Optimal Power Flow of Radial Networks and Its Variations: A Sequential Convex Optimization Approach

This paper proposes a sequential convex optimization method to solve broader classes of optimal power flow (OPF) problems over radial networks. The non-convex branch power flow equation is decomposed as a second-order cone inequality and a non-convex constraint involving the difference of two convex...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid Vol. 8; no. 6; pp. 2974 - 2987
Main Authors: Wei, Wei, Wang, Jianhui, Li, Na, Mei, Shengwei
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1949-3053, 1949-3061
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a sequential convex optimization method to solve broader classes of optimal power flow (OPF) problems over radial networks. The non-convex branch power flow equation is decomposed as a second-order cone inequality and a non-convex constraint involving the difference of two convex functions. Provided with an initial solution offered by an inexact second-order cone programming relaxation model, this approach solves a sequence of convexified penalization problems, where concave terms are approximated by linear functions and updated in each iteration. It could recover a feasible power flow solution, which usually appears to be very close, if not equal, to the global optimal one. Two variations of the OPF problem, in which non-cost related objectives are optimized subject to power flow constraints and the convex relaxation is generally inexact, are elaborated in detail. One is the maximum loadability problem, which is formulated as a special OPF problem that seeks the maximal distance to the boundary of power flow insolvability. The proposed method is shown to outperform commercial nonlinear solvers in terms of robustness and efficiency. The other is the bi-objective OPF problem. A non-parametric scalarization model is suggested, and is further reformulated as an extended OPF problem by convexifying the objective function. It provides a single trade-off solution without any subjective preference. The proposed computation framework also helps retrieve the Pareto front of the bi-objective OPF via the ε-constraint method or the normal boundary intersection method. This paper also discusses extensions for OPF problems over meshed networks based on the semidefinite programming relaxation method.
AbstractList This paper proposes a sequential convex optimization method to solve broader classes of optimal power flow (OPF) problems over radial networks. The non-convex branch power flow equation is decomposed as a second-order cone inequality and a non-convex constraint involving the difference of two convex functions. Provided with an initial solution offered by an inexact second-order cone programming relaxation model, this approach solves a sequence of convexified penalization problems, where concave terms are approximated by linear functions and updated in each iteration. It could recover a feasible power flow solution, which usually appears to be very close, if not equal, to the global optimal one. Two variations of the OPF problem, in which non-cost related objectives are optimized subject to power flow constraints and the convex relaxation is generally inexact, are elaborated in detail. One is the maximum loadability problem, which is formulated as a special OPF problem that seeks the maximal distance to the boundary of power flow insolvability. The proposed method is shown to outperform commercial nonlinear solvers in terms of robustness and efficiency. The other is the bi-objective OPF problem. A non-parametric scalarization model is suggested, and is further reformulated as an extended OPF problem by convexifying the objective function. It provides a single trade-off solution without any subjective preference. The proposed computation framework also helps retrieve the Pareto front of the bi-objective OPF via the ε-constraint method or the normal boundary intersection method. This paper also discusses extensions for OPF problems over meshed networks based on the semidefinite programming relaxation method.
This paper proposes a sequential convex optimization method to solve broader classes of optimal power flow (OPF) problems over radial networks. The non-convex branch power flow equation is decomposed as a second-order cone inequality and a non-convex constraint involving the difference of two convex functions. Provided with an initial solution offered by an inexact second-order cone programming relaxation model, this approach solves a sequence of convexified penalization problems, where concave terms are approximated by linear functions and updated in each iteration. It could recover a feasible power flow solution, which usually appears to be very close, if not equal, to the global optimal one. Two variations of the OPF problem, in which non-cost related objectives are optimized subject to power flow constraints and the convex relaxation is generally inexact, are elaborated in detail. One is the maximum loadability problem, which is formulated as a special OPF problem that seeks the maximal distance to the boundary of power flow insolvability. The proposed method is shown to outperform commercial nonlinear solvers in terms of robustness and efficiency. The other is the bi-objective OPF problem. A non-parametric scalarization model is suggested, and is further reformulated as an extended OPF problem by convexifying the objective function. It provides a single trade-off solution without any subjective preference. The proposed computation framework also helps retrieve the Pareto front of the bi-objective OPF via the [Formula Omitted]-constraint method or the normal boundary intersection method. This paper also discusses extensions for OPF problems over meshed networks based on the semidefinite programming relaxation method.
This paper proposes a sequential convex optimization method to solve broader classes of optimal power flow (OPF) problems over radial networks. The non-convex branch power flow equation is decomposed as a second-order cone inequality and a non-convex constraint involving the difference of two convex functions. Provided with an initial solution offered by an inexact second-order cone programming relaxation model, this approach solves a sequence of convexified penalization problems, where concave terms are approximated by linear functions and updated in each iteration. It could recover a feasible power flow solution, which usually appears to be very close, if not equal, to the global optimal one. Two variations of the OPF problem, in which non-cost related objectives are optimized subject to power flow constraints and the convex relaxation is generally inexact, are elaborated in detail. One is the maximum loadability problem, which is formulated as a special OPF problem that seeks the maximal distance to the boundary of power flow insolvability. The proposed method is shown to outperform commercial nonlinear solvers in terms of robustness and efficiency. The other is the bi-objective OPF problem. A non-parametric scalarization model is suggested, and is further reformulated as an extended OPF problem by convexifying the objective function. It provides a single trade-off solution without any subjective preference. The proposed computation framework also helps retrieve the Pareto front of the bi-objective OPF via the e-constraint method or the normal boundary intersection method. This paper also discusses extensions for OPF problems over meshed networks based on the semidefinite programming relaxation method.
Author Wei Wei
Shengwei Mei
Jianhui Wang
Na Li
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-2426-3660
  surname: Wei
  fullname: Wei, Wei
– sequence: 2
  givenname: Jianhui
  orcidid: 0000-0002-9716-3484
  surname: Wang
  fullname: Wang, Jianhui
– sequence: 3
  givenname: Na
  surname: Li
  fullname: Li, Na
– sequence: 4
  givenname: Shengwei
  surname: Mei
  fullname: Mei, Shengwei
BackLink https://www.osti.gov/biblio/1463673$$D View this record in Osti.gov
BookMark eNp9kM1PAyEQxYmpiVV7N_FC9NwKy7IL3prGjyaNGq1eCWVnI1qhAlr1r5e2xoMH58KEvPfm5beLOs47QOiAkgGlRJ5M7y4GBaH1oKhESQXbQl0qS9lnpKKd352zHdSL8YnkYYxVhewic71I9kXP8Y1fQsDnc7_EvsW3urH58wrS0ofniLVr8DhF_KCD1cl6F0_xEN_B6xu4tFKOvHuHD7xOs19rCR4uFsFr87iPtls9j9D7effQ_fnZdHTZn1xfjEfDSd8wKlJ_RkwpJMhWS1qbZkah4EQCFIxzTrWsdQGNpKIlwFpZy1mpS2Oaqmk0mdWasD10tMn1MVkVjU1gHo13DkxStKxYVbMsOt6IcrfcPib15N-Cy70UlZzXXBCxiiIblQk-xgCtWoSMKXwqStQKucrI1Qq5-kGeLdUfSy6wBpGCtvP_jIcbowWA3zu1EISXnH0DXoqPzA
CODEN ITSGBQ
CitedBy_id crossref_primary_10_1016_j_epsr_2024_110327
crossref_primary_10_1109_TPWRS_2022_3152517
crossref_primary_10_1109_TSP_2024_3352915
crossref_primary_10_32604_ee_2024_058981
crossref_primary_10_1016_j_ijepes_2018_08_018
crossref_primary_10_1002_acs_3881
crossref_primary_10_1016_j_ijepes_2021_106935
crossref_primary_10_1109_TII_2023_3274216
crossref_primary_10_1109_TSG_2023_3252672
crossref_primary_10_1016_j_apenergy_2024_123791
crossref_primary_10_23919_PCMP_2023_000270
crossref_primary_10_1049_iet_rpg_2019_0305
crossref_primary_10_1016_j_compchemeng_2023_108450
crossref_primary_10_1109_TVT_2021_3061367
crossref_primary_10_1109_TPWRS_2020_2975554
crossref_primary_10_3390_en15239017
crossref_primary_10_1109_JIOT_2024_3525060
crossref_primary_10_1016_j_energy_2021_120840
crossref_primary_10_1109_ACCESS_2023_3289720
crossref_primary_10_1016_j_ins_2024_121775
crossref_primary_10_1109_MCS_2022_3187542
crossref_primary_10_1109_TSG_2021_3052576
crossref_primary_10_1002_2050_7038_12095
crossref_primary_10_1016_j_energy_2025_134580
crossref_primary_10_1109_TAC_2021_3053907
crossref_primary_10_1109_TII_2022_3165643
crossref_primary_10_1016_j_ijepes_2020_106543
crossref_primary_10_1109_TIA_2025_3529803
crossref_primary_10_1109_JPROC_2022_3177230
crossref_primary_10_1109_TSG_2021_3061282
crossref_primary_10_1109_TSG_2020_3003399
crossref_primary_10_1109_TSG_2017_2723016
crossref_primary_10_1049_iet_gtd_2018_6015
crossref_primary_10_1109_TPWRS_2021_3133379
crossref_primary_10_1109_TSG_2018_2880909
crossref_primary_10_1109_ACCESS_2019_2958695
crossref_primary_10_1016_j_epsr_2018_07_038
crossref_primary_10_1109_TPWRS_2024_3496752
crossref_primary_10_1109_TPWRS_2019_2952433
crossref_primary_10_1007_s12667_023_00633_9
crossref_primary_10_1109_ACCESS_2018_2854280
crossref_primary_10_1109_JSYST_2021_3138908
crossref_primary_10_1109_TSTE_2023_3237229
crossref_primary_10_1016_j_epsr_2020_106480
crossref_primary_10_1016_j_automatica_2021_109608
crossref_primary_10_1109_TCNS_2025_3526718
crossref_primary_10_1109_TPWRS_2022_3219769
crossref_primary_10_1016_j_segan_2024_101613
crossref_primary_10_1109_TSG_2020_2966742
crossref_primary_10_1109_TPWRS_2022_3220799
crossref_primary_10_1016_j_epsr_2022_107927
crossref_primary_10_1016_j_rser_2020_110098
crossref_primary_10_3390_inventions3030047
crossref_primary_10_1016_j_energy_2021_120465
crossref_primary_10_1109_TPWRS_2023_3266773
crossref_primary_10_1016_j_apenergy_2018_02_170
crossref_primary_10_1109_TSG_2022_3153634
crossref_primary_10_1109_TPWRS_2023_3340113
crossref_primary_10_1016_j_jprocont_2022_05_012
crossref_primary_10_1016_j_epsr_2024_111128
crossref_primary_10_1016_j_est_2023_109718
crossref_primary_10_1080_15325008_2020_1854373
crossref_primary_10_1109_ACCESS_2023_3274738
crossref_primary_10_1016_j_ijepes_2020_106522
crossref_primary_10_1109_ACCESS_2022_3217645
crossref_primary_10_3390_en14164911
crossref_primary_10_1016_j_ejor_2020_01_034
crossref_primary_10_1038_s41467_024_48862_5
crossref_primary_10_1109_TSTE_2021_3087130
crossref_primary_10_1109_ACCESS_2020_2998054
crossref_primary_10_1109_TPWRS_2021_3073081
crossref_primary_10_1109_TSTE_2017_2761179
crossref_primary_10_1109_TSG_2019_2947219
crossref_primary_10_1016_j_ijepes_2019_105394
crossref_primary_10_1109_TSG_2023_3266782
crossref_primary_10_1109_TSG_2021_3123284
crossref_primary_10_3389_fenrg_2021_701149
Cites_doi 10.1109/TPWRS.2016.2595523
10.1109/TPWRS.2014.2372478
10.1109/TPWRS.2015.2411391
10.1109/TPWRS.2011.2160974
10.1109/TPWRS.2013.2255317
10.1007/978-3-642-54455-2_1
10.1109/SmartGridComm.2012.6485951
10.1007/0-387-30065-1_4
10.1109/59.317660
10.1287/opre.2016.1489
10.1109/TPWRS.2012.2233765
10.1109/TPWRS.2015.2390037
10.1109/TPWRS.2013.2282086
10.1109/TPWRS.2015.2463111
10.1109/59.574936
10.1109/TPWRS.2015.2497160
10.1109/59.387897
10.1109/59.744495
10.1109/61.25627
10.1109/HICSS.2016.289
10.1109/59.708745
10.1007/s10107-004-0559-y
10.1007/s12667-012-0057-x
10.1109/TAC.2014.2332712
10.1109/TCNS.2014.2323634
10.1007/s00158-003-0368-6
10.1109/61.19266
10.1007/s12667-012-0056-y
10.1109/TPWRS.2002.800870
10.1007/BF01588250
10.1109/TPWRS.2006.873010
10.1016/j.ijepes.2007.12.003
10.1007/s11081-015-9294-x
10.1109/TPWRS.2014.2320819
10.1137/S1052623496307510
10.1109/61.19265
10.1287/opre.1110.1036
10.1109/59.141737
10.1016/S0377-0427(00)00429-5
10.1049/iet-gtd:20070192
10.1016/S0378-7796(00)00097-3
10.1109/TPWRS.2015.2402640
10.1137/0327068
10.1109/TPWRS.2012.2208205
10.1109/TPWRS.2014.2322051
10.1109/59.744492
10.1109/TPWRS.2016.2574805
10.1109/TPWRS.2013.2274577
10.1109/CDC.2015.7402083
10.1109/TPWRS.2013.2294479
10.1109/TCSI.2008.925941
10.1016/S0377-2217(02)00432-0
10.1007/s10107-005-0581-8
10.1016/S0024-3795(98)10032-0
10.1109/TPAS.1968.292150
10.1109/CACSD.2004.1393890
10.1109/TSTE.2015.2494587
10.1109/TSTE.2016.2605926
10.1016/j.swevo.2011.03.001
10.1109/59.780924
10.1109/TPWRS.2008.926439
10.1109/TPWRS.2015.2505508
10.1109/TPWRS.2006.879234
10.1017/S0962492900002518
10.2140/pjm.1959.9.707
10.1007/978-1-84800-382-8_2
10.1007/s10479-004-5022-1
10.1109/TCNS.2014.2309732
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
OTOTI
DOI 10.1109/TSG.2017.2684183
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 2987
ExternalDocumentID 1463673
10_1109_TSG_2017_2684183
7880545
Genre orig-research
GrantInformation_xml – fundername: NSF CAREER
  grantid: 1553407
  funderid: 10.13039/100000001
– fundername: U.S. Department of Energy’s Office of Electricity Delivery and Energy Reliability
  grantid: DE-OE0000839
  funderid: 10.13039/100000015
– fundername: National Natural Science Foundation of China
  grantid: 51621065
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
RIG
OTOTI
ID FETCH-LOGICAL-c318t-b0c489e9fa917cdb1e2509ee235551a97a2ed918f0e3f979b4a4ccd6dda0b7a03
IEDL.DBID RIE
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000413244600044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-3053
IngestDate Thu May 18 22:30:12 EDT 2023
Mon Jun 30 09:36:37 EDT 2025
Sat Nov 29 03:45:52 EST 2025
Tue Nov 18 20:55:51 EST 2025
Tue Aug 26 16:37:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-b0c489e9fa917cdb1e2509ee235551a97a2ed918f0e3f979b4a4ccd6dda0b7a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-06CH11357
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
National Science Foundation (NSF)
National Natural Science Foundation of China (NNSFC)
ORCID 0000-0002-9716-3484
0000-0002-2426-3660
0000000297163484
0000000224263660
PQID 1955758080
PQPubID 2040408
PageCount 14
ParticipantIDs proquest_journals_1955758080
crossref_primary_10_1109_TSG_2017_2684183
crossref_citationtrail_10_1109_TSG_2017_2684183
osti_scitechconnect_1463673
ieee_primary_7880545
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
– name: United States
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
pham dinh (ref33) 2014; 8342
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
(ref57) 2016
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref32
caramia (ref67) 2008
ref2
ref1
ref39
ref38
ref71
ref70
ref68
ref24
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref28
ref27
sojoudi (ref21) 0
ref29
ref60
ref62
ref61
References_xml – ident: ref50
  doi: 10.1109/TPWRS.2016.2595523
– ident: ref14
  doi: 10.1109/TPWRS.2014.2372478
– ident: ref26
  doi: 10.1109/TPWRS.2015.2411391
– ident: ref10
  doi: 10.1109/TPWRS.2011.2160974
– ident: ref12
  doi: 10.1109/TPWRS.2013.2255317
– ident: ref34
  doi: 10.1007/978-3-642-54455-2_1
– ident: ref22
  doi: 10.1109/SmartGridComm.2012.6485951
– ident: ref65
  doi: 10.1007/0-387-30065-1_4
– ident: ref41
  doi: 10.1109/59.317660
– ident: ref11
  doi: 10.1287/opre.2016.1489
– ident: ref31
  doi: 10.1109/TPWRS.2012.2233765
– volume: 8342
  year: 2014
  ident: ref33
  publication-title: Transactions on Computational Intelligence XIII Lecture Notes in Computer Science
– ident: ref15
  doi: 10.1109/TPWRS.2015.2390037
– ident: ref20
  doi: 10.1109/TPWRS.2013.2282086
– ident: ref16
  doi: 10.1109/TPWRS.2015.2463111
– ident: ref63
  doi: 10.1109/59.574936
– ident: ref29
  doi: 10.1109/TPWRS.2015.2497160
– ident: ref61
  doi: 10.1109/59.387897
– ident: ref6
  doi: 10.1109/59.744495
– ident: ref2
  doi: 10.1109/61.25627
– ident: ref32
  doi: 10.1109/HICSS.2016.289
– ident: ref40
  doi: 10.1109/59.708745
– ident: ref71
  doi: 10.1007/s10107-004-0559-y
– ident: ref8
  doi: 10.1007/s12667-012-0057-x
– ident: ref23
  doi: 10.1109/TAC.2014.2332712
– ident: ref18
  doi: 10.1109/TCNS.2014.2323634
– ident: ref66
  doi: 10.1007/s00158-003-0368-6
– ident: ref4
  doi: 10.1109/61.19266
– ident: ref7
  doi: 10.1007/s12667-012-0056-y
– ident: ref42
  doi: 10.1109/TPWRS.2002.800870
– ident: ref38
  doi: 10.1007/BF01588250
– ident: ref70
  doi: 10.1109/TPWRS.2006.873010
– ident: ref9
  doi: 10.1016/j.ijepes.2007.12.003
– ident: ref36
  doi: 10.1007/s11081-015-9294-x
– ident: ref13
  doi: 10.1109/TPWRS.2014.2320819
– ident: ref68
  doi: 10.1137/S1052623496307510
– ident: ref3
  doi: 10.1109/61.19265
– ident: ref30
  doi: 10.1287/opre.1110.1036
– ident: ref60
  doi: 10.1109/59.141737
– ident: ref44
  doi: 10.1016/S0377-0427(00)00429-5
– ident: ref62
  doi: 10.1049/iet-gtd:20070192
– ident: ref43
  doi: 10.1016/S0378-7796(00)00097-3
– year: 2016
  ident: ref57
  publication-title: The moos website
– ident: ref25
  doi: 10.1109/TPWRS.2015.2402640
– ident: ref39
  doi: 10.1137/0327068
– ident: ref19
  doi: 10.1109/TPWRS.2012.2208205
– ident: ref27
  doi: 10.1109/TPWRS.2014.2322051
– ident: ref5
  doi: 10.1109/59.744492
– ident: ref24
  doi: 10.1109/TPWRS.2016.2574805
– ident: ref59
  doi: 10.1109/TPWRS.2013.2274577
– ident: ref28
  doi: 10.1109/CDC.2015.7402083
– ident: ref46
  doi: 10.1109/TPWRS.2013.2294479
– ident: ref64
  doi: 10.1109/TCSI.2008.925941
– ident: ref55
  doi: 10.1016/S0377-2217(02)00432-0
– ident: ref58
  doi: 10.1007/s10107-005-0581-8
– ident: ref37
  doi: 10.1016/S0024-3795(98)10032-0
– ident: ref1
  doi: 10.1109/TPAS.1968.292150
– ident: ref56
  doi: 10.1109/CACSD.2004.1393890
– ident: ref52
  doi: 10.1109/TSTE.2015.2494587
– ident: ref51
  doi: 10.1109/TSTE.2016.2605926
– ident: ref69
  doi: 10.1016/j.swevo.2011.03.001
– ident: ref47
  doi: 10.1109/59.780924
– ident: ref49
  doi: 10.1109/TPWRS.2008.926439
– ident: ref53
  doi: 10.1109/TPWRS.2015.2505508
– ident: ref48
  doi: 10.1109/TPWRS.2006.879234
– year: 0
  ident: ref21
  publication-title: Convexification of Generalized Network Flow Problem Preprint
– ident: ref45
  doi: 10.1017/S0962492900002518
– ident: ref54
  doi: 10.2140/pjm.1959.9.707
– start-page: 11
  year: 2008
  ident: ref67
  article-title: Multi-objective optimization
  publication-title: Multi-objective Management in Freight Logistics
  doi: 10.1007/978-1-84800-382-8_2
– ident: ref35
  doi: 10.1007/s10479-004-5022-1
– ident: ref17
  doi: 10.1109/TCNS.2014.2309732
SSID ssj0000333629
Score 2.5400112
Snippet This paper proposes a sequential convex optimization method to solve broader classes of optimal power flow (OPF) problems over radial networks. The non-convex...
SourceID osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2974
SubjectTerms Bi-objective optimization
Computational geometry
Computational modeling
Convex analysis
Convex functions
convex optimization
Convexity
difference-of-convex programming
Iterative methods
Linear functions
Linear programming
Mathematical models
maximum loadability
Networks
optimal power flow
Optimization
Power flow
Programming
radial network
Reactive power
Relaxation method (mathematics)
Robustness
Semidefinite programming
Solvers
Title Optimal Power Flow of Radial Networks and Its Variations: A Sequential Convex Optimization Approach
URI https://ieeexplore.ieee.org/document/7880545
https://www.proquest.com/docview/1955758080
https://www.osti.gov/biblio/1463673
Volume 8
WOSCitedRecordID wos000413244600044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1949-3061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333629
  issn: 1949-3053
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB4ck0N6aJpHieO07CGXQhXrsdJqczOhbgLBNbEbchPaFxRcK9hyk5-fmZVsWlIKPUmH2ZXY2d15fwNwLmMnXClUoCKeBqSTByh3ZBBaLuM4yrLUeRDXWzEe5w8PctKBz9taGGutTz6zF_TqY_mm0mtylQ3QXEMNI92BHSGyplZr608JkwTvYumDyJzC-WmyiUqGcjCbfqU0LnFB4CZRnvwhhXxbFXxUeKheXclezoz2_-8P38HbVp9kw2YDHEDHLg7hzW8og0egv-G18BOJJtQRjY3m1ROrHLsjVII5Gzd54CtWLgy7qVfsHq3nxo13yYZs6lOta6K8ogT1Z-Zna6s32bCFJD-G76Mvs6vroO2tEGg8xXWgQs1zaaUr0V7TRkUWdSFpbYz6RxqVUpSxNTLKXWgTJ4VUvORam8yYMlSiDJP30F1UC3sCLLdKOoGrq5zmLndKoVVpDEeZyEWmVA8Gm7UudAs8Tv0v5oU3QEJZIHcK4k7RcqcHn7YjHhvQjX_QHhEbtnQtB3rQJ3YWqEcQGK6mrCFdk6GTZAIHnW24XLRndlVEMkXdlXA2T_8-Zx_26MtNJeIZdOvl2n6AXf2r_rFafvTb8QVg-dw4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxQxDLZKiwQceLWIbQvkwAWJ6c4jM5lwW1VsW7HdVnRBvUWTl4S07KDuFPj5tTPZFYiqEqeZgxNFcRzbsf0Z4K3MvfCN0InOeJmQTZ6g3pFJ6rjM86yqSh9AXCdiOq0vL-X5Brxf18I450LymTug3xDLt625pqeyIbpraGGU92CLOmfFaq31i0paFHgbyxBG5hTQL4tVXDKVw9nFESVyiQOCN8nq4i89FBqr4KdFsfrnUg6aZvzk_9b4FB5Hi5KN-iPwDDbc4jk8-gNncBvMGV4M35HonHqisfG8_cVazz4TLsGcTftM8CVrFpaddEv2Ff3n_iHvAxuxi5Bs3RHlIaWo_2Zhtli_yUYRlHwHvow_zg6Pk9hdITEox12iU8Nr6aRv0GMzVmcOrSHpXI4WSJk1UjS5szKrfeoKL4XUvOHG2MraJtWiSYsXsLloF-4lsNpp6QXurvaG-9prjX6ltRy1IheV1gMYrvZamQg9Th0w5iq4IKlUyB1F3FGROwN4tx7xo4fduIN2m9iwposcGMAesVOhJUFwuIbyhkxHrk5RCRy0v-KyilK7VJks0XolpM3d2-d8Aw-OZ6cTNTmZftqDh7SKvi5xHza7q2v3Cu6bn9235dXrcDRvAAAT34E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Power+Flow+of+Radial+Networks+and+Its+Variations%3A+A+Sequential+Convex+Optimization+Approach&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Wei%2C+Wei&rft.au=Wang%2C+Jianhui&rft.au=Li%2C+Na&rft.au=Mei%2C+Shengwei&rft.date=2017-11-01&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=8&rft.issue=6&rft.spage=2974&rft.epage=2987&rft_id=info:doi/10.1109%2FTSG.2017.2684183&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSG_2017_2684183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon