Experimental analysis and simulation of low-velocity impact damage of composite laminates

The capability to accurately analyse the response of multi-directional composite laminates during impact events is of high importance for the design of lightweight aircraft structures. In this work, both experimental and numerical analyses are performed covering a large design-space of laminates for...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures Vol. 287; p. 115278
Main Authors: Falcó, O., Lopes, C.S., Sommer, D.E., Thomson, D., Ávila, R.L., Tijs, B.H.A.H.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.05.2022
Subjects:
ISSN:0263-8223, 1879-1085
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The capability to accurately analyse the response of multi-directional composite laminates during impact events is of high importance for the design of lightweight aircraft structures. In this work, both experimental and numerical analyses are performed covering a large design-space of laminates for all aspects from on-set of damage and barely visible impact damage up to clearly visible impact damage and full penetration of the laminates. The impact tests are simulated using a sophisticated three-dimensional continuum damage model, combined with an automated meso-scale model generation algorithm for ply-by-ply, material/fibre-aligned meshing of laminated composite coupons. To assess the accuracy of the predictions, an extensive validation test program of several configurations and impact energies has been performed, thus demonstrating that the simulations are capable of accurately predicting the damage and failure mechanisms under low-velocity impact loading. Not only the evolution of impact loads and energy dissipated are numerically analysed, but the competition of the dominant failure mechanisms from low impact energy and full penetration cases are also macroscopically replicated.
AbstractList The capability to accurately analyse the response of multi-directional composite laminates during impact events is of high importance for the design of lightweight aircraft structures. In this work, both experimental and numerical analyses are performed covering a large design-space of laminates for all aspects from on-set of damage and barely visible impact damage up to clearly visible impact damage and full penetration of the laminates. The impact tests are simulated using a sophisticated three-dimensional continuum damage model, combined with an automated meso-scale model generation algorithm for ply-by-ply, material/fibre-aligned meshing of laminated composite coupons. To assess the accuracy of the predictions, an extensive validation test program of several configurations and impact energies has been performed, thus demonstrating that the simulations are capable of accurately predicting the damage and failure mechanisms under low-velocity impact loading. Not only the evolution of impact loads and energy dissipated are numerically analysed, but the competition of the dominant failure mechanisms from low impact energy and full penetration cases are also macroscopically replicated.
ArticleNumber 115278
Author Falcó, O.
Thomson, D.
Ávila, R.L.
Tijs, B.H.A.H.
Lopes, C.S.
Sommer, D.E.
Author_xml – sequence: 1
  givenname: O.
  orcidid: 0000-0002-6671-1505
  surname: Falcó
  fullname: Falcó, O.
  email: olben.falcosalcines@eng.ox.ac.uk
  organization: Department of Engineering Science, University of Oxford, Oxford, United Kingdom
– sequence: 2
  givenname: C.S.
  surname: Lopes
  fullname: Lopes, C.S.
  organization: IMDEA Materials — Madrid Institute for Advanced Studies of Materials, Tecnogetafe, Madrid, Spain
– sequence: 3
  givenname: D.E.
  orcidid: 0000-0001-8577-6104
  surname: Sommer
  fullname: Sommer, D.E.
  organization: Department of Engineering Science, University of Oxford, Oxford, United Kingdom
– sequence: 4
  givenname: D.
  surname: Thomson
  fullname: Thomson, D.
  organization: Department of Engineering Science, University of Oxford, Oxford, United Kingdom
– sequence: 5
  givenname: R.L.
  surname: Ávila
  fullname: Ávila, R.L.
  organization: Autonomous University of Coahuila, Saltillo, Mexico
– sequence: 6
  givenname: B.H.A.H.
  orcidid: 0000-0002-5506-1180
  surname: Tijs
  fullname: Tijs, B.H.A.H.
  email: bas.tijs@fokker.com
  organization: GKN Aerospace: Fokker, Papendrecht, The Netherlands
BookMark eNqNkM9Kw0AQhxepYFt9h32BxNlsk2wugpb6Bwpe9OApTHYnsiXJhuxW7dubWEHwoqcZmJmP-X4LNutcR4xxAbEAkV3uYu3a3odhr0OcQJLEQqRJrk7YXKi8iASodMbmkGQyUkkiz9jC-x0AqJUQc_ay-ehpsC11ARuOHTYHb_3YGO5tu28wWNdxV_PGvUdv1Dhtw4HbtkcduMEWX2maTj84bwPxBlvbYSB_zk5rbDxdfNcle77dPK3vo-3j3cP6ehtpKVSItM6FAcgJUSaYSQlKospTY1KqQFSVMnUFCJRpmWWQrrK8KCCVsBIqS7GQS6aOXD047weqy370weFQCiiniMpd-RNROUVUHiMaT69-nY52X8ZhQNv8B3BzBNAo-GZpKL221GkydqBx1zj7N-QT5UqN4w
CitedBy_id crossref_primary_10_1016_j_compositesa_2023_107456
crossref_primary_10_1016_j_compositesa_2023_107974
crossref_primary_10_1177_00219983251319085
crossref_primary_10_1016_j_ndteint_2024_103238
crossref_primary_10_1016_j_compstruct_2024_118345
crossref_primary_10_1177_07316844241239468
crossref_primary_10_1016_j_compositesb_2025_112969
crossref_primary_10_1002_pc_30103
crossref_primary_10_1007_s11668_025_02113_x
crossref_primary_10_1016_j_compscitech_2023_109917
crossref_primary_10_1016_j_tws_2025_112963
crossref_primary_10_1002_pc_29233
crossref_primary_10_1177_00219983241228387
crossref_primary_10_1002_pc_29352
crossref_primary_10_1016_j_compstruct_2023_117253
crossref_primary_10_3390_ma16093442
crossref_primary_10_1109_JSEN_2025_3543362
crossref_primary_10_1002_pc_27810
crossref_primary_10_1016_j_ijmecsci_2024_109762
crossref_primary_10_3390_polym17070891
crossref_primary_10_3390_en15196927
crossref_primary_10_1002_pc_70198
crossref_primary_10_3390_sym17040570
crossref_primary_10_1109_TIM_2023_3268447
crossref_primary_10_1177_00219983241292788
crossref_primary_10_1016_j_compstruct_2024_118238
crossref_primary_10_1002_pc_29070
crossref_primary_10_3390_ma15196636
crossref_primary_10_1080_09349847_2024_2395585
crossref_primary_10_1002_pc_29740
crossref_primary_10_1016_j_euromechsol_2022_104748
crossref_primary_10_1080_15376494_2025_2477808
crossref_primary_10_1002_pc_28412
crossref_primary_10_1016_j_compstruct_2022_116372
crossref_primary_10_1016_j_polymertesting_2025_108878
crossref_primary_10_1002_pc_70073
crossref_primary_10_3390_polym15040840
crossref_primary_10_1016_j_tws_2023_111360
crossref_primary_10_1016_j_compositesb_2025_112708
crossref_primary_10_1016_j_coco_2024_101838
crossref_primary_10_1080_15376494_2025_2516215
crossref_primary_10_1016_j_compositesa_2023_107712
crossref_primary_10_1080_00218464_2024_2410329
crossref_primary_10_1016_j_compstruct_2024_118685
crossref_primary_10_1016_j_compstruct_2025_119534
crossref_primary_10_1177_00219983241292777
crossref_primary_10_1016_j_compositesa_2023_108002
crossref_primary_10_1016_j_ijsolstr_2023_112449
crossref_primary_10_1016_j_compositesa_2022_107033
crossref_primary_10_1080_17686733_2025_2535166
crossref_primary_10_1016_j_compstruct_2023_116821
crossref_primary_10_1177_00219983221096888
crossref_primary_10_1002_pc_26983
crossref_primary_10_1016_j_ijimpeng_2025_105434
crossref_primary_10_1016_j_jcomc_2025_100603
crossref_primary_10_1111_str_12464
crossref_primary_10_1177_08927057251355147
crossref_primary_10_1016_j_conbuildmat_2024_138083
crossref_primary_10_1016_j_compstruct_2025_119121
crossref_primary_10_1016_j_compositesa_2023_107960
crossref_primary_10_1016_j_ijimpeng_2023_104510
crossref_primary_10_3390_ma15248822
crossref_primary_10_1016_j_compscitech_2025_111212
crossref_primary_10_1155_je_5102865
crossref_primary_10_1515_rams_2024_0003
crossref_primary_10_1002_app_57356
crossref_primary_10_1016_j_actaastro_2024_08_043
crossref_primary_10_1016_j_compositesb_2024_111786
crossref_primary_10_1016_j_compstruct_2025_118875
crossref_primary_10_1177_08927057231216741
crossref_primary_10_1177_00219983251368300
crossref_primary_10_3390_ma15155256
crossref_primary_10_1016_j_compositesa_2022_107263
crossref_primary_10_1016_j_compositesb_2024_111503
crossref_primary_10_1016_j_compstruct_2024_118726
crossref_primary_10_1016_j_ast_2023_108819
crossref_primary_10_1007_s11223_024_00677_x
crossref_primary_10_1002_pc_29128
crossref_primary_10_1016_j_ijmecsci_2023_108248
crossref_primary_10_1016_j_ijengsci_2024_104125
crossref_primary_10_1007_s42496_023_00170_9
crossref_primary_10_3390_ma18081833
crossref_primary_10_1007_s42405_025_00968_w
Cites_doi 10.1016/j.compstruct.2013.09.004
10.1016/j.ijimpeng.2020.103701
10.1016/j.compstruct.2015.09.062
10.1016/j.compstruct.2020.112530
10.1016/j.compstruct.2012.03.039
10.1016/j.compositesa.2015.10.033
10.1016/j.compstruct.2012.07.016
10.1016/j.compstruct.2016.04.012
10.1016/j.compositesa.2021.106377
10.1016/j.compscitech.2012.08.019
10.1016/j.compstruct.2013.07.008
10.1016/j.ijsolstr.2018.05.005
10.1016/j.mechmat.2010.09.003
10.1016/j.compscitech.2007.03.032
10.1016/j.compositesa.2018.07.022
10.1016/j.mechmat.2007.03.006
10.1016/j.compstruct.2015.04.023
10.1177/0021998303034505
10.1016/j.compositesa.2013.08.003
10.1016/j.tws.2020.107009
10.1002/1097-0207(20001120)49:8<1029::AID-NME990>3.0.CO;2-3
10.1016/j.compstruct.2020.112694
10.1016/j.compstruct.2014.03.031
10.1016/j.compstruct.2015.01.050
10.1016/j.compstruct.2012.05.015
10.1016/j.compositesa.2018.03.017
10.1016/j.compositesb.2014.07.011
10.1016/j.engfracmech.2021.107705
10.1016/j.compscitech.2010.12.018
10.1016/j.compstruct.2018.02.016
10.1016/j.compstruct.2021.114694
10.1016/j.compscitech.2009.02.015
10.1016/j.compstruct.2021.114964
10.1016/j.engfailanal.2017.12.019
10.1016/j.mechmat.2007.03.005
10.1016/j.compstruct.2019.111017
10.1016/j.ijsolstr.2009.03.010
10.1016/j.compositesa.2015.01.025
10.1016/j.ijimpeng.2017.06.008
10.1016/j.mechmat.2005.10.003
10.1007/s10443-017-9598-4
10.1016/S1359-835X(01)00073-2
10.1177/0021998320944992
10.1016/j.compstruct.2018.06.046
10.1016/j.ijimpeng.2015.05.014
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compstruct.2022.115278
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1085
ExternalDocumentID 10_1016_j_compstruct_2022_115278
S0263822322000885
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SMS
WUQ
~HD
ID FETCH-LOGICAL-c318t-cc71d007eaa32a633083a875dd5eb01bb8dfb0a0e6c3660546799053041865a93
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000770659400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-8223
IngestDate Tue Nov 18 21:51:32 EST 2025
Sat Nov 29 07:22:07 EST 2025
Fri Feb 23 02:40:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Impact behaviour
Carbon fibre reinforced polymer
Finite Element Analysis (FEA)
Computational modelling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-cc71d007eaa32a633083a875dd5eb01bb8dfb0a0e6c3660546799053041865a93
ORCID 0000-0002-6671-1505
0000-0001-8577-6104
0000-0002-5506-1180
ParticipantIDs crossref_primary_10_1016_j_compstruct_2022_115278
crossref_citationtrail_10_1016_j_compstruct_2022_115278
elsevier_sciencedirect_doi_10_1016_j_compstruct_2022_115278
PublicationCentury 2000
PublicationDate 2022-05-01
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Composite structures
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Zhang (b19) 2015; 125
Zhang, Zhang (b20) 2015; 130
Garijo, Martínez, Lopes, Llorca, González, Puente, Loya (b52) 2018
Maimí (b49) 2006
Trellu, Bouvet, Rivallant, Ratsifandrihana (b28) 2020; 252
Lin, Waas (b16) 2021; 145
Maimí, Camanho, Mayugo, Dávila (b46) 2007; 39
Lin, Thorsson, Waas (b15) 2020; 251
Sun, Hallett (b25) 2017; 109
Wang, Zhao, Hong, Zhang (b59) 2018; 201
Bouvet, Castanié, Bizeul, Barrau (b10) 2009; 46
Caputo, De Luca, Lamanna, Borrelli, Mercurio (b23) 2014; 67
(b33) 2013
Tijs, Doldersum, Turon, Waleson, Bisagni (b30) 2022; 281
Achard, Bouvet, Castanié, Chirol (b26) 2014; 113
DOT/FAA/AR-02/109 (b54) 2003
Koerber, Xavier, Camanho (b56) 2010; 42
Olsson (b41) 2001; 32
Tan, Falzon, Chiu, Price (b9) 2015; 71
May (b58) 2016; 81
González, Maimí, Martín-Santos, Soto, Cruz, De La Escalera, de Aja (b4) 2018; 144
Bui, Hu (b32) 2021; 248
Camanho, Dávila, de Moura (b43) 2003; 37
NCAMP (b55) 2011
Lopes, Gómez, Falcó, Tijs (b29) 2021
Hongkarnjanakul, Bouvet, Rivallant (b13) 2013; 106
ASTM (b38) 2012
Soto, González, Maimí, n de la Escalera, Sainz de Aja, Alvarez (b7) 2018; 109
Lopes, Sádaba, González, Llorca, Camanho (b27) 2016; 92
Falcó, Ávila, Tijs, Lopes (b2) 2018; 190
Catalanotti, Camanho, Marques (b35) 2013; 95
Turon, Camanho, Costa, Dávila (b44) 2006; 38
Rajaneesh, Ponthot, Bruyneel (b51) 2021; 147
González, Camanho, Lopes, Blanco (b42) 2011; 71
Liu, Liao, Jia, Peng (b21) 2016; 149
Bažant, Oh (b36) 1983; 16
Lopes, Camanho, Gürdal, Maimí, González (b5) 2009; 69
Giannaros, Kotzakolios, Sotiriadis, Kostopoulos (b22) 2021; 55
BSS-7260 (b39) 1988
Puso (b53) 2000; 49
Baluch, Falcó, Jiménez, Tijs, Lopes (b1) 2019; 225
Maimí, Camanho, Mayugo, Dávila (b48) 2007; 39
Ramberg, Osgood (b47) 1943
Reiner, Zobeiry, Vaziri (b3) 2020; 156
Petit, Bouvet, Bergerot, Barrau (b40) 2007; 67
ASTM (b45) 2000
Millen, Ullah, Falzon (b50) 2021
González, Maimí, Camanho, Turon, Mayugo (b8) 2012; 94
AITM 1-0010 (b37) 2005
Cantwell, Blyton (b57) 1999
Rivallant, Bouvet, Hongkarnjanakul (b14) 2013; 55
Maimí, Camanho, Mayugo, Dávila (b34) 2007; 39
Bouvet, Rivallant, Barrau (b11) 2012; 72
Feng, Aymerich (b18) 2014; 108
Sun, Guan, Li (b31) 2017; 24
Ebina, Yoshimura, Sakaue, Waas (b17) 2018; 113
Sun, Wisnom, Hallett (b24) 2016; 136
Bogenfeld, Kreikemeier, Wille (b6) 2018; 86
Shi, Swait, Soutis (b12) 2012; 94
Ramberg (10.1016/j.compstruct.2022.115278_b47) 1943
ASTM (10.1016/j.compstruct.2022.115278_b38) 2012
Sun (10.1016/j.compstruct.2022.115278_b25) 2017; 109
AITM 1-0010 (10.1016/j.compstruct.2022.115278_b37) 2005
González (10.1016/j.compstruct.2022.115278_b42) 2011; 71
Giannaros (10.1016/j.compstruct.2022.115278_b22) 2021; 55
Maimí (10.1016/j.compstruct.2022.115278_b46) 2007; 39
Bažant (10.1016/j.compstruct.2022.115278_b36) 1983; 16
NCAMP (10.1016/j.compstruct.2022.115278_b55) 2011
Millen (10.1016/j.compstruct.2022.115278_b50) 2021
Puso (10.1016/j.compstruct.2022.115278_b53) 2000; 49
(10.1016/j.compstruct.2022.115278_b33) 2013
Reiner (10.1016/j.compstruct.2022.115278_b3) 2020; 156
Camanho (10.1016/j.compstruct.2022.115278_b43) 2003; 37
BSS-7260 (10.1016/j.compstruct.2022.115278_b39) 1988
Maimí (10.1016/j.compstruct.2022.115278_b48) 2007; 39
Falcó (10.1016/j.compstruct.2022.115278_b2) 2018; 190
ASTM (10.1016/j.compstruct.2022.115278_b45) 2000
Feng (10.1016/j.compstruct.2022.115278_b18) 2014; 108
Maimí (10.1016/j.compstruct.2022.115278_b49) 2006
Achard (10.1016/j.compstruct.2022.115278_b26) 2014; 113
Rivallant (10.1016/j.compstruct.2022.115278_b14) 2013; 55
Sun (10.1016/j.compstruct.2022.115278_b31) 2017; 24
Olsson (10.1016/j.compstruct.2022.115278_b41) 2001; 32
Liu (10.1016/j.compstruct.2022.115278_b21) 2016; 149
Soto (10.1016/j.compstruct.2022.115278_b7) 2018; 109
Trellu (10.1016/j.compstruct.2022.115278_b28) 2020; 252
Hongkarnjanakul (10.1016/j.compstruct.2022.115278_b13) 2013; 106
Tijs (10.1016/j.compstruct.2022.115278_b30) 2022; 281
Shi (10.1016/j.compstruct.2022.115278_b12) 2012; 94
Caputo (10.1016/j.compstruct.2022.115278_b23) 2014; 67
Sun (10.1016/j.compstruct.2022.115278_b24) 2016; 136
Garijo (10.1016/j.compstruct.2022.115278_b52) 2018
González (10.1016/j.compstruct.2022.115278_b8) 2012; 94
Lopes (10.1016/j.compstruct.2022.115278_b5) 2009; 69
Ebina (10.1016/j.compstruct.2022.115278_b17) 2018; 113
Bouvet (10.1016/j.compstruct.2022.115278_b11) 2012; 72
DOT/FAA/AR-02/109 (10.1016/j.compstruct.2022.115278_b54) 2003
Bui (10.1016/j.compstruct.2022.115278_b32) 2021; 248
Lin (10.1016/j.compstruct.2022.115278_b15) 2020; 251
Lin (10.1016/j.compstruct.2022.115278_b16) 2021; 145
Zhang (10.1016/j.compstruct.2022.115278_b19) 2015; 125
Zhang (10.1016/j.compstruct.2022.115278_b20) 2015; 130
Lopes (10.1016/j.compstruct.2022.115278_b27) 2016; 92
Koerber (10.1016/j.compstruct.2022.115278_b56) 2010; 42
Petit (10.1016/j.compstruct.2022.115278_b40) 2007; 67
Baluch (10.1016/j.compstruct.2022.115278_b1) 2019; 225
Wang (10.1016/j.compstruct.2022.115278_b59) 2018; 201
Tan (10.1016/j.compstruct.2022.115278_b9) 2015; 71
Maimí (10.1016/j.compstruct.2022.115278_b34) 2007; 39
Rajaneesh (10.1016/j.compstruct.2022.115278_b51) 2021; 147
May (10.1016/j.compstruct.2022.115278_b58) 2016; 81
Cantwell (10.1016/j.compstruct.2022.115278_b57) 1999
Bogenfeld (10.1016/j.compstruct.2022.115278_b6) 2018; 86
Catalanotti (10.1016/j.compstruct.2022.115278_b35) 2013; 95
Turon (10.1016/j.compstruct.2022.115278_b44) 2006; 38
Lopes (10.1016/j.compstruct.2022.115278_b29) 2021
Bouvet (10.1016/j.compstruct.2022.115278_b10) 2009; 46
González (10.1016/j.compstruct.2022.115278_b4) 2018; 144
References_xml – volume: 37
  start-page: 1415
  year: 2003
  end-page: 1438
  ident: b43
  article-title: Numerical simulation of mixed-mode progressive delamination in composite materials
  publication-title: Composite Mater
– volume: 67
  start-page: 296
  year: 2014
  end-page: 302
  ident: b23
  article-title: Numerical study for the structural analysis of composite laminates subjected to low velocity impact
  publication-title: Composites B
– volume: 95
  start-page: 63
  year: 2013
  end-page: 79
  ident: b35
  article-title: Three-dimensional failure criteria for fiber-reinforced laminates
  publication-title: Compos Struct
– volume: 69
  start-page: 937
  year: 2009
  end-page: 947
  ident: b5
  article-title: Low-velocity impact damage on dispersed stacking sequence laminates. part II: Numerical simulations
  publication-title: Composites Sci Technol
– volume: 94
  start-page: 2902
  year: 2012
  end-page: 2913
  ident: b12
  article-title: Modelling damage evolution in composite laminates subjected to low velocity impact
  publication-title: Compos Struct
– year: 2000
  ident: b45
  article-title: Standard test method for short-beam strength of polymer matrix composite materials and their laminates
– volume: 130
  start-page: 85
  year: 2015
  end-page: 94
  ident: b20
  article-title: An efficient approach for predicting low-velocity impact force and damage in composite laminates
  publication-title: Compos Struct
– volume: 149
  start-page: 408
  year: 2016
  end-page: 422
  ident: b21
  article-title: Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact
  publication-title: Compos Struct
– volume: 39
  start-page: 909
  year: 2007
  end-page: 919
  ident: b48
  article-title: A continuum damage model for composite laminates - part II: Computational implementation and validation
  publication-title: Mech Mater
– year: 1943
  ident: b47
  article-title: Description of stress–strain curves by three parameters
  publication-title: Natl Advis Comm Aeronaut
– start-page: 579
  year: 2021
  end-page: 607
  ident: b29
  article-title: 19 - Stochastic virtual testing laboratory for unidirectional composite coupons: from conventional to dispersed-ply laminates
  publication-title: Multi-scale continuum mechanics modelling of fibre-reinforced polymer composites
– volume: 72
  start-page: 1977
  year: 2012
  end-page: 1988
  ident: b11
  article-title: Low velocity impact modeling in composite laminates capturing permanent indentation
  publication-title: Composites Sci Technol
– volume: 136
  start-page: 727
  year: 2016
  end-page: 742
  ident: b24
  article-title: Interaction of inter- and intralaminar damage in scaled quasi-static indentation tests: Part 2 – numerical simulation
  publication-title: Compos Struct
– volume: 39
  start-page: 897
  year: 2007
  end-page: 908
  ident: b34
  article-title: A continuum damage model for composite laminates: Part I - Constitutive model
  publication-title: Mech Mater
– volume: 94
  start-page: 3364
  year: 2012
  end-page: 3378
  ident: b8
  article-title: Simulation of drop-weight impact and compression after impact tests on composite laminates
  publication-title: Compos Struct
– year: 2011
  ident: b55
  article-title: Hexcel 8552 AS4 unidirectional prepeg qualification statical analysis report
– volume: 55
  start-page: 39
  year: 2021
  end-page: 56
  ident: b22
  article-title: A multi-stage material model calibration procedure for enhancing numerical solution fidelity in the case of impact loading of composites
  publication-title: J Composite Mater
– volume: 39
  start-page: 909
  year: 2007
  end-page: 919
  ident: b46
  article-title: A continuum damage model for composite laminates: Part II - computational implementation and validation
  publication-title: Mech Mater
– year: 1988
  ident: b39
  article-title: Boeing specification support standard. determination of compression strength after impact
– volume: 106
  start-page: 549
  year: 2013
  end-page: 559
  ident: b13
  article-title: Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure
  publication-title: Compos Struct
– volume: 109
  start-page: 178
  year: 2017
  end-page: 195
  ident: b25
  article-title: Barely visible impact damage in scaled composite laminates: Experiments and numerical simulations
  publication-title: Int J Impact Eng
– volume: 16
  start-page: 155
  year: 1983
  end-page: 177
  ident: b36
  article-title: Crack band theory for fracture of concrete
  publication-title: Mater Struct
– volume: 252
  year: 2020
  ident: b28
  article-title: A new interface element connecting 3D finite elements with non-coincident nodes to simulate delamination in composite laminates
  publication-title: Compos Struct
– volume: 24
  start-page: 1459
  year: 2017
  end-page: 1477
  ident: b31
  article-title: Simulation of low velocity impact induced inter- and intra-laminar damage of composite beams based on XFEM
  publication-title: Appl Compos Mater
– volume: 281
  year: 2022
  ident: b30
  article-title: Experimental and numerical evaluation of conduction welded thermoplastic composite joints
  publication-title: Compos Struct
– volume: 81
  start-page: 1
  year: 2016
  end-page: 12
  ident: b58
  article-title: Measuring the rate-dependent mode I fracture toughness of composites – A review
  publication-title: Composites A
– volume: 147
  year: 2021
  ident: b51
  article-title: High velocity impact response of composite laminates using modified meso-scale damage models
  publication-title: Int J Impact Eng
– year: 2012
  ident: b38
  article-title: Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event
– volume: 125
  start-page: 51
  year: 2015
  end-page: 57
  ident: b19
  article-title: Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact
  publication-title: Compos Struct
– volume: 71
  start-page: 805
  year: 2011
  end-page: 817
  ident: b42
  article-title: Effects of ply clustering in laminated composite plates under low-velocity impact loading
  publication-title: Composites Sci Technol
– volume: 55
  start-page: 83
  year: 2013
  end-page: 93
  ident: b14
  article-title: Failure analysis of CFRP laminates subjected to compression after impact: FE simulation using discrete interface elements
  publication-title: Composites A
– volume: 32
  start-page: 1207
  year: 2001
  end-page: 1215
  ident: b41
  article-title: Analytical prediction of large mass impact damage in composite laminates
  publication-title: Composites A
– start-page: 219
  year: 2018
  end-page: 238
  ident: b52
  article-title: 8.12 Multiscale FE modelling and design of composite laminates under impact
  publication-title: Comprehensive composite materials II
– volume: 144
  start-page: 230
  year: 2018
  end-page: 247
  ident: b4
  article-title: Simulating drop-weight impact and compression after impact tests on composite laminates using conventional shell finite elements
  publication-title: Int J Solids Struct
– year: 2021
  ident: b50
  article-title: On the importance of finite element mesh alignment along the fibre direction for modelling damage in fibre-reinforced polymer composite laminates
  publication-title: Compos Struct
– volume: 46
  start-page: 2809
  year: 2009
  end-page: 2821
  ident: b10
  article-title: Low velocity impact modelling in laminate composite panels with discrete interface elements
  publication-title: Int J Solids Struct
– volume: 67
  start-page: 3286
  year: 2007
  end-page: 3299
  ident: b40
  article-title: Impact and compression after impact experimental study of a composite laminate with a cork thermal shield
  publication-title: Composites Sci Technol
– volume: 49
  start-page: 1029
  year: 2000
  end-page: 1064
  ident: b53
  article-title: A highly efficient enhanced assumed strain physically stabilized hexahedral element
  publication-title: Int J Numer Methods Eng
– volume: 248
  year: 2021
  ident: b32
  article-title: A review of phase-field models, fundamentals and their applications to composite laminates
  publication-title: Eng Fract Mech
– volume: 38
  start-page: 1072
  year: 2006
  end-page: 1089
  ident: b44
  article-title: A damage model for the simulation of delamination in advanced composites under variable-mode loading
  publication-title: Mech Mater
– volume: 190
  start-page: 137
  year: 2018
  end-page: 159
  ident: b2
  article-title: Modelling and simulation methodology for unidirectional composite laminates in a virtual test lab framework
  publication-title: Compos Struct
– volume: 251
  year: 2020
  ident: b15
  article-title: Predicting the low velocity impact damage of a quasi-isotropic laminate using EST
  publication-title: Compos Struct
– volume: 71
  start-page: 212
  year: 2015
  end-page: 226
  ident: b9
  article-title: Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates
  publication-title: Composites A
– year: 1999
  ident: b57
  article-title: Influence of loading rate on the interlaminar fracture properties of high performance composites-a review
– year: 2003
  ident: b54
  article-title: Guidelines and recommended criteria for the development of a material specification for carbon fiber/epoxy unidirectional prepregs
– volume: 113
  start-page: 369
  year: 2014
  end-page: 381
  ident: b26
  article-title: Discrete ply modelling of open hole tensile tests
  publication-title: Compos Struct
– year: 2005
  ident: b37
  article-title: Determination of compression strength after impact
– year: 2013
  ident: b33
  article-title: ABAQUS version 6.14 online documentation, Analysis user’s manual
– volume: 225
  year: 2019
  ident: b1
  article-title: An efficient numerical approach to the prediction of laminate tolerance to barely visible impact damage
  publication-title: Compos Struct
– volume: 109
  start-page: 413
  year: 2018
  end-page: 427
  ident: b7
  article-title: Low velocity impact and compression after impact simulation of thin ply laminates
  publication-title: Composites A
– volume: 201
  start-page: 995
  year: 2018
  end-page: 1003
  ident: b59
  article-title: A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates
  publication-title: Compos Struct
– volume: 86
  start-page: 72
  year: 2018
  end-page: 99
  ident: b6
  article-title: Review and benchmark study on the analysis of low-velocity impact on composite laminates
  publication-title: Eng Fail Anal
– year: 2006
  ident: b49
  article-title: Modelización constitutiva y computacional del daño y la fractura de materiales compuestos
– volume: 42
  start-page: 1004
  year: 2010
  end-page: 1019
  ident: b56
  article-title: High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation
  publication-title: Mech Mater
– volume: 145
  year: 2021
  ident: b16
  article-title: The effect of stacking sequence on the LVI damage of laminated composites; experiments and analysis
  publication-title: Composites A
– volume: 113
  start-page: 166
  year: 2018
  end-page: 179
  ident: b17
  article-title: High fidelity simulation of low velocity impact behavior of CFRP laminate
  publication-title: Composites A
– volume: 108
  start-page: 161
  year: 2014
  end-page: 171
  ident: b18
  article-title: Finite element modelling of damage induced by low-velocity impact on composite laminates
  publication-title: Compos Struct
– volume: 156
  year: 2020
  ident: b3
  article-title: A stacked sublaminate-based damage-plasticity model for simulating progressive damage in composite laminates under impact loading
  publication-title: Thin-Walled Struct
– volume: 92
  start-page: 3
  year: 2016
  end-page: 17
  ident: b27
  article-title: Physically-sound simulation of low-velocity impact on fibre reinforced laminates
  publication-title: Int J Impact Eng
– volume: 108
  start-page: 161
  year: 2014
  ident: 10.1016/j.compstruct.2022.115278_b18
  article-title: Finite element modelling of damage induced by low-velocity impact on composite laminates
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2013.09.004
– volume: 147
  year: 2021
  ident: 10.1016/j.compstruct.2022.115278_b51
  article-title: High velocity impact response of composite laminates using modified meso-scale damage models
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2020.103701
– volume: 136
  start-page: 727
  year: 2016
  ident: 10.1016/j.compstruct.2022.115278_b24
  article-title: Interaction of inter- and intralaminar damage in scaled quasi-static indentation tests: Part 2 – numerical simulation
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.09.062
– start-page: 219
  year: 2018
  ident: 10.1016/j.compstruct.2022.115278_b52
  article-title: 8.12 Multiscale FE modelling and design of composite laminates under impact
– volume: 251
  year: 2020
  ident: 10.1016/j.compstruct.2022.115278_b15
  article-title: Predicting the low velocity impact damage of a quasi-isotropic laminate using EST
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.112530
– volume: 94
  start-page: 2902
  issue: 9
  year: 2012
  ident: 10.1016/j.compstruct.2022.115278_b12
  article-title: Modelling damage evolution in composite laminates subjected to low velocity impact
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2012.03.039
– year: 2006
  ident: 10.1016/j.compstruct.2022.115278_b49
– year: 1943
  ident: 10.1016/j.compstruct.2022.115278_b47
  article-title: Description of stress–strain curves by three parameters
  publication-title: Natl Advis Comm Aeronaut
– volume: 81
  start-page: 1
  year: 2016
  ident: 10.1016/j.compstruct.2022.115278_b58
  article-title: Measuring the rate-dependent mode I fracture toughness of composites – A review
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2015.10.033
– volume: 95
  start-page: 63
  year: 2013
  ident: 10.1016/j.compstruct.2022.115278_b35
  article-title: Three-dimensional failure criteria for fiber-reinforced laminates
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2012.07.016
– volume: 149
  start-page: 408
  year: 2016
  ident: 10.1016/j.compstruct.2022.115278_b21
  article-title: Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.04.012
– volume: 145
  year: 2021
  ident: 10.1016/j.compstruct.2022.115278_b16
  article-title: The effect of stacking sequence on the LVI damage of laminated composites; experiments and analysis
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2021.106377
– volume: 72
  start-page: 1977
  issue: 16
  year: 2012
  ident: 10.1016/j.compstruct.2022.115278_b11
  article-title: Low velocity impact modeling in composite laminates capturing permanent indentation
  publication-title: Composites Sci Technol
  doi: 10.1016/j.compscitech.2012.08.019
– volume: 106
  start-page: 549
  year: 2013
  ident: 10.1016/j.compstruct.2022.115278_b13
  article-title: Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2013.07.008
– volume: 144
  start-page: 230
  year: 2018
  ident: 10.1016/j.compstruct.2022.115278_b4
  article-title: Simulating drop-weight impact and compression after impact tests on composite laminates using conventional shell finite elements
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2018.05.005
– volume: 42
  start-page: 1004
  issue: 11
  year: 2010
  ident: 10.1016/j.compstruct.2022.115278_b56
  article-title: High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2010.09.003
– volume: 67
  start-page: 3286
  issue: 15
  year: 2007
  ident: 10.1016/j.compstruct.2022.115278_b40
  article-title: Impact and compression after impact experimental study of a composite laminate with a cork thermal shield
  publication-title: Composites Sci Technol
  doi: 10.1016/j.compscitech.2007.03.032
– volume: 113
  start-page: 166
  year: 2018
  ident: 10.1016/j.compstruct.2022.115278_b17
  article-title: High fidelity simulation of low velocity impact behavior of CFRP laminate
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2018.07.022
– volume: 39
  start-page: 909
  year: 2007
  ident: 10.1016/j.compstruct.2022.115278_b48
  article-title: A continuum damage model for composite laminates - part II: Computational implementation and validation
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2007.03.006
– volume: 130
  start-page: 85
  year: 2015
  ident: 10.1016/j.compstruct.2022.115278_b20
  article-title: An efficient approach for predicting low-velocity impact force and damage in composite laminates
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.04.023
– volume: 37
  start-page: 1415
  year: 2003
  ident: 10.1016/j.compstruct.2022.115278_b43
  article-title: Numerical simulation of mixed-mode progressive delamination in composite materials
  publication-title: Composite Mater
  doi: 10.1177/0021998303034505
– year: 2011
  ident: 10.1016/j.compstruct.2022.115278_b55
– volume: 55
  start-page: 83
  year: 2013
  ident: 10.1016/j.compstruct.2022.115278_b14
  article-title: Failure analysis of CFRP laminates subjected to compression after impact: FE simulation using discrete interface elements
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2013.08.003
– volume: 156
  year: 2020
  ident: 10.1016/j.compstruct.2022.115278_b3
  article-title: A stacked sublaminate-based damage-plasticity model for simulating progressive damage in composite laminates under impact loading
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2020.107009
– volume: 49
  start-page: 1029
  issue: 8
  year: 2000
  ident: 10.1016/j.compstruct.2022.115278_b53
  article-title: A highly efficient enhanced assumed strain physically stabilized hexahedral element
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/1097-0207(20001120)49:8<1029::AID-NME990>3.0.CO;2-3
– volume: 252
  year: 2020
  ident: 10.1016/j.compstruct.2022.115278_b28
  article-title: A new interface element connecting 3D finite elements with non-coincident nodes to simulate delamination in composite laminates
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.112694
– volume: 113
  start-page: 369
  year: 2014
  ident: 10.1016/j.compstruct.2022.115278_b26
  article-title: Discrete ply modelling of open hole tensile tests
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2014.03.031
– year: 2003
  ident: 10.1016/j.compstruct.2022.115278_b54
– volume: 125
  start-page: 51
  year: 2015
  ident: 10.1016/j.compstruct.2022.115278_b19
  article-title: Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.01.050
– volume: 94
  start-page: 3364
  issue: 11
  year: 2012
  ident: 10.1016/j.compstruct.2022.115278_b8
  article-title: Simulation of drop-weight impact and compression after impact tests on composite laminates
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2012.05.015
– volume: 39
  start-page: 909
  year: 2007
  ident: 10.1016/j.compstruct.2022.115278_b46
  article-title: A continuum damage model for composite laminates: Part II - computational implementation and validation
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2007.03.006
– volume: 109
  start-page: 413
  year: 2018
  ident: 10.1016/j.compstruct.2022.115278_b7
  article-title: Low velocity impact and compression after impact simulation of thin ply laminates
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2018.03.017
– start-page: 579
  year: 2021
  ident: 10.1016/j.compstruct.2022.115278_b29
  article-title: 19 - Stochastic virtual testing laboratory for unidirectional composite coupons: from conventional to dispersed-ply laminates
– year: 2012
  ident: 10.1016/j.compstruct.2022.115278_b38
– volume: 67
  start-page: 296
  year: 2014
  ident: 10.1016/j.compstruct.2022.115278_b23
  article-title: Numerical study for the structural analysis of composite laminates subjected to low velocity impact
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2014.07.011
– volume: 248
  year: 2021
  ident: 10.1016/j.compstruct.2022.115278_b32
  article-title: A review of phase-field models, fundamentals and their applications to composite laminates
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2021.107705
– volume: 71
  start-page: 805
  issue: 6
  year: 2011
  ident: 10.1016/j.compstruct.2022.115278_b42
  article-title: Effects of ply clustering in laminated composite plates under low-velocity impact loading
  publication-title: Composites Sci Technol
  doi: 10.1016/j.compscitech.2010.12.018
– year: 2000
  ident: 10.1016/j.compstruct.2022.115278_b45
– volume: 190
  start-page: 137
  year: 2018
  ident: 10.1016/j.compstruct.2022.115278_b2
  article-title: Modelling and simulation methodology for unidirectional composite laminates in a virtual test lab framework
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2018.02.016
– year: 2021
  ident: 10.1016/j.compstruct.2022.115278_b50
  article-title: On the importance of finite element mesh alignment along the fibre direction for modelling damage in fibre-reinforced polymer composite laminates
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2021.114694
– year: 2005
  ident: 10.1016/j.compstruct.2022.115278_b37
– volume: 69
  start-page: 937
  issue: 7–8
  year: 2009
  ident: 10.1016/j.compstruct.2022.115278_b5
  article-title: Low-velocity impact damage on dispersed stacking sequence laminates. part II: Numerical simulations
  publication-title: Composites Sci Technol
  doi: 10.1016/j.compscitech.2009.02.015
– volume: 281
  year: 2022
  ident: 10.1016/j.compstruct.2022.115278_b30
  article-title: Experimental and numerical evaluation of conduction welded thermoplastic composite joints
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2021.114964
– volume: 86
  start-page: 72
  year: 2018
  ident: 10.1016/j.compstruct.2022.115278_b6
  article-title: Review and benchmark study on the analysis of low-velocity impact on composite laminates
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2017.12.019
– volume: 39
  start-page: 897
  year: 2007
  ident: 10.1016/j.compstruct.2022.115278_b34
  article-title: A continuum damage model for composite laminates: Part I - Constitutive model
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2007.03.005
– volume: 225
  year: 2019
  ident: 10.1016/j.compstruct.2022.115278_b1
  article-title: An efficient numerical approach to the prediction of laminate tolerance to barely visible impact damage
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2019.111017
– year: 1999
  ident: 10.1016/j.compstruct.2022.115278_b57
– volume: 46
  start-page: 2809
  issue: 14–15
  year: 2009
  ident: 10.1016/j.compstruct.2022.115278_b10
  article-title: Low velocity impact modelling in laminate composite panels with discrete interface elements
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2009.03.010
– volume: 71
  start-page: 212
  year: 2015
  ident: 10.1016/j.compstruct.2022.115278_b9
  article-title: Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2015.01.025
– volume: 16
  start-page: 155
  year: 1983
  ident: 10.1016/j.compstruct.2022.115278_b36
  article-title: Crack band theory for fracture of concrete
  publication-title: Mater Struct
– year: 2013
  ident: 10.1016/j.compstruct.2022.115278_b33
– volume: 109
  start-page: 178
  year: 2017
  ident: 10.1016/j.compstruct.2022.115278_b25
  article-title: Barely visible impact damage in scaled composite laminates: Experiments and numerical simulations
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2017.06.008
– volume: 38
  start-page: 1072
  issue: 11
  year: 2006
  ident: 10.1016/j.compstruct.2022.115278_b44
  article-title: A damage model for the simulation of delamination in advanced composites under variable-mode loading
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2005.10.003
– year: 1988
  ident: 10.1016/j.compstruct.2022.115278_b39
– volume: 24
  start-page: 1459
  issue: 6
  year: 2017
  ident: 10.1016/j.compstruct.2022.115278_b31
  article-title: Simulation of low velocity impact induced inter- and intra-laminar damage of composite beams based on XFEM
  publication-title: Appl Compos Mater
  doi: 10.1007/s10443-017-9598-4
– volume: 32
  start-page: 1207
  issue: 9
  year: 2001
  ident: 10.1016/j.compstruct.2022.115278_b41
  article-title: Analytical prediction of large mass impact damage in composite laminates
  publication-title: Composites A
  doi: 10.1016/S1359-835X(01)00073-2
– volume: 55
  start-page: 39
  issue: 1
  year: 2021
  ident: 10.1016/j.compstruct.2022.115278_b22
  article-title: A multi-stage material model calibration procedure for enhancing numerical solution fidelity in the case of impact loading of composites
  publication-title: J Composite Mater
  doi: 10.1177/0021998320944992
– volume: 201
  start-page: 995
  year: 2018
  ident: 10.1016/j.compstruct.2022.115278_b59
  article-title: A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2018.06.046
– volume: 92
  start-page: 3
  year: 2016
  ident: 10.1016/j.compstruct.2022.115278_b27
  article-title: Physically-sound simulation of low-velocity impact on fibre reinforced laminates
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2015.05.014
SSID ssj0008411
Score 2.6151867
Snippet The capability to accurately analyse the response of multi-directional composite laminates during impact events is of high importance for the design of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115278
SubjectTerms Carbon fibre reinforced polymer
Computational modelling
Finite Element Analysis (FEA)
Impact behaviour
Title Experimental analysis and simulation of low-velocity impact damage of composite laminates
URI https://dx.doi.org/10.1016/j.compstruct.2022.115278
Volume 287
WOSCitedRecordID wos000770659400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008411
  issn: 0263-8223
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpu4f2YexW2q4dethbsbEtX2T61CUZ2xhdoR1kT0aWFEhJ7NB7__3OiWRFG4F2g744Ro7kOOfLOZ-UT-cQ8hFIuILAUwdjeIEJiqqDEnxloFKuMlSOc5My_3txcsJHo_K013vo9sLcToum4ff35fxZTQ1tYGzcOvsP5naDQgOcg9HhCGaH45MMP_Rz9osu58hifXwys8W6kCJO27sABUMSebjdLKnETJhVBJSao55LHwJkJg0yUp_H9t1lk4D25tLbSCKmEv9__8TQfj9Cp_lp58Yn9cMz13jWzmz9lkE4dK0oU7FbwQahvzABc1onA7T-K8lZAPyD-c42seHVuMsYi-rylZ7cLCpcoCHm5klCvEm47PJn8uy_gpqTGnYqtotqOVKFI1VmpDWykRRZCQ5x4_jrcPTNhXGeLoo3u6ewMjAjDlz9qVZzG4-vnL8iL-1Egx4bgLwmPd28IVte-sm35JcPFdpBBU4UXUKFtmPqQ4UaqFADFbzqoEIdVN6Rn5-H5_0vgS21EUhw6teBlEWsgC5qIVgicsaAmQuYyiqV6TqK65qrcR2JSOeS5TADhvAKNCZjURrzPBMl2ybrTdvoHUJrVchYF1zzSKVxmQqlEx3XKiryTAO73SVF9yVV0uahx3Io0-oxU-2S2PWcm1wsT-hz1NmhspzScMUKgPZo773_uON7srn8NeyTdXiDPiAv5O315Oryg0XZb8jAnxQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+analysis+and+simulation+of+low-velocity+impact+damage+of+composite+laminates&rft.jtitle=Composite+structures&rft.au=Falc%C3%B3%2C+O.&rft.au=Lopes%2C+C.S.&rft.au=Sommer%2C+D.E.&rft.au=Thomson%2C+D.&rft.date=2022-05-01&rft.issn=0263-8223&rft.volume=287&rft.spage=115278&rft_id=info:doi/10.1016%2Fj.compstruct.2022.115278&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compstruct_2022_115278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon