Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model

This communique uses the auxiliary model method to study the identification problem of a multiple-input multiple-output (MIMO) system. For such a MIMO system whose outputs are contaminated by an ARMA noise process (i.e., correlated noise), an auxiliary model based recursive least squares parameter e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automatica (Oxford) Ročník 71; s. 308 - 313
Hlavní autoři: Wang, Yanjiao, Ding, Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2016
Témata:
ISSN:0005-1098, 1873-2836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This communique uses the auxiliary model method to study the identification problem of a multiple-input multiple-output (MIMO) system. For such a MIMO system whose outputs are contaminated by an ARMA noise process (i.e., correlated noise), an auxiliary model based recursive least squares parameter estimation algorithm is presented through filtering input–output data. The proposed algorithm has higher estimation accuracy than the existing multivariable identification algorithm. The simulation example is given.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2016.05.024