sequence: 2 givenname: C.S. surname: Lopes fullname: Lopes, C.S. organization: IMDEA Materials — Madrid Institute for Advanced Studies of Materials, Tecnogetafe, Madrid, Spain – sequence: 3 givenname: D.E. orcidid: 0000-0001-8577-6104 surname: Sommer fullname: Sommer, D.E. organization: Department of Engineering Science, University of Oxford, Oxford, United Kingdom – sequence: 4 givenname: D. surname: Thomson fullname: Thomson, D. organization: Department of Engineering Science, University of Oxford, Oxford, United Kingdom – sequence: 5 givenname: R.L. surname: Ávila fullname: Ávila, R.L. organization: Autonomous University of Coahuila, Saltillo, Mexico – sequence: 6 givenname: B.H.A.H. orcidid: 0000-0002-5506-1180 surname: Tijs fullname: Tijs, B.H.A.H. email: bas.tijs@fokker.com organization: GKN Aerospace: Fokker, Papendrecht, The Netherlands |
| BookMark | eNqNkM9Kw0AQhxepYFt9h32BxNlsk2wugpb6Bwpe9OApTHYnsiXJhuxW7dubWEHwoqcZmJmP-X4LNutcR4xxAbEAkV3uYu3a3odhr0OcQJLEQqRJrk7YXKi8iASodMbmkGQyUkkiz9jC-x0AqJUQc_ay-ehpsC11ARuOHTYHb_3YGO5tu28wWNdxV_PGvUdv1Dhtw4HbtkcduMEWX2maTj84bwPxBlvbYSB_zk5rbDxdfNcle77dPK3vo-3j3cP6ehtpKVSItM6FAcgJUSaYSQlKospTY1KqQFSVMnUFCJRpmWWQrrK8KCCVsBIqS7GQS6aOXD047weqy370weFQCiiniMpd-RNROUVUHiMaT69-nY52X8ZhQNv8B3BzBNAo-GZpKL221GkydqBx1zj7N-QT5UqN4w |
| CitedBy_id | crossref_primary_10_1016_j_compositesa_2023_107456 crossref_primary_10_1016_j_compositesa_2023_107974 crossref_primary_10_1177_00219983251319085 crossref_primary_10_1016_j_ndteint_2024_103238 crossref_primary_10_1016_j_compstruct_2024_118345 crossref_primary_10_1177_07316844241239468 crossref_primary_10_1016_j_compositesb_2025_112969 crossref_primary_10_1002_pc_30103 crossref_primary_10_1007_s11668_025_02113_x crossref_primary_10_1016_j_compscitech_2023_109917 crossref_primary_10_1016_j_tws_2025_112963 crossref_primary_10_1002_pc_29233 crossref_primary_10_1177_00219983241228387 crossref_primary_10_1002_pc_29352 crossref_primary_10_1016_j_compstruct_2023_117253 crossref_primary_10_3390_ma16093442 crossref_primary_10_1109_JSEN_2025_3543362 crossref_primary_10_1002_pc_27810 crossref_primary_10_1016_j_ijmecsci_2024_109762 crossref_primary_10_3390_polym17070891 crossref_primary_10_3390_en15196927 crossref_primary_10_1002_pc_70198 crossref_primary_10_3390_sym17040570 crossref_primary_10_1109_TIM_2023_3268447 crossref_primary_10_1177_00219983241292788 crossref_primary_10_1016_j_compstruct_2024_118238 crossref_primary_10_1002_pc_29070 crossref_primary_10_3390_ma15196636 crossref_primary_10_1080_09349847_2024_2395585 crossref_primary_10_1002_pc_29740 crossref_primary_10_1016_j_euromechsol_2022_104748 crossref_primary_10_1080_15376494_2025_2477808 crossref_primary_10_1002_pc_28412 crossref_primary_10_1016_j_compstruct_2022_116372 crossref_primary_10_1016_j_polymertesting_2025_108878 crossref_primary_10_1002_pc_70073 crossref_primary_10_3390_polym15040840 crossref_primary_10_1016_j_tws_2023_111360 crossref_primary_10_1016_j_compositesb_2025_112708 crossref_primary_10_1016_j_coco_2024_101838 crossref_primary_10_1080_15376494_2025_2516215 crossref_primary_10_1016_j_compositesa_2023_107712 crossref_primary_10_1080_00218464_2024_2410329 crossref_primary_10_1016_j_compstruct_2024_118685 crossref_primary_10_1016_j_compstruct_2025_119534 crossref_primary_10_1177_00219983241292777 crossref_primary_10_1016_j_compositesa_2023_108002 crossref_primary_10_1016_j_ijsolstr_2023_112449 crossref_primary_10_1016_j_compositesa_2022_107033 crossref_primary_10_1080_17686733_2025_2535166 crossref_primary_10_1016_j_compstruct_2023_116821 crossref_primary_10_1177_00219983221096888 crossref_primary_10_1002_pc_26983 crossref_primary_10_1016_j_ijimpeng_2025_105434 crossref_primary_10_1016_j_jcomc_2025_100603 crossref_primary_10_1111_str_12464 crossref_primary_10_1177_08927057251355147 crossref_primary_10_1016_j_conbuildmat_2024_138083 crossref_primary_10_1016_j_compstruct_2025_119121 crossref_primary_10_1016_j_compositesa_2023_107960 crossref_primary_10_1016_j_ijimpeng_2023_104510 crossref_primary_10_3390_ma15248822 crossref_primary_10_1016_j_compscitech_2025_111212 crossref_primary_10_1155_je_5102865 crossref_primary_10_1515_rams_2024_0003 crossref_primary_10_1002_app_57356 crossref_primary_10_1016_j_actaastro_2024_08_043 crossref_primary_10_1016_j_compositesb_2024_111786 crossref_primary_10_1016_j_compstruct_2025_118875 crossref_primary_10_1177_08927057231216741 crossref_primary_10_1177_00219983251368300 crossref_primary_10_3390_ma15155256 crossref_primary_10_1016_j_compositesa_2022_107263 crossref_primary_10_1016_j_compositesb_2024_111503 crossref_primary_10_1016_j_compstruct_2024_118726 crossref_primary_10_1016_j_ast_2023_108819 crossref_primary_10_1007_s11223_024_00677_x crossref_primary_10_1002_pc_29128 crossref_primary_10_1016_j_ijmecsci_2023_108248 crossref_primary_10_1016_j_ijengsci_2024_104125 crossref_primary_10_1007_s42496_023_00170_9 crossref_primary_10_3390_ma18081833 crossref_primary_10_1007_s42405_025_00968_w |
| Cites_doi | 10.1016/j.compstruct.2013.09.004 10.1016/j.ijimpeng.2020.103701 10.1016/j.compstruct.2015.09.062 10.1016/j.compstruct.2020.112530 10.1016/j.compstruct.2012.03.039 10.1016/j.compositesa.2015.10.033 10.1016/j.compstruct.2012.07.016 10.1016/j.compstruct.2016.04.012 10.1016/j.compositesa.2021.106377 10.1016/j.compscitech.2012.08.019 10.1016/j.compstruct.2013.07.008 10.1016/j.ijsolstr.2018.05.005 10.1016/j.mechmat.2010.09.003 10.1016/j.compscitech.2007.03.032 10.1016/j.compositesa.2018.07.022 10.1016/j.mechmat.2007.03.006 10.1016/j.compstruct.2015.04.023 10.1177/0021998303034505 10.1016/j.compositesa.2013.08.003 10.1016/j.tws.2020.107009 10.1002/1097-0207(20001120)49:8<1029::AID-NME990>3.0.CO;2-3 10.1016/j.compstruct.2020.112694 10.1016/j.compstruct.2014.03.031 10.1016/j.compstruct.2015.01.050 10.1016/j.compstruct.2012.05.015 10.1016/j.compositesa.2018.03.017 10.1016/j.compositesb.2014.07.011 10.1016/j.engfracmech.2021.107705 10.1016/j.compscitech.2010.12.018 10.1016/j.compstruct.2018.02.016 10.1016/j.compstruct.2021.114694 10.1016/j.compscitech.2009.02.015 10.1016/j.compstruct.2021.114964 10.1016/j.engfailanal.2017.12.019 10.1016/j.mechmat.2007.03.005 10.1016/j.compstruct.2019.111017 10.1016/j.ijsolstr.2009.03.010 10.1016/j.compositesa.2015.01.025 10.1016/j.ijimpeng.2017.06.008 10.1016/j.mechmat.2005.10.003 10.1007/s10443-017-9598-4 10.1016/S1359-835X(01)00073-2 10.1177/0021998320944992 10.1016/j.compstruct.2018.06.046 10.1016/j.ijimpeng.2015.05.014 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compstruct.2022.115278 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1085 |
| ExternalDocumentID | 10_1016_j_compstruct_2022_115278 S0263822322000885 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSM SST SSZ T5K XPP ZMT ~02 ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SMS WUQ ~HD |
| ID | FETCH-LOGICAL-c318t-cc71d007eaa32a633083a875dd5eb01bb8dfb0a0e6c3660546799053041865a93 |
| ISICitedReferencesCount | 87 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000770659400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-8223 |
| IngestDate | Tue Nov 18 21:51:32 EST 2025 Sat Nov 29 07:22:07 EST 2025 Fri Feb 23 02:40:50 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Impact behaviour Carbon fibre reinforced polymer Finite Element Analysis (FEA) Computational modelling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c318t-cc71d007eaa32a633083a875dd5eb01bb8dfb0a0e6c3660546799053041865a93 |
| ORCID | 0000-0002-6671-1505 0000-0001-8577-6104 0000-0002-5506-1180 |
| ParticipantIDs | crossref_primary_10_1016_j_compstruct_2022_115278 crossref_citationtrail_10_1016_j_compstruct_2022_115278 elsevier_sciencedirect_doi_10_1016_j_compstruct_2022_115278 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 2022-05-00 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Composite structures |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Zhang (b19) 2015; 125 Zhang, Zhang (b20) 2015; 130 Garijo, Martínez, Lopes, Llorca, González, Puente, Loya (b52) 2018 Maimí (b49) 2006 Trellu, Bouvet, Rivallant, Ratsifandrihana (b28) 2020; 252 Lin, Waas (b16) 2021; 145 Maimí, Camanho, Mayugo, Dávila (b46) 2007; 39 Lin, Thorsson, Waas (b15) 2020; 251 Sun, Hallett (b25) 2017; 109 Wang, Zhao, Hong, Zhang (b59) 2018; 201 Bouvet, Castanié, Bizeul, Barrau (b10) 2009; 46 Caputo, De Luca, Lamanna, Borrelli, Mercurio (b23) 2014; 67 (b33) 2013 Tijs, Doldersum, Turon, Waleson, Bisagni (b30) 2022; 281 Achard, Bouvet, Castanié, Chirol (b26) 2014; 113 DOT/FAA/AR-02/109 (b54) 2003 Koerber, Xavier, Camanho (b56) 2010; 42 Olsson (b41) 2001; 32 Tan, Falzon, Chiu, Price (b9) 2015; 71 May (b58) 2016; 81 González, Maimí, Martín-Santos, Soto, Cruz, De La Escalera, de Aja (b4) 2018; 144 Bui, Hu (b32) 2021; 248 Camanho, Dávila, de Moura (b43) 2003; 37 NCAMP (b55) 2011 Lopes, Gómez, Falcó, Tijs (b29) 2021 Hongkarnjanakul, Bouvet, Rivallant (b13) 2013; 106 ASTM (b38) 2012 Soto, González, Maimí, n de la Escalera, Sainz de Aja, Alvarez (b7) 2018; 109 Lopes, Sádaba, González, Llorca, Camanho (b27) 2016; 92 Falcó, Ávila, Tijs, Lopes (b2) 2018; 190 Catalanotti, Camanho, Marques (b35) 2013; 95 Turon, Camanho, Costa, Dávila (b44) 2006; 38 Rajaneesh, Ponthot, Bruyneel (b51) 2021; 147 González, Camanho, Lopes, Blanco (b42) 2011; 71 Liu, Liao, Jia, Peng (b21) 2016; 149 Bažant, Oh (b36) 1983; 16 Lopes, Camanho, Gürdal, Maimí, González (b5) 2009; 69 Giannaros, Kotzakolios, Sotiriadis, Kostopoulos (b22) 2021; 55 BSS-7260 (b39) 1988 Puso (b53) 2000; 49 Baluch, Falcó, Jiménez, Tijs, Lopes (b1) 2019; 225 Maimí, Camanho, Mayugo, Dávila (b48) 2007; 39 Ramberg, Osgood (b47) 1943 Reiner, Zobeiry, Vaziri (b3) 2020; 156 Petit, Bouvet, Bergerot, Barrau (b40) 2007; 67 ASTM (b45) 2000 Millen, Ullah, Falzon (b50) 2021 González, Maimí, Camanho, Turon, Mayugo (b8) 2012; 94 AITM 1-0010 (b37) 2005 Cantwell, Blyton (b57) 1999 Rivallant, Bouvet, Hongkarnjanakul (b14) 2013; 55 Maimí, Camanho, Mayugo, Dávila (b34) 2007; 39 Bouvet, Rivallant, Barrau (b11) 2012; 72 Feng, Aymerich (b18) 2014; 108 Sun, Guan, Li (b31) 2017; 24 Ebina, Yoshimura, Sakaue, Waas (b17) 2018; 113 Sun, Wisnom, Hallett (b24) 2016; 136 Bogenfeld, Kreikemeier, Wille (b6) 2018; 86 Shi, Swait, Soutis (b12) 2012; 94 Ramberg (10.1016/j.compstruct.2022.115278_b47) 1943 ASTM (10.1016/j.compstruct.2022.115278_b38) 2012 Sun (10.1016/j.compstruct.2022.115278_b25) 2017; 109 AITM 1-0010 (10.1016/j.compstruct.2022.115278_b37) 2005 González (10.1016/j.compstruct.2022.115278_b42) 2011; 71 Giannaros (10.1016/j.compstruct.2022.115278_b22) 2021; 55 Maimí (10.1016/j.compstruct.2022.115278_b46) 2007; 39 Bažant (10.1016/j.compstruct.2022.115278_b36) 1983; 16 NCAMP (10.1016/j.compstruct.2022.115278_b55) 2011 Millen (10.1016/j.compstruct.2022.115278_b50) 2021 Puso (10.1016/j.compstruct.2022.115278_b53) 2000; 49 (10.1016/j.compstruct.2022.115278_b33) 2013 Reiner (10.1016/j.compstruct.2022.115278_b3) 2020; 156 Camanho (10.1016/j.compstruct.2022.115278_b43) 2003; 37 BSS-7260 (10.1016/j.compstruct.2022.115278_b39) 1988 Maimí (10.1016/j.compstruct.2022.115278_b48) 2007; 39 Falcó (10.1016/j.compstruct.2022.115278_b2) 2018; 190 ASTM (10.1016/j.compstruct.2022.115278_b45) 2000 Feng (10.1016/j.compstruct.2022.115278_b18) 2014; 108 Maimí (10.1016/j.compstruct.2022.115278_b49) 2006 Achard (10.1016/j.compstruct.2022.115278_b26) 2014; 113 Rivallant (10.1016/j.compstruct.2022.115278_b14) 2013; 55 Sun (10.1016/j.compstruct.2022.115278_b31) 2017; 24 Olsson (10.1016/j.compstruct.2022.115278_b41) 2001; 32 Liu (10.1016/j.compstruct.2022.115278_b21) 2016; 149 Soto (10.1016/j.compstruct.2022.115278_b7) 2018; 109 Trellu (10.1016/j.compstruct.2022.115278_b28) 2020; 252 Hongkarnjanakul (10.1016/j.compstruct.2022.115278_b13) 2013; 106 Tijs (10.1016/j.compstruct.2022.115278_b30) 2022; 281 Shi (10.1016/j.compstruct.2022.115278_b12) 2012; 94 Caputo (10.1016/j.compstruct.2022.115278_b23) 2014; 67 Sun (10.1016/j.compstruct.2022.115278_b24) 2016; 136 Garijo (10.1016/j.compstruct.2022.115278_b52) 2018 González (10.1016/j.compstruct.2022.115278_b8) 2012; 94 Lopes (10.1016/j.compstruct.2022.115278_b5) 2009; 69 Ebina (10.1016/j.compstruct.2022.115278_b17) 2018; 113 Bouvet (10.1016/j.compstruct.2022.115278_b11) 2012; 72 DOT/FAA/AR-02/109 (10.1016/j.compstruct.2022.115278_b54) 2003 Bui (10.1016/j.compstruct.2022.115278_b32) 2021; 248 Lin (10.1016/j.compstruct.2022.115278_b15) 2020; 251 Lin (10.1016/j.compstruct.2022.115278_b16) 2021; 145 Zhang (10.1016/j.compstruct.2022.115278_b19) 2015; 125 Zhang (10.1016/j.compstruct.2022.115278_b20) 2015; 130 Lopes (10.1016/j.compstruct.2022.115278_b27) 2016; 92 Koerber (10.1016/j.compstruct.2022.115278_b56) 2010; 42 Petit (10.1016/j.compstruct.2022.115278_b40) 2007; 67 Baluch (10.1016/j.compstruct.2022.115278_b1) 2019; 225 Wang (10.1016/j.compstruct.2022.115278_b59) 2018; 201 Tan (10.1016/j.compstruct.2022.115278_b9) 2015; 71 Maimí (10.1016/j.compstruct.2022.115278_b34) 2007; 39 Rajaneesh (10.1016/j.compstruct.2022.115278_b51) 2021; 147 May (10.1016/j.compstruct.2022.115278_b58) 2016; 81 Cantwell (10.1016/j.compstruct.2022.115278_b57) 1999 Bogenfeld (10.1016/j.compstruct.2022.115278_b6) 2018; 86 Catalanotti (10.1016/j.compstruct.2022.115278_b35) 2013; 95 Turon (10.1016/j.compstruct.2022.115278_b44) 2006; 38 Lopes (10.1016/j.compstruct.2022.115278_b29) 2021 Bouvet (10.1016/j.compstruct.2022.115278_b10) 2009; 46 González (10.1016/j.compstruct.2022.115278_b4) 2018; 144 |
| References_xml | – volume: 37 start-page: 1415 year: 2003 end-page: 1438 ident: b43 article-title: Numerical simulation of mixed-mode progressive delamination in composite materials publication-title: Composite Mater – volume: 67 start-page: 296 year: 2014 end-page: 302 ident: b23 article-title: Numerical study for the structural analysis of composite laminates subjected to low velocity impact publication-title: Composites B – volume: 95 start-page: 63 year: 2013 end-page: 79 ident: b35 article-title: Three-dimensional failure criteria for fiber-reinforced laminates publication-title: Compos Struct – volume: 69 start-page: 937 year: 2009 end-page: 947 ident: b5 article-title: Low-velocity impact damage on dispersed stacking sequence laminates. part II: Numerical simulations publication-title: Composites Sci Technol – volume: 94 start-page: 2902 year: 2012 end-page: 2913 ident: b12 article-title: Modelling damage evolution in composite laminates subjected to low velocity impact publication-title: Compos Struct – year: 2000 ident: b45 article-title: Standard test method for short-beam strength of polymer matrix composite materials and their laminates – volume: 130 start-page: 85 year: 2015 end-page: 94 ident: b20 article-title: An efficient approach for predicting low-velocity impact force and damage in composite laminates publication-title: Compos Struct – volume: 149 start-page: 408 year: 2016 end-page: 422 ident: b21 article-title: Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact publication-title: Compos Struct – volume: 39 start-page: 909 year: 2007 end-page: 919 ident: b48 article-title: A continuum damage model for composite laminates - part II: Computational implementation and validation publication-title: Mech Mater – year: 1943 ident: b47 article-title: Description of stress–strain curves by three parameters publication-title: Natl Advis Comm Aeronaut – start-page: 579 year: 2021 end-page: 607 ident: b29 article-title: 19 - Stochastic virtual testing laboratory for unidirectional composite coupons: from conventional to dispersed-ply laminates publication-title: Multi-scale continuum mechanics modelling of fibre-reinforced polymer composites – volume: 72 start-page: 1977 year: 2012 end-page: 1988 ident: b11 article-title: Low velocity impact modeling in composite laminates capturing permanent indentation publication-title: Composites Sci Technol – volume: 136 start-page: 727 year: 2016 end-page: 742 ident: b24 article-title: Interaction of inter- and intralaminar damage in scaled quasi-static indentation tests: Part 2 – numerical simulation publication-title: Compos Struct – volume: 39 start-page: 897 year: 2007 end-page: 908 ident: b34 article-title: A continuum damage model for composite laminates: Part I - Constitutive model publication-title: Mech Mater – volume: 94 start-page: 3364 year: 2012 end-page: 3378 ident: b8 article-title: Simulation of drop-weight impact and compression after impact tests on composite laminates publication-title: Compos Struct – year: 2011 ident: b55 article-title: Hexcel 8552 AS4 unidirectional prepeg qualification statical analysis report – volume: 55 start-page: 39 year: 2021 end-page: 56 ident: b22 article-title: A multi-stage material model calibration procedure for enhancing numerical solution fidelity in the case of impact loading of composites publication-title: J Composite Mater – volume: 39 start-page: 909 year: 2007 end-page: 919 ident: b46 article-title: A continuum damage model for composite laminates: Part II - computational implementation and validation publication-title: Mech Mater – year: 1988 ident: b39 article-title: Boeing specification support standard. determination of compression strength after impact – volume: 106 start-page: 549 year: 2013 end-page: 559 ident: b13 article-title: Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure publication-title: Compos Struct – volume: 109 start-page: 178 year: 2017 end-page: 195 ident: b25 article-title: Barely visible impact damage in scaled composite laminates: Experiments and numerical simulations publication-title: Int J Impact Eng – volume: 16 start-page: 155 year: 1983 end-page: 177 ident: b36 article-title: Crack band theory for fracture of concrete publication-title: Mater Struct – volume: 252 year: 2020 ident: b28 article-title: A new interface element connecting 3D finite elements with non-coincident nodes to simulate delamination in composite laminates publication-title: Compos Struct – volume: 24 start-page: 1459 year: 2017 end-page: 1477 ident: b31 article-title: Simulation of low velocity impact induced inter- and intra-laminar damage of composite beams based on XFEM publication-title: Appl Compos Mater – volume: 281 year: 2022 ident: b30 article-title: Experimental and numerical evaluation of conduction welded thermoplastic composite joints publication-title: Compos Struct – volume: 81 start-page: 1 year: 2016 end-page: 12 ident: b58 article-title: Measuring the rate-dependent mode I fracture toughness of composites – A review publication-title: Composites A – volume: 147 year: 2021 ident: b51 article-title: High velocity impact response of composite laminates using modified meso-scale damage models publication-title: Int J Impact Eng – year: 2012 ident: b38 article-title: Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event – volume: 125 start-page: 51 year: 2015 end-page: 57 ident: b19 article-title: Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact publication-title: Compos Struct – volume: 71 start-page: 805 year: 2011 end-page: 817 ident: b42 article-title: Effects of ply clustering in laminated composite plates under low-velocity impact loading publication-title: Composites Sci Technol – volume: 55 start-page: 83 year: 2013 end-page: 93 ident: b14 article-title: Failure analysis of CFRP laminates subjected to compression after impact: FE simulation using discrete interface elements publication-title: Composites A – volume: 32 start-page: 1207 year: 2001 end-page: 1215 ident: b41 article-title: Analytical prediction of large mass impact damage in composite laminates publication-title: Composites A – start-page: 219 year: 2018 end-page: 238 ident: b52 article-title: 8.12 Multiscale FE modelling and design of composite laminates under impact publication-title: Comprehensive composite materials II – volume: 144 start-page: 230 year: 2018 end-page: 247 ident: b4 article-title: Simulating drop-weight impact and compression after impact tests on composite laminates using conventional shell finite elements publication-title: Int J Solids Struct – year: 2021 ident: b50 article-title: On the importance of finite element mesh alignment along the fibre direction for modelling damage in fibre-reinforced polymer composite laminates publication-title: Compos Struct – volume: 46 start-page: 2809 year: 2009 end-page: 2821 ident: b10 article-title: Low velocity impact modelling in laminate composite panels with discrete interface elements publication-title: Int J Solids Struct – volume: 67 start-page: 3286 year: 2007 end-page: 3299 ident: b40 article-title: Impact and compression after impact experimental study of a composite laminate with a cork thermal shield publication-title: Composites Sci Technol – volume: 49 start-page: 1029 year: 2000 end-page: 1064 ident: b53 article-title: A highly efficient enhanced assumed strain physically stabilized hexahedral element publication-title: Int J Numer Methods Eng – volume: 248 year: 2021 ident: b32 article-title: A review of phase-field models, fundamentals and their applications to composite laminates publication-title: Eng Fract Mech – volume: 38 start-page: 1072 year: 2006 end-page: 1089 ident: b44 article-title: A damage model for the simulation of delamination in advanced composites under variable-mode loading publication-title: Mech Mater – volume: 190 start-page: 137 year: 2018 end-page: 159 ident: b2 article-title: Modelling and simulation methodology for unidirectional composite laminates in a virtual test lab framework publication-title: Compos Struct – volume: 251 year: 2020 ident: b15 article-title: Predicting the low velocity impact damage of a quasi-isotropic laminate using EST publication-title: Compos Struct – volume: 71 start-page: 212 year: 2015 end-page: 226 ident: b9 article-title: Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates publication-title: Composites A – year: 1999 ident: b57 article-title: Influence of loading rate on the interlaminar fracture properties of high performance composites-a review – year: 2003 ident: b54 article-title: Guidelines and recommended criteria for the development of a material specification for carbon fiber/epoxy unidirectional prepregs – volume: 113 start-page: 369 year: 2014 end-page: 381 ident: b26 article-title: Discrete ply modelling of open hole tensile tests publication-title: Compos Struct – year: 2005 ident: b37 article-title: Determination of compression strength after impact – year: 2013 ident: b33 article-title: ABAQUS version 6.14 online documentation, Analysis user’s manual – volume: 225 year: 2019 ident: b1 article-title: An efficient numerical approach to the prediction of laminate tolerance to barely visible impact damage publication-title: Compos Struct – volume: 109 start-page: 413 year: 2018 end-page: 427 ident: b7 article-title: Low velocity impact and compression after impact simulation of thin ply laminates publication-title: Composites A – volume: 201 start-page: 995 year: 2018 end-page: 1003 ident: b59 article-title: A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates publication-title: Compos Struct – volume: 86 start-page: 72 year: 2018 end-page: 99 ident: b6 article-title: Review and benchmark study on the analysis of low-velocity impact on composite laminates publication-title: Eng Fail Anal – year: 2006 ident: b49 article-title: Modelización constitutiva y computacional del daño y la fractura de materiales compuestos – volume: 42 start-page: 1004 year: 2010 end-page: 1019 ident: b56 article-title: High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation publication-title: Mech Mater – volume: 145 year: 2021 ident: b16 article-title: The effect of stacking sequence on the LVI damage of laminated composites; experiments and analysis publication-title: Composites A – volume: 113 start-page: 166 year: 2018 end-page: 179 ident: b17 article-title: High fidelity simulation of low velocity impact behavior of CFRP laminate publication-title: Composites A – volume: 108 start-page: 161 year: 2014 end-page: 171 ident: b18 article-title: Finite element modelling of damage induced by low-velocity impact on composite laminates publication-title: Compos Struct – volume: 156 year: 2020 ident: b3 article-title: A stacked sublaminate-based damage-plasticity model for simulating progressive damage in composite laminates under impact loading publication-title: Thin-Walled Struct – volume: 92 start-page: 3 year: 2016 end-page: 17 ident: b27 article-title: Physically-sound simulation of low-velocity impact on fibre reinforced laminates publication-title: Int J Impact Eng – volume: 108 start-page: 161 year: 2014 ident: 10.1016/j.compstruct.2022.115278_b18 article-title: Finite element modelling of damage induced by low-velocity impact on composite laminates publication-title: Compos Struct doi: 10.1016/j.compstruct.2013.09.004 – volume: 147 year: 2021 ident: 10.1016/j.compstruct.2022.115278_b51 article-title: High velocity impact response of composite laminates using modified meso-scale damage models publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2020.103701 – volume: 136 start-page: 727 year: 2016 ident: 10.1016/j.compstruct.2022.115278_b24 article-title: Interaction of inter- and intralaminar damage in scaled quasi-static indentation tests: Part 2 – numerical simulation publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.09.062 – start-page: 219 year: 2018 ident: 10.1016/j.compstruct.2022.115278_b52 article-title: 8.12 Multiscale FE modelling and design of composite laminates under impact – volume: 251 year: 2020 ident: 10.1016/j.compstruct.2022.115278_b15 article-title: Predicting the low velocity impact damage of a quasi-isotropic laminate using EST publication-title: Compos Struct doi: 10.1016/j.compstruct.2020.112530 – volume: 94 start-page: 2902 issue: 9 year: 2012 ident: 10.1016/j.compstruct.2022.115278_b12 article-title: Modelling damage evolution in composite laminates subjected to low velocity impact publication-title: Compos Struct doi: 10.1016/j.compstruct.2012.03.039 – year: 2006 ident: 10.1016/j.compstruct.2022.115278_b49 – year: 1943 ident: 10.1016/j.compstruct.2022.115278_b47 article-title: Description of stress–strain curves by three parameters publication-title: Natl Advis Comm Aeronaut – volume: 81 start-page: 1 year: 2016 ident: 10.1016/j.compstruct.2022.115278_b58 article-title: Measuring the rate-dependent mode I fracture toughness of composites – A review publication-title: Composites A doi: 10.1016/j.compositesa.2015.10.033 – volume: 95 start-page: 63 year: 2013 ident: 10.1016/j.compstruct.2022.115278_b35 article-title: Three-dimensional failure criteria for fiber-reinforced laminates publication-title: Compos Struct doi: 10.1016/j.compstruct.2012.07.016 – volume: 149 start-page: 408 year: 2016 ident: 10.1016/j.compstruct.2022.115278_b21 article-title: Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact publication-title: Compos Struct doi: 10.1016/j.compstruct.2016.04.012 – volume: 145 year: 2021 ident: 10.1016/j.compstruct.2022.115278_b16 article-title: The effect of stacking sequence on the LVI damage of laminated composites; experiments and analysis publication-title: Composites A doi: 10.1016/j.compositesa.2021.106377 – volume: 72 start-page: 1977 issue: 16 year: 2012 ident: 10.1016/j.compstruct.2022.115278_b11 article-title: Low velocity impact modeling in composite laminates capturing permanent indentation publication-title: Composites Sci Technol doi: 10.1016/j.compscitech.2012.08.019 – volume: 106 start-page: 549 year: 2013 ident: 10.1016/j.compstruct.2022.115278_b13 article-title: Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure publication-title: Compos Struct doi: 10.1016/j.compstruct.2013.07.008 – volume: 144 start-page: 230 year: 2018 ident: 10.1016/j.compstruct.2022.115278_b4 article-title: Simulating drop-weight impact and compression after impact tests on composite laminates using conventional shell finite elements publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2018.05.005 – volume: 42 start-page: 1004 issue: 11 year: 2010 ident: 10.1016/j.compstruct.2022.115278_b56 article-title: High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation publication-title: Mech Mater doi: 10.1016/j.mechmat.2010.09.003 – volume: 67 start-page: 3286 issue: 15 year: 2007 ident: 10.1016/j.compstruct.2022.115278_b40 article-title: Impact and compression after impact experimental study of a composite laminate with a cork thermal shield publication-title: Composites Sci Technol doi: 10.1016/j.compscitech.2007.03.032 – volume: 113 start-page: 166 year: 2018 ident: 10.1016/j.compstruct.2022.115278_b17 article-title: High fidelity simulation of low velocity impact behavior of CFRP laminate publication-title: Composites A doi: 10.1016/j.compositesa.2018.07.022 – volume: 39 start-page: 909 year: 2007 ident: 10.1016/j.compstruct.2022.115278_b48 article-title: A continuum damage model for composite laminates - part II: Computational implementation and validation publication-title: Mech Mater doi: 10.1016/j.mechmat.2007.03.006 – volume: 130 start-page: 85 year: 2015 ident: 10.1016/j.compstruct.2022.115278_b20 article-title: An efficient approach for predicting low-velocity impact force and damage in composite laminates publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.04.023 – volume: 37 start-page: 1415 year: 2003 ident: 10.1016/j.compstruct.2022.115278_b43 article-title: Numerical simulation of mixed-mode progressive delamination in composite materials publication-title: Composite Mater doi: 10.1177/0021998303034505 – year: 2011 ident: 10.1016/j.compstruct.2022.115278_b55 – volume: 55 start-page: 83 year: 2013 ident: 10.1016/j.compstruct.2022.115278_b14 article-title: Failure analysis of CFRP laminates subjected to compression after impact: FE simulation using discrete interface elements publication-title: Composites A doi: 10.1016/j.compositesa.2013.08.003 – volume: 156 year: 2020 ident: 10.1016/j.compstruct.2022.115278_b3 article-title: A stacked sublaminate-based damage-plasticity model for simulating progressive damage in composite laminates under impact loading publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2020.107009 – volume: 49 start-page: 1029 issue: 8 year: 2000 ident: 10.1016/j.compstruct.2022.115278_b53 article-title: A highly efficient enhanced assumed strain physically stabilized hexahedral element publication-title: Int J Numer Methods Eng doi: 10.1002/1097-0207(20001120)49:8<1029::AID-NME990>3.0.CO;2-3 – volume: 252 year: 2020 ident: 10.1016/j.compstruct.2022.115278_b28 article-title: A new interface element connecting 3D finite elements with non-coincident nodes to simulate delamination in composite laminates publication-title: Compos Struct doi: 10.1016/j.compstruct.2020.112694 – volume: 113 start-page: 369 year: 2014 ident: 10.1016/j.compstruct.2022.115278_b26 article-title: Discrete ply modelling of open hole tensile tests publication-title: Compos Struct doi: 10.1016/j.compstruct.2014.03.031 – year: 2003 ident: 10.1016/j.compstruct.2022.115278_b54 – volume: 125 start-page: 51 year: 2015 ident: 10.1016/j.compstruct.2022.115278_b19 article-title: Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.01.050 – volume: 94 start-page: 3364 issue: 11 year: 2012 ident: 10.1016/j.compstruct.2022.115278_b8 article-title: Simulation of drop-weight impact and compression after impact tests on composite laminates publication-title: Compos Struct doi: 10.1016/j.compstruct.2012.05.015 – volume: 39 start-page: 909 year: 2007 ident: 10.1016/j.compstruct.2022.115278_b46 article-title: A continuum damage model for composite laminates: Part II - computational implementation and validation publication-title: Mech Mater doi: 10.1016/j.mechmat.2007.03.006 – volume: 109 start-page: 413 year: 2018 ident: 10.1016/j.compstruct.2022.115278_b7 article-title: Low velocity impact and compression after impact simulation of thin ply laminates publication-title: Composites A doi: 10.1016/j.compositesa.2018.03.017 – start-page: 579 year: 2021 ident: 10.1016/j.compstruct.2022.115278_b29 article-title: 19 - Stochastic virtual testing laboratory for unidirectional composite coupons: from conventional to dispersed-ply laminates – year: 2012 ident: 10.1016/j.compstruct.2022.115278_b38 – volume: 67 start-page: 296 year: 2014 ident: 10.1016/j.compstruct.2022.115278_b23 article-title: Numerical study for the structural analysis of composite laminates subjected to low velocity impact publication-title: Composites B doi: 10.1016/j.compositesb.2014.07.011 – volume: 248 year: 2021 ident: 10.1016/j.compstruct.2022.115278_b32 article-title: A review of phase-field models, fundamentals and their applications to composite laminates publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2021.107705 – volume: 71 start-page: 805 issue: 6 year: 2011 ident: 10.1016/j.compstruct.2022.115278_b42 article-title: Effects of ply clustering in laminated composite plates under low-velocity impact loading publication-title: Composites Sci Technol doi: 10.1016/j.compscitech.2010.12.018 – year: 2000 ident: 10.1016/j.compstruct.2022.115278_b45 – volume: 190 start-page: 137 year: 2018 ident: 10.1016/j.compstruct.2022.115278_b2 article-title: Modelling and simulation methodology for unidirectional composite laminates in a virtual test lab framework publication-title: Compos Struct doi: 10.1016/j.compstruct.2018.02.016 – year: 2021 ident: 10.1016/j.compstruct.2022.115278_b50 article-title: On the importance of finite element mesh alignment along the fibre direction for modelling damage in fibre-reinforced polymer composite laminates publication-title: Compos Struct doi: 10.1016/j.compstruct.2021.114694 – year: 2005 ident: 10.1016/j.compstruct.2022.115278_b37 – volume: 69 start-page: 937 issue: 7–8 year: 2009 ident: 10.1016/j.compstruct.2022.115278_b5 article-title: Low-velocity impact damage on dispersed stacking sequence laminates. part II: Numerical simulations publication-title: Composites Sci Technol doi: 10.1016/j.compscitech.2009.02.015 – volume: 281 year: 2022 ident: 10.1016/j.compstruct.2022.115278_b30 article-title: Experimental and numerical evaluation of conduction welded thermoplastic composite joints publication-title: Compos Struct doi: 10.1016/j.compstruct.2021.114964 – volume: 86 start-page: 72 year: 2018 ident: 10.1016/j.compstruct.2022.115278_b6 article-title: Review and benchmark study on the analysis of low-velocity impact on composite laminates publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2017.12.019 – volume: 39 start-page: 897 year: 2007 ident: 10.1016/j.compstruct.2022.115278_b34 article-title: A continuum damage model for composite laminates: Part I - Constitutive model publication-title: Mech Mater doi: 10.1016/j.mechmat.2007.03.005 – volume: 225 year: 2019 ident: 10.1016/j.compstruct.2022.115278_b1 article-title: An efficient numerical approach to the prediction of laminate tolerance to barely visible impact damage publication-title: Compos Struct doi: 10.1016/j.compstruct.2019.111017 – year: 1999 ident: 10.1016/j.compstruct.2022.115278_b57 – volume: 46 start-page: 2809 issue: 14–15 year: 2009 ident: 10.1016/j.compstruct.2022.115278_b10 article-title: Low velocity impact modelling in laminate composite panels with discrete interface elements publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2009.03.010 – volume: 71 start-page: 212 year: 2015 ident: 10.1016/j.compstruct.2022.115278_b9 article-title: Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates publication-title: Composites A doi: 10.1016/j.compositesa.2015.01.025 – volume: 16 start-page: 155 year: 1983 ident: 10.1016/j.compstruct.2022.115278_b36 article-title: Crack band theory for fracture of concrete publication-title: Mater Struct – year: 2013 ident: 10.1016/j.compstruct.2022.115278_b33 – volume: 109 start-page: 178 year: 2017 ident: 10.1016/j.compstruct.2022.115278_b25 article-title: Barely visible impact damage in scaled composite laminates: Experiments and numerical simulations publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2017.06.008 – volume: 38 start-page: 1072 issue: 11 year: 2006 ident: 10.1016/j.compstruct.2022.115278_b44 article-title: A damage model for the simulation of delamination in advanced composites under variable-mode loading publication-title: Mech Mater doi: 10.1016/j.mechmat.2005.10.003 – year: 1988 ident: 10.1016/j.compstruct.2022.115278_b39 – volume: 24 start-page: 1459 issue: 6 year: 2017 ident: 10.1016/j.compstruct.2022.115278_b31 article-title: Simulation of low velocity impact induced inter- and intra-laminar damage of composite beams based on XFEM publication-title: Appl Compos Mater doi: 10.1007/s10443-017-9598-4 – volume: 32 start-page: 1207 issue: 9 year: 2001 ident: 10.1016/j.compstruct.2022.115278_b41 article-title: Analytical prediction of large mass impact damage in composite laminates publication-title: Composites A doi: 10.1016/S1359-835X(01)00073-2 – volume: 55 start-page: 39 issue: 1 year: 2021 ident: 10.1016/j.compstruct.2022.115278_b22 article-title: A multi-stage material model calibration procedure for enhancing numerical solution fidelity in the case of impact loading of composites publication-title: J Composite Mater doi: 10.1177/0021998320944992 – volume: 201 start-page: 995 year: 2018 ident: 10.1016/j.compstruct.2022.115278_b59 article-title: A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates publication-title: Compos Struct doi: 10.1016/j.compstruct.2018.06.046 – volume: 92 start-page: 3 year: 2016 ident: 10.1016/j.compstruct.2022.115278_b27 article-title: Physically-sound simulation of low-velocity impact on fibre reinforced laminates publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2015.05.014 |
| SSID | ssj0008411 |
| Score | 2.6151867 |
| Snippet | The capability to accurately analyse the response of multi-directional composite laminates during impact events is of high importance for the design of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 115278 |
| SubjectTerms | Carbon fibre reinforced polymer Computational modelling Finite Element Analysis (FEA) Impact behaviour |
| Title | Experimental analysis and simulation of low-velocity impact damage of composite laminates |
| URI | https://dx.doi.org/10.1016/j.compstruct.2022.115278 |
| Volume | 287 |
| WOSCitedRecordID | wos000770659400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008411 issn: 0263-8223 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpu4f2YexW2q4dethbsbEtX2T61CUZ2xhdoR1kT0aWFEhJ7NB7__3OiWRFG4F2g744Ro7kOOfLOZ-UT-cQ8hFIuILAUwdjeIEJiqqDEnxloFKuMlSOc5My_3txcsJHo_K013vo9sLcToum4ff35fxZTQ1tYGzcOvsP5naDQgOcg9HhCGaH45MMP_Rz9osu58hifXwys8W6kCJO27sABUMSebjdLKnETJhVBJSao55LHwJkJg0yUp_H9t1lk4D25tLbSCKmEv9__8TQfj9Cp_lp58Yn9cMz13jWzmz9lkE4dK0oU7FbwQahvzABc1onA7T-K8lZAPyD-c42seHVuMsYi-rylZ7cLCpcoCHm5klCvEm47PJn8uy_gpqTGnYqtotqOVKFI1VmpDWykRRZCQ5x4_jrcPTNhXGeLoo3u6ewMjAjDlz9qVZzG4-vnL8iL-1Egx4bgLwmPd28IVte-sm35JcPFdpBBU4UXUKFtmPqQ4UaqFADFbzqoEIdVN6Rn5-H5_0vgS21EUhw6teBlEWsgC5qIVgicsaAmQuYyiqV6TqK65qrcR2JSOeS5TADhvAKNCZjURrzPBMl2ybrTdvoHUJrVchYF1zzSKVxmQqlEx3XKiryTAO73SVF9yVV0uahx3Io0-oxU-2S2PWcm1wsT-hz1NmhspzScMUKgPZo773_uON7srn8NeyTdXiDPiAv5O315Oryg0XZb8jAnxQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+analysis+and+simulation+of+low-velocity+impact+damage+of+composite+laminates&rft.jtitle=Composite+structures&rft.au=Falc%C3%B3%2C+O.&rft.au=Lopes%2C+C.S.&rft.au=Sommer%2C+D.E.&rft.au=Thomson%2C+D.&rft.date=2022-05-01&rft.issn=0263-8223&rft.volume=287&rft.spage=115278&rft_id=info:doi/10.1016%2Fj.compstruct.2022.115278&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compstruct_2022_115278 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon |