Optimal Power Flow of Radial Networks and Its Variations: A Sequential Convex Optimization Approach
This paper proposes a sequential convex optimization method to solve broader classes of optimal power flow (OPF) problems over radial networks. The non-convex branch power flow equation is decomposed as a second-order cone inequality and a non-convex constraint involving the difference of two convex...
Saved in:
| Published in: | IEEE transactions on smart grid Vol. 8; no. 6; pp. 2974 - 2987 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1949-3053, 1949-3061 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes a sequential convex optimization method to solve broader classes of optimal power flow (OPF) problems over radial networks. The non-convex branch power flow equation is decomposed as a second-order cone inequality and a non-convex constraint involving the difference of two convex functions. Provided with an initial solution offered by an inexact second-order cone programming relaxation model, this approach solves a sequence of convexified penalization problems, where concave terms are approximated by linear functions and updated in each iteration. It could recover a feasible power flow solution, which usually appears to be very close, if not equal, to the global optimal one. Two variations of the OPF problem, in which non-cost related objectives are optimized subject to power flow constraints and the convex relaxation is generally inexact, are elaborated in detail. One is the maximum loadability problem, which is formulated as a special OPF problem that seeks the maximal distance to the boundary of power flow insolvability. The proposed method is shown to outperform commercial nonlinear solvers in terms of robustness and efficiency. The other is the bi-objective OPF problem. A non-parametric scalarization model is suggested, and is further reformulated as an extended OPF problem by convexifying the objective function. It provides a single trade-off solution without any subjective preference. The proposed computation framework also helps retrieve the Pareto front of the bi-objective OPF via the ε-constraint method or the normal boundary intersection method. This paper also discusses extensions for OPF problems over meshed networks based on the semidefinite programming relaxation method. |
|---|---|
| AbstractList | This paper proposes a sequential convex optimization method to solve broader classes of optimal power flow (OPF) problems over radial networks. The non-convex branch power flow equation is decomposed as a second-order cone inequality and a non-convex constraint involving the difference of two convex functions. Provided with an initial solution offered by an inexact second-order cone programming relaxation model, this approach solves a sequence of convexified penalization problems, where concave terms are approximated by linear functions and updated in each iteration. It could recover a feasible power flow solution, which usually appears to be very close, if not equal, to the global optimal one. Two variations of the OPF problem, in which non-cost related objectives are optimized subject to power flow constraints and the convex relaxation is generally inexact, are elaborated in detail. One is the maximum loadability problem, which is formulated as a special OPF problem that seeks the maximal distance to the boundary of power flow insolvability. The proposed method is shown to outperform commercial nonlinear solvers in terms of robustness and efficiency. The other is the bi-objective OPF problem. A non-parametric scalarization model is suggested, and is further reformulated as an extended OPF problem by convexifying the objective function. It provides a single trade-off solution without any subjective preference. The proposed computation framework also helps retrieve the Pareto front of the bi-objective OPF via the ε-constraint method or the normal boundary intersection method. This paper also discusses extensions for OPF problems over meshed networks based on the semidefinite programming relaxation method. This paper proposes a sequential convex optimization method to solve broader classes of optimal power flow (OPF) problems over radial networks. The non-convex branch power flow equation is decomposed as a second-order cone inequality and a non-convex constraint involving the difference of two convex functions. Provided with an initial solution offered by an inexact second-order cone programming relaxation model, this approach solves a sequence of convexified penalization problems, where concave terms are approximated by linear functions and updated in each iteration. It could recover a feasible power flow solution, which usually appears to be very close, if not equal, to the global optimal one. Two variations of the OPF problem, in which non-cost related objectives are optimized subject to power flow constraints and the convex relaxation is generally inexact, are elaborated in detail. One is the maximum loadability problem, which is formulated as a special OPF problem that seeks the maximal distance to the boundary of power flow insolvability. The proposed method is shown to outperform commercial nonlinear solvers in terms of robustness and efficiency. The other is the bi-objective OPF problem. A non-parametric scalarization model is suggested, and is further reformulated as an extended OPF problem by convexifying the objective function. It provides a single trade-off solution without any subjective preference. The proposed computation framework also helps retrieve the Pareto front of the bi-objective OPF via the [Formula Omitted]-constraint method or the normal boundary intersection method. This paper also discusses extensions for OPF problems over meshed networks based on the semidefinite programming relaxation method. This paper proposes a sequential convex optimization method to solve broader classes of optimal power flow (OPF) problems over radial networks. The non-convex branch power flow equation is decomposed as a second-order cone inequality and a non-convex constraint involving the difference of two convex functions. Provided with an initial solution offered by an inexact second-order cone programming relaxation model, this approach solves a sequence of convexified penalization problems, where concave terms are approximated by linear functions and updated in each iteration. It could recover a feasible power flow solution, which usually appears to be very close, if not equal, to the global optimal one. Two variations of the OPF problem, in which non-cost related objectives are optimized subject to power flow constraints and the convex relaxation is generally inexact, are elaborated in detail. One is the maximum loadability problem, which is formulated as a special OPF problem that seeks the maximal distance to the boundary of power flow insolvability. The proposed method is shown to outperform commercial nonlinear solvers in terms of robustness and efficiency. The other is the bi-objective OPF problem. A non-parametric scalarization model is suggested, and is further reformulated as an extended OPF problem by convexifying the objective function. It provides a single trade-off solution without any subjective preference. The proposed computation framework also helps retrieve the Pareto front of the bi-objective OPF via the e-constraint method or the normal boundary intersection method. This paper also discusses extensions for OPF problems over meshed networks based on the semidefinite programming relaxation method. |
| Author | Wei Wei Shengwei Mei Jianhui Wang Na Li |
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-2426-3660 surname: Wei fullname: Wei, Wei – sequence: 2 givenname: Jianhui orcidid: 0000-0002-9716-3484 surname: Wang fullname: Wang, Jianhui – sequence: 3 givenname: Na surname: Li fullname: Li, Na – sequence: 4 givenname: Shengwei surname: Mei fullname: Mei, Shengwei |
| BackLink | https://www.osti.gov/biblio/1463673$$D View this record in Osti.gov |
| BookMark | eNp9kM1PAyEQxYmpiVV7N_FC9NwKy7IL3prGjyaNGq1eCWVnI1qhAlr1r5e2xoMH58KEvPfm5beLOs47QOiAkgGlRJ5M7y4GBaH1oKhESQXbQl0qS9lnpKKd352zHdSL8YnkYYxVhewic71I9kXP8Y1fQsDnc7_EvsW3urH58wrS0ofniLVr8DhF_KCD1cl6F0_xEN_B6xu4tFKOvHuHD7xOs19rCR4uFsFr87iPtls9j9D7effQ_fnZdHTZn1xfjEfDSd8wKlJ_RkwpJMhWS1qbZkah4EQCFIxzTrWsdQGNpKIlwFpZy1mpS2Oaqmk0mdWasD10tMn1MVkVjU1gHo13DkxStKxYVbMsOt6IcrfcPib15N-Cy70UlZzXXBCxiiIblQk-xgCtWoSMKXwqStQKucrI1Qq5-kGeLdUfSy6wBpGCtvP_jIcbowWA3zu1EISXnH0DXoqPzA |
| CODEN | ITSGBQ |
| CitedBy_id | crossref_primary_10_1016_j_epsr_2024_110327 crossref_primary_10_1109_TPWRS_2022_3152517 crossref_primary_10_1109_TSP_2024_3352915 crossref_primary_10_32604_ee_2024_058981 crossref_primary_10_1016_j_ijepes_2018_08_018 crossref_primary_10_1002_acs_3881 crossref_primary_10_1016_j_ijepes_2021_106935 crossref_primary_10_1109_TII_2023_3274216 crossref_primary_10_1109_TSG_2023_3252672 crossref_primary_10_1016_j_apenergy_2024_123791 crossref_primary_10_23919_PCMP_2023_000270 crossref_primary_10_1049_iet_rpg_2019_0305 crossref_primary_10_1016_j_compchemeng_2023_108450 crossref_primary_10_1109_TVT_2021_3061367 crossref_primary_10_1109_TPWRS_2020_2975554 crossref_primary_10_3390_en15239017 crossref_primary_10_1109_JIOT_2024_3525060 crossref_primary_10_1016_j_energy_2021_120840 crossref_primary_10_1109_ACCESS_2023_3289720 crossref_primary_10_1016_j_ins_2024_121775 crossref_primary_10_1109_MCS_2022_3187542 crossref_primary_10_1109_TSG_2021_3052576 crossref_primary_10_1002_2050_7038_12095 crossref_primary_10_1016_j_energy_2025_134580 crossref_primary_10_1109_TAC_2021_3053907 crossref_primary_10_1109_TII_2022_3165643 crossref_primary_10_1016_j_ijepes_2020_106543 crossref_primary_10_1109_TIA_2025_3529803 crossref_primary_10_1109_JPROC_2022_3177230 crossref_primary_10_1109_TSG_2021_3061282 crossref_primary_10_1109_TSG_2020_3003399 crossref_primary_10_1109_TSG_2017_2723016 crossref_primary_10_1049_iet_gtd_2018_6015 crossref_primary_10_1109_TPWRS_2021_3133379 crossref_primary_10_1109_TSG_2018_2880909 crossref_primary_10_1109_ACCESS_2019_2958695 crossref_primary_10_1016_j_epsr_2018_07_038 crossref_primary_10_1109_TPWRS_2024_3496752 crossref_primary_10_1109_TPWRS_2019_2952433 crossref_primary_10_1007_s12667_023_00633_9 crossref_primary_10_1109_ACCESS_2018_2854280 crossref_primary_10_1109_JSYST_2021_3138908 crossref_primary_10_1109_TSTE_2023_3237229 crossref_primary_10_1016_j_epsr_2020_106480 crossref_primary_10_1016_j_automatica_2021_109608 crossref_primary_10_1109_TCNS_2025_3526718 crossref_primary_10_1109_TPWRS_2022_3219769 crossref_primary_10_1016_j_segan_2024_101613 crossref_primary_10_1109_TSG_2020_2966742 crossref_primary_10_1109_TPWRS_2022_3220799 crossref_primary_10_1016_j_epsr_2022_107927 crossref_primary_10_1016_j_rser_2020_110098 crossref_primary_10_3390_inventions3030047 crossref_primary_10_1016_j_energy_2021_120465 crossref_primary_10_1109_TPWRS_2023_3266773 crossref_primary_10_1016_j_apenergy_2018_02_170 crossref_primary_10_1109_TSG_2022_3153634 crossref_primary_10_1109_TPWRS_2023_3340113 crossref_primary_10_1016_j_jprocont_2022_05_012 crossref_primary_10_1016_j_epsr_2024_111128 crossref_primary_10_1016_j_est_2023_109718 crossref_primary_10_1080_15325008_2020_1854373 crossref_primary_10_1109_ACCESS_2023_3274738 crossref_primary_10_1016_j_ijepes_2020_106522 crossref_primary_10_1109_ACCESS_2022_3217645 crossref_primary_10_3390_en14164911 crossref_primary_10_1016_j_ejor_2020_01_034 crossref_primary_10_1038_s41467_024_48862_5 crossref_primary_10_1109_TSTE_2021_3087130 crossref_primary_10_1109_ACCESS_2020_2998054 crossref_primary_10_1109_TPWRS_2021_3073081 crossref_primary_10_1109_TSTE_2017_2761179 crossref_primary_10_1109_TSG_2019_2947219 crossref_primary_10_1016_j_ijepes_2019_105394 crossref_primary_10_1109_TSG_2023_3266782 crossref_primary_10_1109_TSG_2021_3123284 crossref_primary_10_3389_fenrg_2021_701149 |
| Cites_doi | 10.1109/TPWRS.2016.2595523 10.1109/TPWRS.2014.2372478 10.1109/TPWRS.2015.2411391 10.1109/TPWRS.2011.2160974 10.1109/TPWRS.2013.2255317 10.1007/978-3-642-54455-2_1 10.1109/SmartGridComm.2012.6485951 10.1007/0-387-30065-1_4 10.1109/59.317660 10.1287/opre.2016.1489 10.1109/TPWRS.2012.2233765 10.1109/TPWRS.2015.2390037 10.1109/TPWRS.2013.2282086 10.1109/TPWRS.2015.2463111 10.1109/59.574936 10.1109/TPWRS.2015.2497160 10.1109/59.387897 10.1109/59.744495 10.1109/61.25627 10.1109/HICSS.2016.289 10.1109/59.708745 10.1007/s10107-004-0559-y 10.1007/s12667-012-0057-x 10.1109/TAC.2014.2332712 10.1109/TCNS.2014.2323634 10.1007/s00158-003-0368-6 10.1109/61.19266 10.1007/s12667-012-0056-y 10.1109/TPWRS.2002.800870 10.1007/BF01588250 10.1109/TPWRS.2006.873010 10.1016/j.ijepes.2007.12.003 10.1007/s11081-015-9294-x 10.1109/TPWRS.2014.2320819 10.1137/S1052623496307510 10.1109/61.19265 10.1287/opre.1110.1036 10.1109/59.141737 10.1016/S0377-0427(00)00429-5 10.1049/iet-gtd:20070192 10.1016/S0378-7796(00)00097-3 10.1109/TPWRS.2015.2402640 10.1137/0327068 10.1109/TPWRS.2012.2208205 10.1109/TPWRS.2014.2322051 10.1109/59.744492 10.1109/TPWRS.2016.2574805 10.1109/TPWRS.2013.2274577 10.1109/CDC.2015.7402083 10.1109/TPWRS.2013.2294479 10.1109/TCSI.2008.925941 10.1016/S0377-2217(02)00432-0 10.1007/s10107-005-0581-8 10.1016/S0024-3795(98)10032-0 10.1109/TPAS.1968.292150 10.1109/CACSD.2004.1393890 10.1109/TSTE.2015.2494587 10.1109/TSTE.2016.2605926 10.1016/j.swevo.2011.03.001 10.1109/59.780924 10.1109/TPWRS.2008.926439 10.1109/TPWRS.2015.2505508 10.1109/TPWRS.2006.879234 10.1017/S0962492900002518 10.2140/pjm.1959.9.707 10.1007/978-1-84800-382-8_2 10.1007/s10479-004-5022-1 10.1109/TCNS.2014.2309732 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States) |
| CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States) |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M OTOTI |
| DOI | 10.1109/TSG.2017.2684183 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace OSTI.GOV |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1949-3061 |
| EndPage | 2987 |
| ExternalDocumentID | 1463673 10_1109_TSG_2017_2684183 7880545 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF CAREER grantid: 1553407 funderid: 10.13039/100000001 – fundername: U.S. Department of Energy’s Office of Electricity Delivery and Energy Reliability grantid: DE-OE0000839 funderid: 10.13039/100000015 – fundername: National Natural Science Foundation of China grantid: 51621065 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M RIG OTOTI |
| ID | FETCH-LOGICAL-c318t-b0c489e9fa917cdb1e2509ee235551a97a2ed918f0e3f979b4a4ccd6dda0b7a03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 91 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000413244600044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1949-3053 |
| IngestDate | Thu May 18 22:30:12 EDT 2023 Mon Jun 30 09:36:37 EDT 2025 Sat Nov 29 03:45:52 EST 2025 Tue Nov 18 20:55:51 EST 2025 Tue Aug 26 16:37:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c318t-b0c489e9fa917cdb1e2509ee235551a97a2ed918f0e3f979b4a4ccd6dda0b7a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-06CH11357 USDOE Office of Energy Efficiency and Renewable Energy (EERE) National Science Foundation (NSF) National Natural Science Foundation of China (NNSFC) |
| ORCID | 0000-0002-9716-3484 0000-0002-2426-3660 0000000297163484 0000000224263660 |
| PQID | 1955758080 |
| PQPubID | 2040408 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_1955758080 crossref_primary_10_1109_TSG_2017_2684183 crossref_citationtrail_10_1109_TSG_2017_2684183 osti_scitechconnect_1463673 ieee_primary_7880545 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-01 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway – name: United States |
| PublicationTitle | IEEE transactions on smart grid |
| PublicationTitleAbbrev | TSG |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 pham dinh (ref33) 2014; 8342 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 (ref57) 2016 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref32 caramia (ref67) 2008 ref2 ref1 ref39 ref38 ref71 ref70 ref68 ref24 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref28 ref27 sojoudi (ref21) 0 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref50 doi: 10.1109/TPWRS.2016.2595523 – ident: ref14 doi: 10.1109/TPWRS.2014.2372478 – ident: ref26 doi: 10.1109/TPWRS.2015.2411391 – ident: ref10 doi: 10.1109/TPWRS.2011.2160974 – ident: ref12 doi: 10.1109/TPWRS.2013.2255317 – ident: ref34 doi: 10.1007/978-3-642-54455-2_1 – ident: ref22 doi: 10.1109/SmartGridComm.2012.6485951 – ident: ref65 doi: 10.1007/0-387-30065-1_4 – ident: ref41 doi: 10.1109/59.317660 – ident: ref11 doi: 10.1287/opre.2016.1489 – ident: ref31 doi: 10.1109/TPWRS.2012.2233765 – volume: 8342 year: 2014 ident: ref33 publication-title: Transactions on Computational Intelligence XIII Lecture Notes in Computer Science – ident: ref15 doi: 10.1109/TPWRS.2015.2390037 – ident: ref20 doi: 10.1109/TPWRS.2013.2282086 – ident: ref16 doi: 10.1109/TPWRS.2015.2463111 – ident: ref63 doi: 10.1109/59.574936 – ident: ref29 doi: 10.1109/TPWRS.2015.2497160 – ident: ref61 doi: 10.1109/59.387897 – ident: ref6 doi: 10.1109/59.744495 – ident: ref2 doi: 10.1109/61.25627 – ident: ref32 doi: 10.1109/HICSS.2016.289 – ident: ref40 doi: 10.1109/59.708745 – ident: ref71 doi: 10.1007/s10107-004-0559-y – ident: ref8 doi: 10.1007/s12667-012-0057-x – ident: ref23 doi: 10.1109/TAC.2014.2332712 – ident: ref18 doi: 10.1109/TCNS.2014.2323634 – ident: ref66 doi: 10.1007/s00158-003-0368-6 – ident: ref4 doi: 10.1109/61.19266 – ident: ref7 doi: 10.1007/s12667-012-0056-y – ident: ref42 doi: 10.1109/TPWRS.2002.800870 – ident: ref38 doi: 10.1007/BF01588250 – ident: ref70 doi: 10.1109/TPWRS.2006.873010 – ident: ref9 doi: 10.1016/j.ijepes.2007.12.003 – ident: ref36 doi: 10.1007/s11081-015-9294-x – ident: ref13 doi: 10.1109/TPWRS.2014.2320819 – ident: ref68 doi: 10.1137/S1052623496307510 – ident: ref3 doi: 10.1109/61.19265 – ident: ref30 doi: 10.1287/opre.1110.1036 – ident: ref60 doi: 10.1109/59.141737 – ident: ref44 doi: 10.1016/S0377-0427(00)00429-5 – ident: ref62 doi: 10.1049/iet-gtd:20070192 – ident: ref43 doi: 10.1016/S0378-7796(00)00097-3 – year: 2016 ident: ref57 publication-title: The moos website – ident: ref25 doi: 10.1109/TPWRS.2015.2402640 – ident: ref39 doi: 10.1137/0327068 – ident: ref19 doi: 10.1109/TPWRS.2012.2208205 – ident: ref27 doi: 10.1109/TPWRS.2014.2322051 – ident: ref5 doi: 10.1109/59.744492 – ident: ref24 doi: 10.1109/TPWRS.2016.2574805 – ident: ref59 doi: 10.1109/TPWRS.2013.2274577 – ident: ref28 doi: 10.1109/CDC.2015.7402083 – ident: ref46 doi: 10.1109/TPWRS.2013.2294479 – ident: ref64 doi: 10.1109/TCSI.2008.925941 – ident: ref55 doi: 10.1016/S0377-2217(02)00432-0 – ident: ref58 doi: 10.1007/s10107-005-0581-8 – ident: ref37 doi: 10.1016/S0024-3795(98)10032-0 – ident: ref1 doi: 10.1109/TPAS.1968.292150 – ident: ref56 doi: 10.1109/CACSD.2004.1393890 – ident: ref52 doi: 10.1109/TSTE.2015.2494587 – ident: ref51 doi: 10.1109/TSTE.2016.2605926 – ident: ref69 doi: 10.1016/j.swevo.2011.03.001 – ident: ref47 doi: 10.1109/59.780924 – ident: ref49 doi: 10.1109/TPWRS.2008.926439 – ident: ref53 doi: 10.1109/TPWRS.2015.2505508 – ident: ref48 doi: 10.1109/TPWRS.2006.879234 – year: 0 ident: ref21 publication-title: Convexification of Generalized Network Flow Problem Preprint – ident: ref45 doi: 10.1017/S0962492900002518 – ident: ref54 doi: 10.2140/pjm.1959.9.707 – start-page: 11 year: 2008 ident: ref67 article-title: Multi-objective optimization publication-title: Multi-objective Management in Freight Logistics doi: 10.1007/978-1-84800-382-8_2 – ident: ref35 doi: 10.1007/s10479-004-5022-1 – ident: ref17 doi: 10.1109/TCNS.2014.2309732 |
| SSID | ssj0000333629 |
| Score | 2.5400112 |
| Snippet | This paper proposes a sequential convex optimization method to solve broader classes of optimal power flow (OPF) problems over radial networks. The non-convex... |
| SourceID | osti proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2974 |
| SubjectTerms | Bi-objective optimization Computational geometry Computational modeling Convex analysis Convex functions convex optimization Convexity difference-of-convex programming Iterative methods Linear functions Linear programming Mathematical models maximum loadability Networks optimal power flow Optimization Power flow Programming radial network Reactive power Relaxation method (mathematics) Robustness Semidefinite programming Solvers |
| Title | Optimal Power Flow of Radial Networks and Its Variations: A Sequential Convex Optimization Approach |
| URI | https://ieeexplore.ieee.org/document/7880545 https://www.proquest.com/docview/1955758080 https://www.osti.gov/biblio/1463673 |
| Volume | 8 |
| WOSCitedRecordID | wos000413244600044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1949-3061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333629 issn: 1949-3053 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB4ck0N6aJpHieO07CGXQhXrsdJqczOhbgLBNbEbchPaFxRcK9hyk5-fmZVsWlIKPUmH2ZXY2d15fwNwLmMnXClUoCKeBqSTByh3ZBBaLuM4yrLUeRDXWzEe5w8PctKBz9taGGutTz6zF_TqY_mm0mtylQ3QXEMNI92BHSGyplZr608JkwTvYumDyJzC-WmyiUqGcjCbfqU0LnFB4CZRnvwhhXxbFXxUeKheXclezoz2_-8P38HbVp9kw2YDHEDHLg7hzW8og0egv-G18BOJJtQRjY3m1ROrHLsjVII5Gzd54CtWLgy7qVfsHq3nxo13yYZs6lOta6K8ogT1Z-Zna6s32bCFJD-G76Mvs6vroO2tEGg8xXWgQs1zaaUr0V7TRkUWdSFpbYz6RxqVUpSxNTLKXWgTJ4VUvORam8yYMlSiDJP30F1UC3sCLLdKOoGrq5zmLndKoVVpDEeZyEWmVA8Gm7UudAs8Tv0v5oU3QEJZIHcK4k7RcqcHn7YjHhvQjX_QHhEbtnQtB3rQJ3YWqEcQGK6mrCFdk6GTZAIHnW24XLRndlVEMkXdlXA2T_8-Zx_26MtNJeIZdOvl2n6AXf2r_rFafvTb8QVg-dw4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxQxDLZKiwQceLWIbQvkwAWJ6c4jM5lwW1VsW7HdVnRBvUWTl4S07KDuFPj5tTPZFYiqEqeZgxNFcRzbsf0Z4K3MvfCN0InOeJmQTZ6g3pFJ6rjM86yqSh9AXCdiOq0vL-X5Brxf18I450LymTug3xDLt625pqeyIbpraGGU92CLOmfFaq31i0paFHgbyxBG5hTQL4tVXDKVw9nFESVyiQOCN8nq4i89FBqr4KdFsfrnUg6aZvzk_9b4FB5Hi5KN-iPwDDbc4jk8-gNncBvMGV4M35HonHqisfG8_cVazz4TLsGcTftM8CVrFpaddEv2Ff3n_iHvAxuxi5Bs3RHlIaWo_2Zhtli_yUYRlHwHvow_zg6Pk9hdITEox12iU8Nr6aRv0GMzVmcOrSHpXI4WSJk1UjS5szKrfeoKL4XUvOHG2MraJtWiSYsXsLloF-4lsNpp6QXurvaG-9prjX6ltRy1IheV1gMYrvZamQg9Th0w5iq4IKlUyB1F3FGROwN4tx7xo4fduIN2m9iwposcGMAesVOhJUFwuIbyhkxHrk5RCRy0v-KyilK7VJks0XolpM3d2-d8Aw-OZ6cTNTmZftqDh7SKvi5xHza7q2v3Cu6bn9235dXrcDRvAAAT34E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Power+Flow+of+Radial+Networks+and+Its+Variations%3A+A+Sequential+Convex+Optimization+Approach&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Wei%2C+Wei&rft.au=Wang%2C+Jianhui&rft.au=Li%2C+Na&rft.au=Mei%2C+Shengwei&rft.date=2017-11-01&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=8&rft.issue=6&rft.spage=2974&rft.epage=2987&rft_id=info:doi/10.1109%2FTSG.2017.2684183&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSG_2017_2684183 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |