Optimal state-delay control in nonlinear dynamic systems

This paper considers a class of nonlinear systems in which the control function is a time-varying state-delay. The optimal control problem is to optimize the time-varying delay and a set of time-invariant system parameters subject to lower and upper bounds. To solve this problem, we first parameteri...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Automatica (Oxford) Ročník 135; s. 109981
Hlavní autori: Liu, Chongyang, Loxton, Ryan, Teo, Kok Lay, Wang, Song
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.01.2022
Predmet:
ISSN:0005-1098, 1873-2836
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper considers a class of nonlinear systems in which the control function is a time-varying state-delay. The optimal control problem is to optimize the time-varying delay and a set of time-invariant system parameters subject to lower and upper bounds. To solve this problem, we first parameterize the delay in terms of piecewise-quadratic basis functions, thus yielding a finite-dimensional approximate problem with continuous-time inequality constraints induced by the delay bounds. We then exploit the quadratic structure of the delay to convert these continuous-time constraints into a finite set of canonical point constraints. We also develop an efficient numerical method for computing the gradients of the system cost function. This method, which involves integrating an auxiliary impulsive system with time-varying advance backwards in time, can be combined with any existing gradient-based optimization algorithm to generate approximate solutions for the optimal control problem.
AbstractList This paper considers a class of nonlinear systems in which the control function is a time-varying state-delay. The optimal control problem is to optimize the time-varying delay and a set of time-invariant system parameters subject to lower and upper bounds. To solve this problem, we first parameterize the delay in terms of piecewise-quadratic basis functions, thus yielding a finite-dimensional approximate problem with continuous-time inequality constraints induced by the delay bounds. We then exploit the quadratic structure of the delay to convert these continuous-time constraints into a finite set of canonical point constraints. We also develop an efficient numerical method for computing the gradients of the system cost function. This method, which involves integrating an auxiliary impulsive system with time-varying advance backwards in time, can be combined with any existing gradient-based optimization algorithm to generate approximate solutions for the optimal control problem.
ArticleNumber 109981
Author Liu, Chongyang
Wang, Song
Loxton, Ryan
Teo, Kok Lay
Author_xml – sequence: 1
  givenname: Chongyang
  surname: Liu
  fullname: Liu, Chongyang
  email: liu_chongyang@yahoo.com
  organization: School of Mathematics and Information Science, Shandong Technology and Business University, Yantai 264005, China
– sequence: 2
  givenname: Ryan
  surname: Loxton
  fullname: Loxton, Ryan
  email: r.loxton@curtin.edu.au
  organization: School of Electrical Engineering, Computing, and Mathematical Sciences, Curtin University, Perth 6845, Australia
– sequence: 3
  givenname: Kok Lay
  surname: Teo
  fullname: Teo, Kok Lay
  email: k.l.teo@curtin.edu.au
  organization: School of Mathematical Sciences, Sunway University, Kuala Lumpur 47500, Malaysia
– sequence: 4
  givenname: Song
  surname: Wang
  fullname: Wang, Song
  email: song.wang@curtin.edu.au
  organization: School of Electrical Engineering, Computing, and Mathematical Sciences, Curtin University, Perth 6845, Australia
BookMark eNqNkNtKAzEQhoNUsK2-Q15g1xx2u9kbQYsnKPRGr0MymYWUPZQkCvv2plQQvNGrYWb4v5n_X5HFOI1ICOWs5Ixvbg-l-UjTYJIHUwomeB63reIXZMlVIwuh5GZBloyxusgbdUVWMR5yW3EllkTtj8kPpqcxmYSFw97MFKYxhamnfqT5Wu9HNIG6eTSDBxrnmHCI1-SyM33Em--6Ju9Pj2_bl2K3f37d3u8KkFylwraibmrgtuMOhGGmQ0TXQKOsrRRAi64CqBlujOKyNZ2sGisbC8LJ2tpOrok6cyFMMQbs9DHkh8OsOdOnBPRB_ySgTwnocwJZevdLCj679Cd3xvf_ATycAZgNfnoMOoLHEdD5gJC0m_zfkC_XZoLo
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3592428
crossref_primary_10_1016_j_chaos_2023_113428
crossref_primary_10_1016_j_chaos_2023_113964
crossref_primary_10_1002_asjc_3488
crossref_primary_10_1155_2022_2206419
crossref_primary_10_1186_s13660_024_03140_2
crossref_primary_10_1109_TSMC_2024_3496564
crossref_primary_10_1016_j_nahs_2023_101372
crossref_primary_10_1080_00207160_2024_2366908
crossref_primary_10_1145_3532181
crossref_primary_10_1016_j_cnsns_2024_108462
crossref_primary_10_1016_j_cmpb_2025_108969
crossref_primary_10_12677_AAM_2023_122081
crossref_primary_10_1016_j_jfranklin_2022_12_027
crossref_primary_10_3390_mca30040080
crossref_primary_10_1007_s10957_025_02675_8
crossref_primary_10_1016_j_jfranklin_2022_12_024
crossref_primary_10_1002_asjc_3810
crossref_primary_10_1186_s13660_022_02823_y
Cites_doi 10.1016/S0967-0661(01)00078-8
10.3934/dcdss.2020098
10.1093/imamci/dnr013
10.1137/0319051
10.1016/0167-6911(85)90020-9
10.1002/oca.4660130103
10.1016/j.apm.2018.09.039
10.1016/j.physd.2006.12.009
10.1016/S0005-1098(03)00167-5
10.1137/0306002
10.1016/j.apm.2013.02.021
10.1016/0005-1098(70)90029-4
10.1016/j.nonrwa.2012.10.017
10.3934/jimo.2013.9.471
10.1137/16M1070530
10.1007/s10589-013-9632-x
10.3934/naco.2012.2.571
10.1016/j.automatica.2009.05.029
10.1109/TAC.2010.2050710
10.1016/j.automatica.2018.12.036
10.1002/oca.843
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.automatica.2021.109981
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2836
ExternalDocumentID 10_1016_j_automatica_2021_109981
S0005109821005070
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP190103361
  funderid: http://dx.doi.org/10.13039/501100000923
– fundername: Natural Science Foundation of Shandong Province, China
  grantid: ZR2017MA005; ZR2019MA031
  funderid: http://dx.doi.org/10.13039/501100007129
– fundername: National Natural Science Foundation of China
  grantid: 11771008
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-b92575c1bf1dc2a0afeeed7c78bb48cc9ed4cc50e6a8139af347b37bc2d35bbf3
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792896700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0005-1098
IngestDate Tue Nov 18 21:26:42 EST 2025
Sat Nov 29 07:33:17 EST 2025
Fri Feb 23 02:42:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Delay systems
Numerical optimization
Control parameterization
Optimal control
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-b92575c1bf1dc2a0afeeed7c78bb48cc9ed4cc50e6a8139af347b37bc2d35bbf3
ParticipantIDs crossref_primary_10_1016_j_automatica_2021_109981
crossref_citationtrail_10_1016_j_automatica_2021_109981
elsevier_sciencedirect_doi_10_1016_j_automatica_2021_109981
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Automatica (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Banas, Vacroux (b1) 1970; 6
Hale (b12) 1971
Schittkowski (b23) 2007
Richard (b22) 2003; 39
Verriest (b25) 2011; 28
Wu, Bai, Xie (b26) 2020; 13
Banks, Burns, Cliff (b3) 1981; 19
Lin, Loxton, Teo (b13) 2014; 6
Diop, Kolmanovsky, Moraal, van Nieuwstadt (b8) 2001; 9
Xi’an, China (pp. 781–783).
Nocedal, Wright (b20) 2006
Chai, Loxton, Teo, Yang (b5) 2013; 9
Pan, F., Han, R., & Feng, D. (2003). An identification method of time-varying delay based on genetic algorithm. In
Dadebo, Luus (b7) 1992; 13
Loxton, Teo, Rehbock, Yiu (b19) 2009; 45
Liu, Loxton, Teo (b16) 2014; 59
Wu, Bai, Yu (b27) 2019; 101
Banks (b2) 1968; 6
Guan, Feng, Chen, Chen (b11) 2007; 227
Gawthrop, Nihtilä (b9) 1985; 5
Chai, Loxton, Teo, Yang (b4) 2013; 14
Loxton, Lin, Rehbock, Teo (b17) 2012; 2
Liu (b14) 2013; 37
Loxton, Teo, Rehbock (b18) 2010; 55
Liu, Loxton, Lin, Teo (b15) 2018; 56
Chiasson, Loiseau (b6) 2007
Tang, Xu (b24) 2019; 68
Göllmann, Kern, Maurer (b10) 2009; 30
Guan (10.1016/j.automatica.2021.109981_b11) 2007; 227
Liu (10.1016/j.automatica.2021.109981_b15) 2018; 56
Hale (10.1016/j.automatica.2021.109981_b12) 1971
Dadebo (10.1016/j.automatica.2021.109981_b7) 1992; 13
Loxton (10.1016/j.automatica.2021.109981_b17) 2012; 2
Schittkowski (10.1016/j.automatica.2021.109981_b23) 2007
Chai (10.1016/j.automatica.2021.109981_b4) 2013; 14
10.1016/j.automatica.2021.109981_b21
Tang (10.1016/j.automatica.2021.109981_b24) 2019; 68
Banas (10.1016/j.automatica.2021.109981_b1) 1970; 6
Liu (10.1016/j.automatica.2021.109981_b16) 2014; 59
Wu (10.1016/j.automatica.2021.109981_b26) 2020; 13
Gawthrop (10.1016/j.automatica.2021.109981_b9) 1985; 5
Chiasson (10.1016/j.automatica.2021.109981_b6) 2007
Chai (10.1016/j.automatica.2021.109981_b5) 2013; 9
Lin (10.1016/j.automatica.2021.109981_b13) 2014; 6
Diop (10.1016/j.automatica.2021.109981_b8) 2001; 9
Banks (10.1016/j.automatica.2021.109981_b2) 1968; 6
Nocedal (10.1016/j.automatica.2021.109981_b20) 2006
Richard (10.1016/j.automatica.2021.109981_b22) 2003; 39
Loxton (10.1016/j.automatica.2021.109981_b18) 2010; 55
Verriest (10.1016/j.automatica.2021.109981_b25) 2011; 28
Liu (10.1016/j.automatica.2021.109981_b14) 2013; 37
Wu (10.1016/j.automatica.2021.109981_b27) 2019; 101
Loxton (10.1016/j.automatica.2021.109981_b19) 2009; 45
Göllmann (10.1016/j.automatica.2021.109981_b10) 2009; 30
Banks (10.1016/j.automatica.2021.109981_b3) 1981; 19
References_xml – volume: 45
  start-page: 2250
  year: 2009
  end-page: 2257
  ident: b19
  article-title: Optimal control problems with a continuous inequality constraint on the state and the control
  publication-title: Automatica
– volume: 6
  start-page: 809
  year: 1970
  end-page: 811
  ident: b1
  article-title: Optimal piecewise constant control of continuous time systems with time-varying delay
  publication-title: Automatica
– volume: 39
  start-page: 1667
  year: 2003
  end-page: 1694
  ident: b22
  article-title: Time-delay systems: An overiew of some recent advances and open problems
  publication-title: Automatica
– reference: Pan, F., Han, R., & Feng, D. (2003). An identification method of time-varying delay based on genetic algorithm. In
– year: 2007
  ident: b23
  article-title: A fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search—user’s guide
– volume: 68
  start-page: 137
  year: 2019
  end-page: 151
  ident: b24
  article-title: Multiple-interval pseudospectral approximation for nonlinear optimal control problems with time-varying delays
  publication-title: Applied Mathematical Modelling
– volume: 9
  start-page: 1319
  year: 2001
  end-page: 1325
  ident: b8
  article-title: Preserving stability/performance when facing an unknown time-delay
  publication-title: Control Engineering Practice
– volume: 28
  start-page: 147
  year: 2011
  end-page: 162
  ident: b25
  article-title: Inconsistencies in systems with time-varying delays and their resolution
  publication-title: IMA Journal of Mathematical Control and Information
– volume: 2
  start-page: 571
  year: 2012
  end-page: 599
  ident: b17
  article-title: Control parameterization for optimal control problems with continuous inequality constraints: New convergence results
  publication-title: Numerical Algebra, Control and Optimization
– volume: 101
  start-page: 388
  year: 2019
  end-page: 395
  ident: b27
  article-title: A new computational approach for optimal control problems with multiple time-delay
  publication-title: Automatica
– reference: , Xi’an, China (pp. 781–783).
– volume: 5
  start-page: 267
  year: 1985
  end-page: 271
  ident: b9
  article-title: Identification of time-delays using a polynomial identification method
  publication-title: Systems
– volume: 14
  start-page: 1536
  year: 2013
  end-page: 1550
  ident: b4
  article-title: A class of optimal state-delay control problems
  publication-title: Nonlinear Analysis. Real World Applications
– volume: 56
  start-page: 3499
  year: 2018
  end-page: 3523
  ident: b15
  article-title: Dynamic optimization for switched time-delay systems with state-dependent switching conditions
  publication-title: SIAM Journal on Control and Optimization
– volume: 59
  start-page: 285
  year: 2014
  end-page: 306
  ident: b16
  article-title: Optimal parameter selection for nonlinear multistage systems with time-delays
  publication-title: Computational Optimization and Applications
– volume: 13
  start-page: 1683
  year: 2020
  end-page: 1695
  ident: b26
  article-title: Time-scaling transformation for optimal control problem with time-varying delay
  publication-title: Discrete and Continuous Dynamical Systems-Series S
– volume: 227
  start-page: 36
  year: 2007
  end-page: 42
  ident: b11
  article-title: A full delayed feedback controller design method for time-delay chaotic systems
  publication-title: Physica D: Nonlinear Phenomena
– volume: 6
  start-page: 895
  year: 2014
  end-page: 910
  ident: b13
  article-title: The control parameterization method for nonlinear optimal control: A survey
  publication-title: Journal of Industrial and Management Optimization
– volume: 37
  start-page: 6899
  year: 2013
  end-page: 6908
  ident: b14
  article-title: Modelling and parameter identification for a nonlinear time-delay system in microbial batch fermentation
  publication-title: Applied Mathematical Modelling
– year: 2007
  ident: b6
  article-title: Applications of time delay systems
– volume: 13
  start-page: 29
  year: 1992
  end-page: 41
  ident: b7
  article-title: Optimal control of time-delay systems by dynamic programming
  publication-title: Optimal Control Applications
– volume: 19
  start-page: 791
  year: 1981
  end-page: 828
  ident: b3
  article-title: Parameter estimation and identification for systems with delay
  publication-title: SIAM Journal on Control and Optimization
– volume: 6
  start-page: 9
  year: 1968
  end-page: 47
  ident: b2
  article-title: Necessary conditions for control problems with variable time lags
  publication-title: SIAM Journal on Control
– year: 2006
  ident: b20
  article-title: Numerical optimization
– volume: 55
  start-page: 2113
  year: 2010
  end-page: 2119
  ident: b18
  article-title: An optimization approach to state-delay identification
  publication-title: IEEE Transactions on Automatic Control
– volume: 9
  start-page: 471
  year: 2013
  end-page: 486
  ident: b5
  article-title: A unified parameter identification method for nonlinear time-delay systems
  publication-title: Journal of Industrial and Management Optimization
– volume: 30
  start-page: 341
  year: 2009
  end-page: 365
  ident: b10
  article-title: Optimal control problems with delays in state and control variables subject to mixed control-state constraints
  publication-title: Optimal Control Applications
– year: 1971
  ident: b12
  article-title: Functional differential equations
– volume: 9
  start-page: 1319
  year: 2001
  ident: 10.1016/j.automatica.2021.109981_b8
  article-title: Preserving stability/performance when facing an unknown time-delay
  publication-title: Control Engineering Practice
  doi: 10.1016/S0967-0661(01)00078-8
– volume: 13
  start-page: 1683
  year: 2020
  ident: 10.1016/j.automatica.2021.109981_b26
  article-title: Time-scaling transformation for optimal control problem with time-varying delay
  publication-title: Discrete and Continuous Dynamical Systems-Series S
  doi: 10.3934/dcdss.2020098
– ident: 10.1016/j.automatica.2021.109981_b21
– volume: 28
  start-page: 147
  year: 2011
  ident: 10.1016/j.automatica.2021.109981_b25
  article-title: Inconsistencies in systems with time-varying delays and their resolution
  publication-title: IMA Journal of Mathematical Control and Information
  doi: 10.1093/imamci/dnr013
– year: 1971
  ident: 10.1016/j.automatica.2021.109981_b12
– volume: 19
  start-page: 791
  year: 1981
  ident: 10.1016/j.automatica.2021.109981_b3
  article-title: Parameter estimation and identification for systems with delay
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/0319051
– volume: 5
  start-page: 267
  year: 1985
  ident: 10.1016/j.automatica.2021.109981_b9
  article-title: Identification of time-delays using a polynomial identification method
  publication-title: Systems & Control Letters
  doi: 10.1016/0167-6911(85)90020-9
– volume: 13
  start-page: 29
  year: 1992
  ident: 10.1016/j.automatica.2021.109981_b7
  article-title: Optimal control of time-delay systems by dynamic programming
  publication-title: Optimal Control Applications & Methods
  doi: 10.1002/oca.4660130103
– volume: 68
  start-page: 137
  year: 2019
  ident: 10.1016/j.automatica.2021.109981_b24
  article-title: Multiple-interval pseudospectral approximation for nonlinear optimal control problems with time-varying delays
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2018.09.039
– volume: 227
  start-page: 36
  year: 2007
  ident: 10.1016/j.automatica.2021.109981_b11
  article-title: A full delayed feedback controller design method for time-delay chaotic systems
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/j.physd.2006.12.009
– volume: 39
  start-page: 1667
  year: 2003
  ident: 10.1016/j.automatica.2021.109981_b22
  article-title: Time-delay systems: An overiew of some recent advances and open problems
  publication-title: Automatica
  doi: 10.1016/S0005-1098(03)00167-5
– year: 2007
  ident: 10.1016/j.automatica.2021.109981_b23
– volume: 6
  start-page: 9
  year: 1968
  ident: 10.1016/j.automatica.2021.109981_b2
  article-title: Necessary conditions for control problems with variable time lags
  publication-title: SIAM Journal on Control
  doi: 10.1137/0306002
– volume: 37
  start-page: 6899
  year: 2013
  ident: 10.1016/j.automatica.2021.109981_b14
  article-title: Modelling and parameter identification for a nonlinear time-delay system in microbial batch fermentation
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2013.02.021
– volume: 6
  start-page: 809
  year: 1970
  ident: 10.1016/j.automatica.2021.109981_b1
  article-title: Optimal piecewise constant control of continuous time systems with time-varying delay
  publication-title: Automatica
  doi: 10.1016/0005-1098(70)90029-4
– volume: 14
  start-page: 1536
  year: 2013
  ident: 10.1016/j.automatica.2021.109981_b4
  article-title: A class of optimal state-delay control problems
  publication-title: Nonlinear Analysis. Real World Applications
  doi: 10.1016/j.nonrwa.2012.10.017
– volume: 6
  start-page: 895
  year: 2014
  ident: 10.1016/j.automatica.2021.109981_b13
  article-title: The control parameterization method for nonlinear optimal control: A survey
  publication-title: Journal of Industrial and Management Optimization
– volume: 9
  start-page: 471
  year: 2013
  ident: 10.1016/j.automatica.2021.109981_b5
  article-title: A unified parameter identification method for nonlinear time-delay systems
  publication-title: Journal of Industrial and Management Optimization
  doi: 10.3934/jimo.2013.9.471
– volume: 56
  start-page: 3499
  year: 2018
  ident: 10.1016/j.automatica.2021.109981_b15
  article-title: Dynamic optimization for switched time-delay systems with state-dependent switching conditions
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/16M1070530
– year: 2006
  ident: 10.1016/j.automatica.2021.109981_b20
– volume: 59
  start-page: 285
  year: 2014
  ident: 10.1016/j.automatica.2021.109981_b16
  article-title: Optimal parameter selection for nonlinear multistage systems with time-delays
  publication-title: Computational Optimization and Applications
  doi: 10.1007/s10589-013-9632-x
– volume: 2
  start-page: 571
  year: 2012
  ident: 10.1016/j.automatica.2021.109981_b17
  article-title: Control parameterization for optimal control problems with continuous inequality constraints: New convergence results
  publication-title: Numerical Algebra, Control and Optimization
  doi: 10.3934/naco.2012.2.571
– volume: 45
  start-page: 2250
  year: 2009
  ident: 10.1016/j.automatica.2021.109981_b19
  article-title: Optimal control problems with a continuous inequality constraint on the state and the control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.05.029
– volume: 55
  start-page: 2113
  year: 2010
  ident: 10.1016/j.automatica.2021.109981_b18
  article-title: An optimization approach to state-delay identification
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2010.2050710
– volume: 101
  start-page: 388
  year: 2019
  ident: 10.1016/j.automatica.2021.109981_b27
  article-title: A new computational approach for optimal control problems with multiple time-delay
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.12.036
– year: 2007
  ident: 10.1016/j.automatica.2021.109981_b6
– volume: 30
  start-page: 341
  year: 2009
  ident: 10.1016/j.automatica.2021.109981_b10
  article-title: Optimal control problems with delays in state and control variables subject to mixed control-state constraints
  publication-title: Optimal Control Applications & Methods
  doi: 10.1002/oca.843
SSID ssj0004182
Score 2.5284534
Snippet This paper considers a class of nonlinear systems in which the control function is a time-varying state-delay. The optimal control problem is to optimize the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109981
SubjectTerms Control parameterization
Delay systems
Numerical optimization
Optimal control
Title Optimal state-delay control in nonlinear dynamic systems
URI https://dx.doi.org/10.1016/j.automatica.2021.109981
Volume 135
WOSCitedRecordID wos000792896700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5BwgEOVXlUhT7kA7fIVbxrx7vqKapStSWCCoUqN2t3vYsC1EZ5VMm_79g7sU1BAipxseyVZvyYz-PZ8ew3hBwHMVe0Z4RvGYRvIaXG54xr38IgM71uast2QL-G8ekpH4_FT6yfn5XtBOIs48uluH1RU8MYGLtYOvsMc1dKYQD2weiwBbPD9kmGPwMn8LtcBQJhpF-QQK6qgvRJ1skcN4acdlLXjB7JnGfNMLW_mOcll6ss6UiXrgK-yhkMJwv3qz7PLlcSv33FeL7EavzzVY26kUvHnuTXnaFsZPAxUZ2jPKYeKG2kHtbutKAxdW2kK3fKooZDLH68uZ4s93y1SxtcFZU6eEswXafBp1rkLj32P5-tqphwXad2ldSakkJT4jRtkjaNI8FbpN3_Phj_qJfNBtyRyeNdYKGXK_97-Koejl4aEcnoNXmFUwmv7yCwSzZMtkd2GgST-4QjGLwGGDwEgzfJvAoMHoLBQzAckIuvg9GXbz72yvA1eOW5rwT43kgHygapprIrrYHoJ9bwKqqQay1MGmoddU1Pcgj6pWVhrFisNE1ZpJRlb0gLzmneEk8YJg2nQpseC5UNhdKgxAYMjhhMxw9JvH4GiUYi-aKfyU3ymCUOSVBJ3joylSfIfF4_5gSDQhfsJYCjR6WP_uOM78h2Dfb3pDWfLswHsqX_zCez6UcE0V-P6ol7
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+state-delay+control+in+nonlinear+dynamic+systems&rft.jtitle=Automatica+%28Oxford%29&rft.au=Liu%2C+Chongyang&rft.au=Loxton%2C+Ryan&rft.au=Teo%2C+Kok+Lay&rft.au=Wang%2C+Song&rft.date=2022-01-01&rft.issn=0005-1098&rft.volume=135&rft.spage=109981&rft_id=info:doi/10.1016%2Fj.automatica.2021.109981&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2021_109981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon