Subgradient averaging for multi-agent optimisation with different constraint sets
We consider a multi-agent setting with agents exchanging information over a possibly time-varying network, aiming at minimising a separable objective function subject to constraints. To achieve this objective we propose a novel subgradient averaging algorithm that allows for non-differentiable objec...
Uloženo v:
| Vydáno v: | Automatica (Oxford) Ročník 131; s. 109738 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.09.2021
|
| Témata: | |
| ISSN: | 0005-1098, 1873-2836 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider a multi-agent setting with agents exchanging information over a possibly time-varying network, aiming at minimising a separable objective function subject to constraints. To achieve this objective we propose a novel subgradient averaging algorithm that allows for non-differentiable objective functions and different constraint sets per agent. Allowing different constraints per agent simultaneously with a time-varying communication network constitutes a distinctive feature of our approach, extending existing results on distributed subgradient methods. To highlight the necessity of dealing with a different constraint set within a distributed optimisation context, we analyse a problem instance where an existing algorithm does not exhibit a convergent behaviour if adapted to account for different constraint sets. For our proposed iterative scheme we show asymptotic convergence of the iterates to a minimum of the underlying optimisation problem for step sizes of the form ηk+1, η>0. We also analyse this scheme under a step size choice of ηk+1, η>0, and establish a convergence rate of O(lnkk) in objective value. To demonstrate the efficacy of the proposed method, we investigate a robust regression problem and an ℓ2 regression problem with regularisation. |
|---|---|
| ISSN: | 0005-1098 1873-2836 |
| DOI: | 10.1016/j.automatica.2021.109738 |