Optimal state-delay control in nonlinear dynamic systems
This paper considers a class of nonlinear systems in which the control function is a time-varying state-delay. The optimal control problem is to optimize the time-varying delay and a set of time-invariant system parameters subject to lower and upper bounds. To solve this problem, we first parameteri...
Uložené v:
| Vydané v: | Automatica (Oxford) Ročník 135; s. 109981 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.01.2022
|
| Predmet: | |
| ISSN: | 0005-1098, 1873-2836 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper considers a class of nonlinear systems in which the control function is a time-varying state-delay. The optimal control problem is to optimize the time-varying delay and a set of time-invariant system parameters subject to lower and upper bounds. To solve this problem, we first parameterize the delay in terms of piecewise-quadratic basis functions, thus yielding a finite-dimensional approximate problem with continuous-time inequality constraints induced by the delay bounds. We then exploit the quadratic structure of the delay to convert these continuous-time constraints into a finite set of canonical point constraints. We also develop an efficient numerical method for computing the gradients of the system cost function. This method, which involves integrating an auxiliary impulsive system with time-varying advance backwards in time, can be combined with any existing gradient-based optimization algorithm to generate approximate solutions for the optimal control problem. |
|---|---|
| AbstractList | This paper considers a class of nonlinear systems in which the control function is a time-varying state-delay. The optimal control problem is to optimize the time-varying delay and a set of time-invariant system parameters subject to lower and upper bounds. To solve this problem, we first parameterize the delay in terms of piecewise-quadratic basis functions, thus yielding a finite-dimensional approximate problem with continuous-time inequality constraints induced by the delay bounds. We then exploit the quadratic structure of the delay to convert these continuous-time constraints into a finite set of canonical point constraints. We also develop an efficient numerical method for computing the gradients of the system cost function. This method, which involves integrating an auxiliary impulsive system with time-varying advance backwards in time, can be combined with any existing gradient-based optimization algorithm to generate approximate solutions for the optimal control problem. |
| ArticleNumber | 109981 |
| Author | Liu, Chongyang Wang, Song Loxton, Ryan Teo, Kok Lay |
| Author_xml | – sequence: 1 givenname: Chongyang surname: Liu fullname: Liu, Chongyang email: liu_chongyang@yahoo.com organization: School of Mathematics and Information Science, Shandong Technology and Business University, Yantai 264005, China – sequence: 2 givenname: Ryan surname: Loxton fullname: Loxton, Ryan email: r.loxton@curtin.edu.au organization: School of Electrical Engineering, Computing, and Mathematical Sciences, Curtin University, Perth 6845, Australia – sequence: 3 givenname: Kok Lay surname: Teo fullname: Teo, Kok Lay email: k.l.teo@curtin.edu.au organization: School of Mathematical Sciences, Sunway University, Kuala Lumpur 47500, Malaysia – sequence: 4 givenname: Song surname: Wang fullname: Wang, Song email: song.wang@curtin.edu.au organization: School of Electrical Engineering, Computing, and Mathematical Sciences, Curtin University, Perth 6845, Australia |
| BookMark | eNqNkNtKAzEQhoNUsK2-Q15g1xx2u9kbQYsnKPRGr0MymYWUPZQkCvv2plQQvNGrYWb4v5n_X5HFOI1ICOWs5Ixvbg-l-UjTYJIHUwomeB63reIXZMlVIwuh5GZBloyxusgbdUVWMR5yW3EllkTtj8kPpqcxmYSFw97MFKYxhamnfqT5Wu9HNIG6eTSDBxrnmHCI1-SyM33Em--6Ju9Pj2_bl2K3f37d3u8KkFylwraibmrgtuMOhGGmQ0TXQKOsrRRAi64CqBlujOKyNZ2sGisbC8LJ2tpOrok6cyFMMQbs9DHkh8OsOdOnBPRB_ySgTwnocwJZevdLCj679Cd3xvf_ATycAZgNfnoMOoLHEdD5gJC0m_zfkC_XZoLo |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3592428 crossref_primary_10_1016_j_chaos_2023_113428 crossref_primary_10_1016_j_chaos_2023_113964 crossref_primary_10_1002_asjc_3488 crossref_primary_10_1155_2022_2206419 crossref_primary_10_1186_s13660_024_03140_2 crossref_primary_10_1109_TSMC_2024_3496564 crossref_primary_10_1016_j_nahs_2023_101372 crossref_primary_10_1080_00207160_2024_2366908 crossref_primary_10_1145_3532181 crossref_primary_10_1016_j_cnsns_2024_108462 crossref_primary_10_1016_j_cmpb_2025_108969 crossref_primary_10_12677_AAM_2023_122081 crossref_primary_10_1016_j_jfranklin_2022_12_027 crossref_primary_10_3390_mca30040080 crossref_primary_10_1007_s10957_025_02675_8 crossref_primary_10_1016_j_jfranklin_2022_12_024 crossref_primary_10_1002_asjc_3810 crossref_primary_10_1186_s13660_022_02823_y |
| Cites_doi | 10.1016/S0967-0661(01)00078-8 10.3934/dcdss.2020098 10.1093/imamci/dnr013 10.1137/0319051 10.1016/0167-6911(85)90020-9 10.1002/oca.4660130103 10.1016/j.apm.2018.09.039 10.1016/j.physd.2006.12.009 10.1016/S0005-1098(03)00167-5 10.1137/0306002 10.1016/j.apm.2013.02.021 10.1016/0005-1098(70)90029-4 10.1016/j.nonrwa.2012.10.017 10.3934/jimo.2013.9.471 10.1137/16M1070530 10.1007/s10589-013-9632-x 10.3934/naco.2012.2.571 10.1016/j.automatica.2009.05.029 10.1109/TAC.2010.2050710 10.1016/j.automatica.2018.12.036 10.1002/oca.843 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.automatica.2021.109981 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2836 |
| ExternalDocumentID | 10_1016_j_automatica_2021_109981 S0005109821005070 |
| GrantInformation_xml | – fundername: Australian Research Council grantid: DP190103361 funderid: http://dx.doi.org/10.13039/501100000923 – fundername: Natural Science Foundation of Shandong Province, China grantid: ZR2017MA005; ZR2019MA031 funderid: http://dx.doi.org/10.13039/501100007129 – fundername: National Natural Science Foundation of China grantid: 11771008 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XFK XPP ZMT ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c318t-b92575c1bf1dc2a0afeeed7c78bb48cc9ed4cc50e6a8139af347b37bc2d35bbf3 |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792896700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0005-1098 |
| IngestDate | Tue Nov 18 21:26:42 EST 2025 Sat Nov 29 07:33:17 EST 2025 Fri Feb 23 02:42:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Delay systems Numerical optimization Control parameterization Optimal control |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c318t-b92575c1bf1dc2a0afeeed7c78bb48cc9ed4cc50e6a8139af347b37bc2d35bbf3 |
| ParticipantIDs | crossref_primary_10_1016_j_automatica_2021_109981 crossref_citationtrail_10_1016_j_automatica_2021_109981 elsevier_sciencedirect_doi_10_1016_j_automatica_2021_109981 |
| PublicationCentury | 2000 |
| PublicationDate | January 2022 2022-01-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Automatica (Oxford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Banas, Vacroux (b1) 1970; 6 Hale (b12) 1971 Schittkowski (b23) 2007 Richard (b22) 2003; 39 Verriest (b25) 2011; 28 Wu, Bai, Xie (b26) 2020; 13 Banks, Burns, Cliff (b3) 1981; 19 Lin, Loxton, Teo (b13) 2014; 6 Diop, Kolmanovsky, Moraal, van Nieuwstadt (b8) 2001; 9 Xi’an, China (pp. 781–783). Nocedal, Wright (b20) 2006 Chai, Loxton, Teo, Yang (b5) 2013; 9 Pan, F., Han, R., & Feng, D. (2003). An identification method of time-varying delay based on genetic algorithm. In Dadebo, Luus (b7) 1992; 13 Loxton, Teo, Rehbock, Yiu (b19) 2009; 45 Liu, Loxton, Teo (b16) 2014; 59 Wu, Bai, Yu (b27) 2019; 101 Banks (b2) 1968; 6 Guan, Feng, Chen, Chen (b11) 2007; 227 Gawthrop, Nihtilä (b9) 1985; 5 Chai, Loxton, Teo, Yang (b4) 2013; 14 Loxton, Lin, Rehbock, Teo (b17) 2012; 2 Liu (b14) 2013; 37 Loxton, Teo, Rehbock (b18) 2010; 55 Liu, Loxton, Lin, Teo (b15) 2018; 56 Chiasson, Loiseau (b6) 2007 Tang, Xu (b24) 2019; 68 Göllmann, Kern, Maurer (b10) 2009; 30 Guan (10.1016/j.automatica.2021.109981_b11) 2007; 227 Liu (10.1016/j.automatica.2021.109981_b15) 2018; 56 Hale (10.1016/j.automatica.2021.109981_b12) 1971 Dadebo (10.1016/j.automatica.2021.109981_b7) 1992; 13 Loxton (10.1016/j.automatica.2021.109981_b17) 2012; 2 Schittkowski (10.1016/j.automatica.2021.109981_b23) 2007 Chai (10.1016/j.automatica.2021.109981_b4) 2013; 14 10.1016/j.automatica.2021.109981_b21 Tang (10.1016/j.automatica.2021.109981_b24) 2019; 68 Banas (10.1016/j.automatica.2021.109981_b1) 1970; 6 Liu (10.1016/j.automatica.2021.109981_b16) 2014; 59 Wu (10.1016/j.automatica.2021.109981_b26) 2020; 13 Gawthrop (10.1016/j.automatica.2021.109981_b9) 1985; 5 Chiasson (10.1016/j.automatica.2021.109981_b6) 2007 Chai (10.1016/j.automatica.2021.109981_b5) 2013; 9 Lin (10.1016/j.automatica.2021.109981_b13) 2014; 6 Diop (10.1016/j.automatica.2021.109981_b8) 2001; 9 Banks (10.1016/j.automatica.2021.109981_b2) 1968; 6 Nocedal (10.1016/j.automatica.2021.109981_b20) 2006 Richard (10.1016/j.automatica.2021.109981_b22) 2003; 39 Loxton (10.1016/j.automatica.2021.109981_b18) 2010; 55 Verriest (10.1016/j.automatica.2021.109981_b25) 2011; 28 Liu (10.1016/j.automatica.2021.109981_b14) 2013; 37 Wu (10.1016/j.automatica.2021.109981_b27) 2019; 101 Loxton (10.1016/j.automatica.2021.109981_b19) 2009; 45 Göllmann (10.1016/j.automatica.2021.109981_b10) 2009; 30 Banks (10.1016/j.automatica.2021.109981_b3) 1981; 19 |
| References_xml | – volume: 45 start-page: 2250 year: 2009 end-page: 2257 ident: b19 article-title: Optimal control problems with a continuous inequality constraint on the state and the control publication-title: Automatica – volume: 6 start-page: 809 year: 1970 end-page: 811 ident: b1 article-title: Optimal piecewise constant control of continuous time systems with time-varying delay publication-title: Automatica – volume: 39 start-page: 1667 year: 2003 end-page: 1694 ident: b22 article-title: Time-delay systems: An overiew of some recent advances and open problems publication-title: Automatica – reference: Pan, F., Han, R., & Feng, D. (2003). An identification method of time-varying delay based on genetic algorithm. In – year: 2007 ident: b23 article-title: A fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search—user’s guide – volume: 68 start-page: 137 year: 2019 end-page: 151 ident: b24 article-title: Multiple-interval pseudospectral approximation for nonlinear optimal control problems with time-varying delays publication-title: Applied Mathematical Modelling – volume: 9 start-page: 1319 year: 2001 end-page: 1325 ident: b8 article-title: Preserving stability/performance when facing an unknown time-delay publication-title: Control Engineering Practice – volume: 28 start-page: 147 year: 2011 end-page: 162 ident: b25 article-title: Inconsistencies in systems with time-varying delays and their resolution publication-title: IMA Journal of Mathematical Control and Information – volume: 2 start-page: 571 year: 2012 end-page: 599 ident: b17 article-title: Control parameterization for optimal control problems with continuous inequality constraints: New convergence results publication-title: Numerical Algebra, Control and Optimization – volume: 101 start-page: 388 year: 2019 end-page: 395 ident: b27 article-title: A new computational approach for optimal control problems with multiple time-delay publication-title: Automatica – reference: , Xi’an, China (pp. 781–783). – volume: 5 start-page: 267 year: 1985 end-page: 271 ident: b9 article-title: Identification of time-delays using a polynomial identification method publication-title: Systems – volume: 14 start-page: 1536 year: 2013 end-page: 1550 ident: b4 article-title: A class of optimal state-delay control problems publication-title: Nonlinear Analysis. Real World Applications – volume: 56 start-page: 3499 year: 2018 end-page: 3523 ident: b15 article-title: Dynamic optimization for switched time-delay systems with state-dependent switching conditions publication-title: SIAM Journal on Control and Optimization – volume: 59 start-page: 285 year: 2014 end-page: 306 ident: b16 article-title: Optimal parameter selection for nonlinear multistage systems with time-delays publication-title: Computational Optimization and Applications – volume: 13 start-page: 1683 year: 2020 end-page: 1695 ident: b26 article-title: Time-scaling transformation for optimal control problem with time-varying delay publication-title: Discrete and Continuous Dynamical Systems-Series S – volume: 227 start-page: 36 year: 2007 end-page: 42 ident: b11 article-title: A full delayed feedback controller design method for time-delay chaotic systems publication-title: Physica D: Nonlinear Phenomena – volume: 6 start-page: 895 year: 2014 end-page: 910 ident: b13 article-title: The control parameterization method for nonlinear optimal control: A survey publication-title: Journal of Industrial and Management Optimization – volume: 37 start-page: 6899 year: 2013 end-page: 6908 ident: b14 article-title: Modelling and parameter identification for a nonlinear time-delay system in microbial batch fermentation publication-title: Applied Mathematical Modelling – year: 2007 ident: b6 article-title: Applications of time delay systems – volume: 13 start-page: 29 year: 1992 end-page: 41 ident: b7 article-title: Optimal control of time-delay systems by dynamic programming publication-title: Optimal Control Applications – volume: 19 start-page: 791 year: 1981 end-page: 828 ident: b3 article-title: Parameter estimation and identification for systems with delay publication-title: SIAM Journal on Control and Optimization – volume: 6 start-page: 9 year: 1968 end-page: 47 ident: b2 article-title: Necessary conditions for control problems with variable time lags publication-title: SIAM Journal on Control – year: 2006 ident: b20 article-title: Numerical optimization – volume: 55 start-page: 2113 year: 2010 end-page: 2119 ident: b18 article-title: An optimization approach to state-delay identification publication-title: IEEE Transactions on Automatic Control – volume: 9 start-page: 471 year: 2013 end-page: 486 ident: b5 article-title: A unified parameter identification method for nonlinear time-delay systems publication-title: Journal of Industrial and Management Optimization – volume: 30 start-page: 341 year: 2009 end-page: 365 ident: b10 article-title: Optimal control problems with delays in state and control variables subject to mixed control-state constraints publication-title: Optimal Control Applications – year: 1971 ident: b12 article-title: Functional differential equations – volume: 9 start-page: 1319 year: 2001 ident: 10.1016/j.automatica.2021.109981_b8 article-title: Preserving stability/performance when facing an unknown time-delay publication-title: Control Engineering Practice doi: 10.1016/S0967-0661(01)00078-8 – volume: 13 start-page: 1683 year: 2020 ident: 10.1016/j.automatica.2021.109981_b26 article-title: Time-scaling transformation for optimal control problem with time-varying delay publication-title: Discrete and Continuous Dynamical Systems-Series S doi: 10.3934/dcdss.2020098 – ident: 10.1016/j.automatica.2021.109981_b21 – volume: 28 start-page: 147 year: 2011 ident: 10.1016/j.automatica.2021.109981_b25 article-title: Inconsistencies in systems with time-varying delays and their resolution publication-title: IMA Journal of Mathematical Control and Information doi: 10.1093/imamci/dnr013 – year: 1971 ident: 10.1016/j.automatica.2021.109981_b12 – volume: 19 start-page: 791 year: 1981 ident: 10.1016/j.automatica.2021.109981_b3 article-title: Parameter estimation and identification for systems with delay publication-title: SIAM Journal on Control and Optimization doi: 10.1137/0319051 – volume: 5 start-page: 267 year: 1985 ident: 10.1016/j.automatica.2021.109981_b9 article-title: Identification of time-delays using a polynomial identification method publication-title: Systems & Control Letters doi: 10.1016/0167-6911(85)90020-9 – volume: 13 start-page: 29 year: 1992 ident: 10.1016/j.automatica.2021.109981_b7 article-title: Optimal control of time-delay systems by dynamic programming publication-title: Optimal Control Applications & Methods doi: 10.1002/oca.4660130103 – volume: 68 start-page: 137 year: 2019 ident: 10.1016/j.automatica.2021.109981_b24 article-title: Multiple-interval pseudospectral approximation for nonlinear optimal control problems with time-varying delays publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2018.09.039 – volume: 227 start-page: 36 year: 2007 ident: 10.1016/j.automatica.2021.109981_b11 article-title: A full delayed feedback controller design method for time-delay chaotic systems publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/j.physd.2006.12.009 – volume: 39 start-page: 1667 year: 2003 ident: 10.1016/j.automatica.2021.109981_b22 article-title: Time-delay systems: An overiew of some recent advances and open problems publication-title: Automatica doi: 10.1016/S0005-1098(03)00167-5 – year: 2007 ident: 10.1016/j.automatica.2021.109981_b23 – volume: 6 start-page: 9 year: 1968 ident: 10.1016/j.automatica.2021.109981_b2 article-title: Necessary conditions for control problems with variable time lags publication-title: SIAM Journal on Control doi: 10.1137/0306002 – volume: 37 start-page: 6899 year: 2013 ident: 10.1016/j.automatica.2021.109981_b14 article-title: Modelling and parameter identification for a nonlinear time-delay system in microbial batch fermentation publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2013.02.021 – volume: 6 start-page: 809 year: 1970 ident: 10.1016/j.automatica.2021.109981_b1 article-title: Optimal piecewise constant control of continuous time systems with time-varying delay publication-title: Automatica doi: 10.1016/0005-1098(70)90029-4 – volume: 14 start-page: 1536 year: 2013 ident: 10.1016/j.automatica.2021.109981_b4 article-title: A class of optimal state-delay control problems publication-title: Nonlinear Analysis. Real World Applications doi: 10.1016/j.nonrwa.2012.10.017 – volume: 6 start-page: 895 year: 2014 ident: 10.1016/j.automatica.2021.109981_b13 article-title: The control parameterization method for nonlinear optimal control: A survey publication-title: Journal of Industrial and Management Optimization – volume: 9 start-page: 471 year: 2013 ident: 10.1016/j.automatica.2021.109981_b5 article-title: A unified parameter identification method for nonlinear time-delay systems publication-title: Journal of Industrial and Management Optimization doi: 10.3934/jimo.2013.9.471 – volume: 56 start-page: 3499 year: 2018 ident: 10.1016/j.automatica.2021.109981_b15 article-title: Dynamic optimization for switched time-delay systems with state-dependent switching conditions publication-title: SIAM Journal on Control and Optimization doi: 10.1137/16M1070530 – year: 2006 ident: 10.1016/j.automatica.2021.109981_b20 – volume: 59 start-page: 285 year: 2014 ident: 10.1016/j.automatica.2021.109981_b16 article-title: Optimal parameter selection for nonlinear multistage systems with time-delays publication-title: Computational Optimization and Applications doi: 10.1007/s10589-013-9632-x – volume: 2 start-page: 571 year: 2012 ident: 10.1016/j.automatica.2021.109981_b17 article-title: Control parameterization for optimal control problems with continuous inequality constraints: New convergence results publication-title: Numerical Algebra, Control and Optimization doi: 10.3934/naco.2012.2.571 – volume: 45 start-page: 2250 year: 2009 ident: 10.1016/j.automatica.2021.109981_b19 article-title: Optimal control problems with a continuous inequality constraint on the state and the control publication-title: Automatica doi: 10.1016/j.automatica.2009.05.029 – volume: 55 start-page: 2113 year: 2010 ident: 10.1016/j.automatica.2021.109981_b18 article-title: An optimization approach to state-delay identification publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2010.2050710 – volume: 101 start-page: 388 year: 2019 ident: 10.1016/j.automatica.2021.109981_b27 article-title: A new computational approach for optimal control problems with multiple time-delay publication-title: Automatica doi: 10.1016/j.automatica.2018.12.036 – year: 2007 ident: 10.1016/j.automatica.2021.109981_b6 – volume: 30 start-page: 341 year: 2009 ident: 10.1016/j.automatica.2021.109981_b10 article-title: Optimal control problems with delays in state and control variables subject to mixed control-state constraints publication-title: Optimal Control Applications & Methods doi: 10.1002/oca.843 |
| SSID | ssj0004182 |
| Score | 2.5284534 |
| Snippet | This paper considers a class of nonlinear systems in which the control function is a time-varying state-delay. The optimal control problem is to optimize the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109981 |
| SubjectTerms | Control parameterization Delay systems Numerical optimization Optimal control |
| Title | Optimal state-delay control in nonlinear dynamic systems |
| URI | https://dx.doi.org/10.1016/j.automatica.2021.109981 |
| Volume | 135 |
| WOSCitedRecordID | wos000792896700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5BwgEOVXlUhT7kA7fIVbxrx7vqKapStSWCCoUqN2t3vYsC1EZ5VMm_79g7sU1BAipxseyVZvyYz-PZ8ew3hBwHMVe0Z4RvGYRvIaXG54xr38IgM71uast2QL-G8ekpH4_FT6yfn5XtBOIs48uluH1RU8MYGLtYOvsMc1dKYQD2weiwBbPD9kmGPwMn8LtcBQJhpF-QQK6qgvRJ1skcN4acdlLXjB7JnGfNMLW_mOcll6ss6UiXrgK-yhkMJwv3qz7PLlcSv33FeL7EavzzVY26kUvHnuTXnaFsZPAxUZ2jPKYeKG2kHtbutKAxdW2kK3fKooZDLH68uZ4s93y1SxtcFZU6eEswXafBp1rkLj32P5-tqphwXad2ldSakkJT4jRtkjaNI8FbpN3_Phj_qJfNBtyRyeNdYKGXK_97-Koejl4aEcnoNXmFUwmv7yCwSzZMtkd2GgST-4QjGLwGGDwEgzfJvAoMHoLBQzAckIuvg9GXbz72yvA1eOW5rwT43kgHygapprIrrYHoJ9bwKqqQay1MGmoddU1Pcgj6pWVhrFisNE1ZpJRlb0gLzmneEk8YJg2nQpseC5UNhdKgxAYMjhhMxw9JvH4GiUYi-aKfyU3ymCUOSVBJ3joylSfIfF4_5gSDQhfsJYCjR6WP_uOM78h2Dfb3pDWfLswHsqX_zCez6UcE0V-P6ol7 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+state-delay+control+in+nonlinear+dynamic+systems&rft.jtitle=Automatica+%28Oxford%29&rft.au=Liu%2C+Chongyang&rft.au=Loxton%2C+Ryan&rft.au=Teo%2C+Kok+Lay&rft.au=Wang%2C+Song&rft.date=2022-01-01&rft.issn=0005-1098&rft.volume=135&rft.spage=109981&rft_id=info:doi/10.1016%2Fj.automatica.2021.109981&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2021_109981 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |