Value iteration and adaptive optimal output regulation with assured convergence rate
In this paper, we investigate the learning-based adaptive optimal output regulation problem with convergence rate requirement for disturbed linear continuous-time systems. An adaptive optimal control approach is proposed based on reinforcement learning and adaptive dynamic programming to learn the o...
Saved in:
| Published in: | Control engineering practice Vol. 121; p. 105042 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.04.2022
|
| Subjects: | |
| ISSN: | 0967-0661, 1873-6939 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we investigate the learning-based adaptive optimal output regulation problem with convergence rate requirement for disturbed linear continuous-time systems. An adaptive optimal control approach is proposed based on reinforcement learning and adaptive dynamic programming to learn the optimal regulator with assured convergence rate. The above-mentioned problem is successfully solved by tackling a static optimization problem to find the optimal solution to the regulator equations, and a dynamic and constrained optimization problem to obtain the optimal feedback control gain. Without requiring on the accurate system dynamics or a stabilizing feedback control gain, a novel online value iteration algorithm is proposed, which can learn both the optimal feedback control gain and the corresponding feedforward control gain using measurable data. Moreover, the output of the closed-loop system is guaranteed to converge faster or equal to a predefined convergence rate set by user. Finally, the numerical analysis on a LCL coupled inverter-based distributed generation system shows that the proposed approach can achieve desired disturbance rejection and tracking performance. |
|---|---|
| AbstractList | In this paper, we investigate the learning-based adaptive optimal output regulation problem with convergence rate requirement for disturbed linear continuous-time systems. An adaptive optimal control approach is proposed based on reinforcement learning and adaptive dynamic programming to learn the optimal regulator with assured convergence rate. The above-mentioned problem is successfully solved by tackling a static optimization problem to find the optimal solution to the regulator equations, and a dynamic and constrained optimization problem to obtain the optimal feedback control gain. Without requiring on the accurate system dynamics or a stabilizing feedback control gain, a novel online value iteration algorithm is proposed, which can learn both the optimal feedback control gain and the corresponding feedforward control gain using measurable data. Moreover, the output of the closed-loop system is guaranteed to converge faster or equal to a predefined convergence rate set by user. Finally, the numerical analysis on a LCL coupled inverter-based distributed generation system shows that the proposed approach can achieve desired disturbance rejection and tracking performance. |
| ArticleNumber | 105042 |
| Author | Gao, Weinan Hämäläinen, Timo T. Jiang, Yi Na, Jing Lewis, Frank L. Stojanovic, Vladimir Zhang, Di |
| Author_xml | – sequence: 1 givenname: Yi orcidid: 0000-0001-8927-0119 surname: Jiang fullname: Jiang, Yi email: yjian22@cityu.edu.hk organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region of China – sequence: 2 givenname: Weinan orcidid: 0000-0001-7921-018X surname: Gao fullname: Gao, Weinan email: wgao@fit.edu organization: Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA – sequence: 3 givenname: Jing surname: Na fullname: Na, Jing email: najing25@163.com, najing25@kust.edu.cn organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China – sequence: 4 givenname: Di surname: Zhang fullname: Zhang, Di email: d.zhang@jyu.fi organization: Faculty of Mathematical Information Technology, University of Jyväskylä, P.O. Box 35, Jyväskylä, FIN-40014, Finland – sequence: 5 givenname: Timo T. surname: Hämäläinen fullname: Hämäläinen, Timo T. email: timo.t.hamalainen@jyu.fi organization: Faculty of Mathematical Information Technology, University of Jyväskylä, P.O. Box 35, Jyväskylä, FIN-40014, Finland – sequence: 6 givenname: Vladimir surname: Stojanovic fullname: Stojanovic, Vladimir email: vladostojanovic@mts.rs organization: Faculty of Mechanical and Civil Engineering, University of Kragujevac, Kraljevo 36000, Serbia – sequence: 7 givenname: Frank L. surname: Lewis fullname: Lewis, Frank L. email: lewis@uta.edu organization: UTA Research Institute, the University of Texas at Arlington, Fort Worth, TX 76118, USA |
| BookMark | eNqNkF1LwzAUhoNMcJv-h_yBziRd0-RG0OEXDLyZ3oY0OZ0ZtS1JWvHfm1lB8EavDryc9-GcZ4FmbdcCQpiSFSWUXx5WJgXtvvfarBhhNMUFWbMTNKeizDMuczlDcyJ5mRHO6RlahHAgqSolnaPdi24GwC6C19F1LdatxdrqProRcJfGm25wN8R-iNjDfmimtXcXX7EOYfBgcbpgBL-H1gBOGDhHp7VuAlx8zyV6vrvdbR6y7dP94-Z6m5mciphpWRQM1lILWRu6rkRBRWFFzSvGuLGQQ1URU4q6zCXTpBScS6vLnBptOWM0X6KriWt8F4KHWhkXv-6LXrtGUaKOjtRB_ThSR0dqcpQA4heg9-lh__Gf6s1UhfTg6MCrYNzRgHUeTFS2c39DPgHnj4vJ |
| CitedBy_id | crossref_primary_10_1109_TAC_2024_3441668 crossref_primary_10_1016_j_conengprac_2023_105551 crossref_primary_10_1109_TAI_2024_3443004 crossref_primary_10_1016_j_conengprac_2023_105830 crossref_primary_10_1016_j_conengprac_2023_105675 crossref_primary_10_3390_aerospace11070558 crossref_primary_10_1016_j_conengprac_2022_105314 crossref_primary_10_1016_j_conengprac_2023_105437 crossref_primary_10_1007_s40747_023_00980_1 crossref_primary_10_1109_TSMC_2024_3522968 crossref_primary_10_1109_ACCESS_2024_3364058 crossref_primary_10_1016_j_isatra_2024_01_012 crossref_primary_10_1109_TAC_2025_3558612 crossref_primary_10_1109_JAS_2025_125132 crossref_primary_10_1109_TSMC_2023_3270289 crossref_primary_10_3390_biomimetics10040214 crossref_primary_10_1016_j_conengprac_2022_105260 crossref_primary_10_1016_j_automatica_2022_110564 crossref_primary_10_1049_cth2_12682 crossref_primary_10_1016_j_eswa_2022_118099 crossref_primary_10_1016_j_conengprac_2022_105423 crossref_primary_10_1016_j_conengprac_2022_105425 crossref_primary_10_1016_j_conengprac_2023_105724 crossref_primary_10_1109_TASE_2022_3220523 crossref_primary_10_1007_s10846_023_01862_x crossref_primary_10_1109_TAC_2025_3535281 crossref_primary_10_1016_j_conengprac_2023_105493 crossref_primary_10_1016_j_conengprac_2023_105495 crossref_primary_10_3390_s22176650 crossref_primary_10_1016_j_conengprac_2023_105772 crossref_primary_10_1007_s10846_022_01755_5 crossref_primary_10_1016_j_conengprac_2023_105774 crossref_primary_10_1016_j_conengprac_2024_105974 crossref_primary_10_1007_s10846_022_01702_4 crossref_primary_10_1016_j_jfranklin_2024_106771 crossref_primary_10_1007_s11071_022_07638_6 crossref_primary_10_1109_ACCESS_2022_3208115 crossref_primary_10_1016_j_conengprac_2023_105490 crossref_primary_10_1109_TFUZZ_2023_3344123 crossref_primary_10_1080_00207721_2025_2480192 crossref_primary_10_1109_TMECH_2024_3404821 crossref_primary_10_1002_acs_3550 crossref_primary_10_1016_j_ins_2023_03_074 crossref_primary_10_1109_TAC_2024_3399630 crossref_primary_10_1109_TCSI_2024_3492255 crossref_primary_10_1016_j_engappai_2022_104953 crossref_primary_10_1109_TIV_2024_3382876 crossref_primary_10_1007_s00170_022_09535_z crossref_primary_10_1016_j_jfranklin_2022_07_055 crossref_primary_10_1016_j_conengprac_2023_105591 crossref_primary_10_1109_TASE_2022_3189048 crossref_primary_10_1007_s10845_024_02492_2 crossref_primary_10_1016_j_conengprac_2023_105513 crossref_primary_10_3390_en16062862 crossref_primary_10_3390_app12178781 crossref_primary_10_1109_TNNLS_2023_3338237 crossref_primary_10_1007_s12555_022_0871_4 crossref_primary_10_1109_TNNLS_2022_3195357 crossref_primary_10_1109_TCNS_2024_3425659 crossref_primary_10_1016_j_conengprac_2023_105483 crossref_primary_10_1109_TASE_2022_3204531 crossref_primary_10_1016_j_jfranklin_2022_09_062 crossref_primary_10_1109_TASE_2022_3205902 crossref_primary_10_1016_j_jfranklin_2022_09_063 crossref_primary_10_1109_TIE_2023_3292873 crossref_primary_10_1016_j_conengprac_2023_105520 crossref_primary_10_1002_oca_3005 crossref_primary_10_1016_j_automatica_2022_110768 crossref_primary_10_1016_j_engappai_2022_104936 crossref_primary_10_1016_j_oceaneng_2024_117034 crossref_primary_10_1016_j_eswa_2022_117883 crossref_primary_10_1109_TCSII_2024_3483909 crossref_primary_10_1007_s10846_022_01732_y crossref_primary_10_1007_s11768_022_00081_3 crossref_primary_10_3390_app132111923 crossref_primary_10_1016_j_ins_2025_122453 crossref_primary_10_1016_j_automatica_2025_112168 crossref_primary_10_1109_TSMC_2024_3387395 crossref_primary_10_1007_s11071_024_09321_4 crossref_primary_10_1007_s12555_021_1095_8 crossref_primary_10_1016_j_automatica_2024_111690 crossref_primary_10_1109_TNNLS_2022_3183020 crossref_primary_10_1016_j_engappai_2022_105579 crossref_primary_10_1016_j_conengprac_2023_105735 crossref_primary_10_1007_s00034_022_02176_3 crossref_primary_10_1016_j_engappai_2023_105858 crossref_primary_10_1016_j_conengprac_2023_105616 crossref_primary_10_1016_j_automatica_2024_111848 crossref_primary_10_1016_j_neunet_2023_04_021 crossref_primary_10_1109_JAS_2023_123759 crossref_primary_10_1016_j_eswa_2023_122422 crossref_primary_10_1109_TVT_2022_3199465 crossref_primary_10_1016_j_sysconle_2024_105819 crossref_primary_10_1109_JAS_2023_123651 crossref_primary_10_1016_j_knosys_2022_108624 crossref_primary_10_1109_TSMC_2022_3205782 crossref_primary_10_1016_j_conengprac_2022_105288 crossref_primary_10_1109_TMECH_2022_3169812 crossref_primary_10_1109_TASE_2023_3337440 crossref_primary_10_1016_j_amc_2022_127479 crossref_primary_10_1109_LCSYS_2024_3523244 crossref_primary_10_1016_j_automatica_2023_111490 crossref_primary_10_1016_j_neucom_2022_11_057 |
| Cites_doi | 10.1109/TAC.2016.2548662 10.1109/TAC.2019.2905215 10.1109/TII.2017.2761852 10.1109/TIE.2018.2856198 10.1109/TAC.2008.921036 10.1016/j.automatica.2016.12.009 10.1109/TAC.1968.1098829 10.1109/TIE.2020.3001840 10.1109/TIE.2010.2050414 10.1109/TSMC.2019.2946382 10.1137/0315033 10.1109/TNNLS.2018.2850520 10.1016/j.automatica.2014.05.011 10.1109/TAC.2014.2317301 10.1561/2600000023 10.1109/TNNLS.2017.2761718 10.1016/0165-0114(93)90183-I 10.1016/S0167-6911(02)00130-5 10.1109/TSMCB.2008.926614 10.1109/TNN.2004.839354 10.1109/TCST.2008.922584 10.1109/TCYB.2018.2890046 10.1561/2600000022 10.1109/TII.2019.2912018 10.1002/rnc.5639 10.1016/j.automatica.2020.109149 10.1109/TNNLS.2014.2358227 10.1109/TNNLS.2017.2773458 10.1109/TNNLS.2017.2771459 10.1109/TNNLS.2020.3017461 10.1109/TSMC.2020.3042876 10.1016/S0165-0114(98)00159-6 10.1016/j.automatica.2016.05.003 10.1109/TCYB.2017.2712188 10.1016/j.conengprac.2017.08.006 10.1016/j.automatica.2014.02.015 10.1109/TNNLS.2018.2861945 10.1109/TAC.2018.2799526 10.1016/0005-1098(76)90006-6 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.conengprac.2021.105042 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-6939 |
| ExternalDocumentID | 10_1016_j_conengprac_2021_105042 S096706612100294X |
| GrantInformation_xml | – fundername: Serbian Ministry of Education, Science and Technological Development grantid: 451-03-9/2021-14/200108 funderid: http://dx.doi.org/10.13039/501100004564 – fundername: National Natural Science Foundation of China grantid: 61922037; 61873115 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: U.S. National Science Foundation grantid: CMMI-2138206 funderid: http://dx.doi.org/10.13039/100000001 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c318t-a9552e49a89fc14b85185d8f6b226cde3ebb0c78f7392a078669da731cad62213 |
| ISICitedReferencesCount | 113 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792789000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0967-0661 |
| IngestDate | Sat Nov 29 07:07:19 EST 2025 Tue Nov 18 21:37:46 EST 2025 Fri Feb 23 02:40:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Value iteration Adaptive dynamic programming Optimal output regulation Reinforcement learning Assured convergence rate |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c318t-a9552e49a89fc14b85185d8f6b226cde3ebb0c78f7392a078669da731cad62213 |
| ORCID | 0000-0001-8927-0119 0000-0001-7921-018X |
| ParticipantIDs | crossref_citationtrail_10_1016_j_conengprac_2021_105042 crossref_primary_10_1016_j_conengprac_2021_105042 elsevier_sciencedirect_doi_10_1016_j_conengprac_2021_105042 |
| PublicationCentury | 2000 |
| PublicationDate | April 2022 2022-04-00 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Control engineering practice |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kiumarsi, Vamvoudakis, Modares, Lewis (b28) 2018; 29 Wang, Huang (b39) 2005; 16 Wang, Zhao, Qiao (b41) 2021; 31 Chen, Modares, Xie, Lewis, Wan, Xie (b4) 2019; 64 Fan, Wu, Jiang, Chai, Lewis (b5) 2020; 50 Hong, Xu, Huang (b14) 2002; 46 Liu, Xue, Zhao, Luo, Wei (b32) 2021; 51 Wu, Fan, Jiang, Chai (b43) 2019; 45 Jiang, Fan, Gao, Chai, Lewis (b21) 2020; 121 Vamvoudakis, Kokolakis (b36) 2020; 8 Wang, He, Liu (b38) 2017; 47 Woo, Chung, Lin (b42) 2000; 115 Jiang, Zhang, Wu, Zhang, Xue, Chai, Lewis (b23) 2021 Zhou, Duan, Lin (b46) 2008; 53 Kiumarsi, Lewis (b25) 2015; 26 Kiumarsi, Lewis, Jiang (b26) 2017; 78 Gao, Jiang, Lewis, Wang (b11) 2018; 63 Modares, Lewis (b33) 2014; 59 Kiumarsi, Lewis, Modares, Karimpour, Naghibi-Sistani (b27) 2014; 50 Huang (b15) 2004 Jiang, Fan, Chai, Lewis, Li (b19) 2018; 29 Gao, Mynuddin, Wunsch, Jiang (b12) 2021 Knobloch, Isidori, Flockerzi (b30) 2012 Wang, Ha, Qiao (b37) 2020; 68 Xue, Fan, Lopez, Li, Jiang, Chai, Lewis (b44) 2020; 16 Park, Yoo, Park, Choi (b35) 2009; 17 Jiang, Fan, Chai, Lewis (b18) 2019; 66 Jiang, Fan, Chai, Li, Lewis (b20) 2018; 14 Wang, Qiao, Cheng (b40) 2020 Francis (b6) 1977; 15 Gao, Jiang (b8) 2016; 61 Huang, Yan, Huang (b16) 2017; 68 Gao, Jiang (b10) 2019; 30 Kleinman (b29) 1968; 13 Al-Tamimi, Lewis, Abu-Khalaf (b2) 2008; 38 Bian, Jiang (b3) 2016; 71 He, Tan, Xu, Wang (b13) 1993; 56 Li, Chai, Lewis, Ding, Jiang (b31) 2018; 30 Francis, Wonham (b7) 1976; 12 Jiang, Bian, Gao (b17) 2020; 8 Jiang, Kiumarsi, Fan, Chai, Li, Lewis (b22) 2020; 50 Modares, Lewis (b34) 2014; 50 Kamalapurkar, Walters, Rosenfeld, Dixon (b24) 2018 Ahmed, Massoud, Finney, Williams (b1) 2010; 58 Gao, Jiang (b9) 2018; 29 Xue, Fan, Mejia, Jiang, Chai, Lewis (b45) 2021; 32 Gao (10.1016/j.conengprac.2021.105042_b9) 2018; 29 Francis (10.1016/j.conengprac.2021.105042_b6) 1977; 15 Kiumarsi (10.1016/j.conengprac.2021.105042_b25) 2015; 26 Vamvoudakis (10.1016/j.conengprac.2021.105042_b36) 2020; 8 Wang (10.1016/j.conengprac.2021.105042_b39) 2005; 16 Huang (10.1016/j.conengprac.2021.105042_b15) 2004 Gao (10.1016/j.conengprac.2021.105042_b11) 2018; 63 Modares (10.1016/j.conengprac.2021.105042_b33) 2014; 59 Wang (10.1016/j.conengprac.2021.105042_b37) 2020; 68 Huang (10.1016/j.conengprac.2021.105042_b16) 2017; 68 Kleinman (10.1016/j.conengprac.2021.105042_b29) 1968; 13 Jiang (10.1016/j.conengprac.2021.105042_b23) 2021 Wang (10.1016/j.conengprac.2021.105042_b41) 2021; 31 Wu (10.1016/j.conengprac.2021.105042_b43) 2019; 45 Jiang (10.1016/j.conengprac.2021.105042_b19) 2018; 29 Xue (10.1016/j.conengprac.2021.105042_b44) 2020; 16 Xue (10.1016/j.conengprac.2021.105042_b45) 2021; 32 Francis (10.1016/j.conengprac.2021.105042_b7) 1976; 12 Li (10.1016/j.conengprac.2021.105042_b31) 2018; 30 Jiang (10.1016/j.conengprac.2021.105042_b17) 2020; 8 Hong (10.1016/j.conengprac.2021.105042_b14) 2002; 46 Chen (10.1016/j.conengprac.2021.105042_b4) 2019; 64 Jiang (10.1016/j.conengprac.2021.105042_b18) 2019; 66 Jiang (10.1016/j.conengprac.2021.105042_b22) 2020; 50 Liu (10.1016/j.conengprac.2021.105042_b32) 2021; 51 Kiumarsi (10.1016/j.conengprac.2021.105042_b26) 2017; 78 Park (10.1016/j.conengprac.2021.105042_b35) 2009; 17 Jiang (10.1016/j.conengprac.2021.105042_b20) 2018; 14 Kiumarsi (10.1016/j.conengprac.2021.105042_b27) 2014; 50 Kamalapurkar (10.1016/j.conengprac.2021.105042_b24) 2018 Modares (10.1016/j.conengprac.2021.105042_b34) 2014; 50 Fan (10.1016/j.conengprac.2021.105042_b5) 2020; 50 Gao (10.1016/j.conengprac.2021.105042_b12) 2021 Wang (10.1016/j.conengprac.2021.105042_b38) 2017; 47 He (10.1016/j.conengprac.2021.105042_b13) 1993; 56 Jiang (10.1016/j.conengprac.2021.105042_b21) 2020; 121 Kiumarsi (10.1016/j.conengprac.2021.105042_b28) 2018; 29 Woo (10.1016/j.conengprac.2021.105042_b42) 2000; 115 Ahmed (10.1016/j.conengprac.2021.105042_b1) 2010; 58 Knobloch (10.1016/j.conengprac.2021.105042_b30) 2012 Gao (10.1016/j.conengprac.2021.105042_b8) 2016; 61 Zhou (10.1016/j.conengprac.2021.105042_b46) 2008; 53 Bian (10.1016/j.conengprac.2021.105042_b3) 2016; 71 Wang (10.1016/j.conengprac.2021.105042_b40) 2020 Al-Tamimi (10.1016/j.conengprac.2021.105042_b2) 2008; 38 Gao (10.1016/j.conengprac.2021.105042_b10) 2019; 30 |
| References_xml | – volume: 15 start-page: 486 year: 1977 end-page: 505 ident: b6 article-title: The linear multivariable regulator problem publication-title: SIAM Journal on Control and Optimization – volume: 38 start-page: 943 year: 2008 end-page: 949 ident: b2 article-title: Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) – volume: 61 start-page: 4164 year: 2016 end-page: 4169 ident: b8 article-title: Adaptive dynamic programming and adaptive optimal output regulation of linear systems publication-title: IEEE Transactions on Automatic Control – volume: 30 start-page: 938 year: 2019 end-page: 945 ident: b10 article-title: Adaptive optimal output regulation of time-delay systems via measurement feedback publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2021 ident: b23 article-title: -based minimal energy adaptive control with preset convergence rate publication-title: IEEE Transactions on Cybernetics – volume: 32 start-page: 4334 year: 2021 end-page: 4346 ident: b45 article-title: Off-policy reinforcement learning for tracking in continuous-time systems on two time-scales publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 50 start-page: 1167 year: 2014 end-page: 1175 ident: b27 article-title: Reinforcement publication-title: Automatica – year: 2012 ident: b30 article-title: Topics in control theory, vol. 22 – volume: 29 start-page: 4607 year: 2018 end-page: 4620 ident: b19 article-title: Tracking control for linear discrete-time networked control systems with unknown dynamics and dropout publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 115 start-page: 321 year: 2000 end-page: 326 ident: b42 article-title: A PID type fuzzy controller with self-tuning scaling factors publication-title: Fuzzy Sets & Systems – volume: 68 start-page: 46 year: 2017 end-page: 62 ident: b16 article-title: Finite-time control of underactuated spacecraft hovering publication-title: Control Engineering Practice – volume: 50 start-page: 3147 year: 2020 end-page: 3156 ident: b22 article-title: Optimal output regulation of linear discrete-time systems with unknown dynamics using reinforcement learning publication-title: IEEE Transactions on Cybernetics – volume: 59 start-page: 3051 year: 2014 end-page: 3056 ident: b33 article-title: Linear quadratic tracking control of partially-unknown continuous-time systems using reinforcement learning publication-title: IEEE Transactions on Automatic Control – volume: 53 start-page: 1548 year: 2008 end-page: 1554 ident: b46 article-title: A parametric Lyapunov equation approach to the design of low gain feedback publication-title: IEEE Transactions on Automatic Control – year: 2021 ident: b12 article-title: Reinforcement learning-based cooperative optimal output regulation via distributed adaptive internal model publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 14 start-page: 1974 year: 2018 end-page: 1989 ident: b20 article-title: Data-driven flotation industrial process operational optimal control based on reinforcement learning publication-title: IEEE Transactions on Industrial Informatics – volume: 26 start-page: 140 year: 2015 end-page: 151 ident: b25 article-title: Actor–critic-based optimal tracking for partially unknown nonlinear discrete-time systems publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 16 start-page: 195 year: 2005 end-page: 202 ident: b39 article-title: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form publication-title: IEEE Transactions on Neural Networks – volume: 12 start-page: 457 year: 1976 end-page: 465 ident: b7 article-title: The internal model principle of control theory publication-title: Automatica – volume: 121 year: 2020 ident: b21 article-title: Cooperative adaptive optimal output regulation of discrete-time nonlinear multi-agent systems publication-title: Automatica – volume: 13 start-page: 114 year: 1968 end-page: 115 ident: b29 article-title: On an iterative technique for riccati equation computations publication-title: IEEE Transactions on Automatic Control – volume: 30 start-page: 1308 year: 2018 end-page: 1320 ident: b31 article-title: Off-policy interleaved publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 51 start-page: 142 year: 2021 end-page: 160 ident: b32 article-title: Adaptive dynamic programming for control: A survey and recent advances publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 16 start-page: 3085 year: 2020 end-page: 3099 ident: b44 article-title: New methods for optimal operational control of industrial processes using reinforcement learning on two time-scales publication-title: IEEE Transactions on Industrial Informatics – volume: 56 start-page: 37 year: 1993 end-page: 46 ident: b13 article-title: Fuzzy self-tuning of PID controllers publication-title: Fuzzy Sets & Systems – volume: 68 start-page: 7362 year: 2020 end-page: 7369 ident: b37 article-title: Data-driven iterative adaptive critic control toward an urban wastewater treatment plant publication-title: IEEE Transactions on Industrial Electronics – volume: 58 start-page: 1359 year: 2010 end-page: 1370 ident: b1 article-title: A modified stationary reference frame-based predictive current control with zero steady-state error for LCL coupled inverter-based distributed generation systems publication-title: IEEE Transactions on Industrial Electronics – volume: 8 start-page: 1 year: 2020 end-page: 175 ident: b36 article-title: Synchronous reinforcement learning-based control for cognitive autonomy publication-title: Foundations and Trends in Systems and Control – year: 2020 ident: b40 article-title: An approximate neuro-optimal solution of discounted guaranteed cost control design publication-title: IEEE Transactions on Cybernetics – volume: 63 start-page: 3581 year: 2018 end-page: 3587 ident: b11 article-title: Leader-to-formation stability of multi-agent systems: An adaptive optimal control approach publication-title: IEEE Transactions on Automatic Control – volume: 45 start-page: 1128 year: 2019 end-page: 1141 ident: b43 article-title: Data-driven dual-rate control for mixed separation thickening process in a wireless network environment publication-title: Acta Automatica Sinica – year: 2018 ident: b24 article-title: Reinforcement learning for optimal feedback control: A Lyapunov-based approach – volume: 50 start-page: 1780 year: 2014 end-page: 1792 ident: b34 article-title: Optimal tracking control of nonlinear partially-unknown constrained-input systems using integral reinforcement learning publication-title: Automatica – volume: 31 start-page: 6773 year: 2021 end-page: 6787 ident: b41 article-title: Intelligent optimal tracking with asymmetric constraints of a nonlinear wastewater treatment system publication-title: International Journal of Robust and Nonlinear Control – volume: 46 start-page: 243 year: 2002 end-page: 253 ident: b14 article-title: Finite-time control for robot manipulators publication-title: Systems & Control Letters – volume: 47 start-page: 3429 year: 2017 end-page: 3451 ident: b38 article-title: Adaptive critic nonlinear robust control: A survey publication-title: IEEE Transactions on Cybernetics – year: 2004 ident: b15 article-title: Nonlinear output regulation: Theory and applications – volume: 71 start-page: 348 year: 2016 end-page: 360 ident: b3 article-title: Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design publication-title: Automatica – volume: 29 start-page: 2614 year: 2018 end-page: 2624 ident: b9 article-title: Learning-based adaptive optimal tracking control of strict-feedback nonlinear systems publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 78 start-page: 144 year: 2017 end-page: 152 ident: b26 article-title: Control of linear discrete-time systems: Off-policy reinforcement learning publication-title: Automatica – volume: 66 start-page: 4587 year: 2019 end-page: 4599 ident: b18 article-title: Dual-rate operational optimal control for flotation industrial process with unknown operational model publication-title: IEEE Transactions on Industrial Electronics – volume: 50 start-page: 4033 year: 2020 end-page: 4042 ident: b5 article-title: Model-free optimal output regulation for linear discrete-time lossy networked control systems publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 64 start-page: 4423 year: 2019 end-page: 4438 ident: b4 article-title: Reinforcement learning-based adaptive optimal exponential tracking control of linear systems with unknown dynamics publication-title: IEEE Transactions on Automatic Control – volume: 29 start-page: 2042 year: 2018 end-page: 2062 ident: b28 article-title: Optimal and autonomous control using reinforcement learning: A survey publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 8 start-page: 176 year: 2020 end-page: 284 ident: b17 article-title: Learning-based control: A tutorial and some recent results publication-title: Foundations and Trends in Systems and Control – volume: 17 start-page: 207 year: 2009 end-page: 214 ident: b35 article-title: Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty publication-title: IEEE Transactions on Control Systems Technology – volume: 61 start-page: 4164 issue: 12 year: 2016 ident: 10.1016/j.conengprac.2021.105042_b8 article-title: Adaptive dynamic programming and adaptive optimal output regulation of linear systems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2548662 – year: 2021 ident: 10.1016/j.conengprac.2021.105042_b12 article-title: Reinforcement learning-based cooperative optimal output regulation via distributed adaptive internal model publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2004 ident: 10.1016/j.conengprac.2021.105042_b15 – year: 2021 ident: 10.1016/j.conengprac.2021.105042_b23 article-title: H∞-based minimal energy adaptive control with preset convergence rate publication-title: IEEE Transactions on Cybernetics – volume: 64 start-page: 4423 issue: 11 year: 2019 ident: 10.1016/j.conengprac.2021.105042_b4 article-title: Reinforcement learning-based adaptive optimal exponential tracking control of linear systems with unknown dynamics publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2019.2905215 – volume: 14 start-page: 1974 issue: 5 year: 2018 ident: 10.1016/j.conengprac.2021.105042_b20 article-title: Data-driven flotation industrial process operational optimal control based on reinforcement learning publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2017.2761852 – volume: 66 start-page: 4587 issue: 6 year: 2019 ident: 10.1016/j.conengprac.2021.105042_b18 article-title: Dual-rate operational optimal control for flotation industrial process with unknown operational model publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2018.2856198 – volume: 53 start-page: 1548 issue: 6 year: 2008 ident: 10.1016/j.conengprac.2021.105042_b46 article-title: A parametric Lyapunov equation approach to the design of low gain feedback publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2008.921036 – volume: 78 start-page: 144 year: 2017 ident: 10.1016/j.conengprac.2021.105042_b26 article-title: H∞ Control of linear discrete-time systems: Off-policy reinforcement learning publication-title: Automatica doi: 10.1016/j.automatica.2016.12.009 – volume: 13 start-page: 114 issue: 1 year: 1968 ident: 10.1016/j.conengprac.2021.105042_b29 article-title: On an iterative technique for riccati equation computations publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1968.1098829 – volume: 68 start-page: 7362 issue: 8 year: 2020 ident: 10.1016/j.conengprac.2021.105042_b37 article-title: Data-driven iterative adaptive critic control toward an urban wastewater treatment plant publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2020.3001840 – volume: 58 start-page: 1359 issue: 4 year: 2010 ident: 10.1016/j.conengprac.2021.105042_b1 article-title: A modified stationary reference frame-based predictive current control with zero steady-state error for LCL coupled inverter-based distributed generation systems publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2010.2050414 – volume: 50 start-page: 4033 issue: 11 year: 2020 ident: 10.1016/j.conengprac.2021.105042_b5 article-title: Model-free optimal output regulation for linear discrete-time lossy networked control systems publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2019.2946382 – volume: 15 start-page: 486 issue: 3 year: 1977 ident: 10.1016/j.conengprac.2021.105042_b6 article-title: The linear multivariable regulator problem publication-title: SIAM Journal on Control and Optimization doi: 10.1137/0315033 – volume: 30 start-page: 938 issue: 3 year: 2019 ident: 10.1016/j.conengprac.2021.105042_b10 article-title: Adaptive optimal output regulation of time-delay systems via measurement feedback publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2850520 – volume: 50 start-page: 1780 issue: 7 year: 2014 ident: 10.1016/j.conengprac.2021.105042_b34 article-title: Optimal tracking control of nonlinear partially-unknown constrained-input systems using integral reinforcement learning publication-title: Automatica doi: 10.1016/j.automatica.2014.05.011 – year: 2012 ident: 10.1016/j.conengprac.2021.105042_b30 – volume: 59 start-page: 3051 issue: 11 year: 2014 ident: 10.1016/j.conengprac.2021.105042_b33 article-title: Linear quadratic tracking control of partially-unknown continuous-time systems using reinforcement learning publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2014.2317301 – volume: 8 start-page: 176 issue: 3 year: 2020 ident: 10.1016/j.conengprac.2021.105042_b17 article-title: Learning-based control: A tutorial and some recent results publication-title: Foundations and Trends in Systems and Control doi: 10.1561/2600000023 – volume: 29 start-page: 2614 issue: 6 year: 2018 ident: 10.1016/j.conengprac.2021.105042_b9 article-title: Learning-based adaptive optimal tracking control of strict-feedback nonlinear systems publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2761718 – volume: 56 start-page: 37 issue: 1 year: 1993 ident: 10.1016/j.conengprac.2021.105042_b13 article-title: Fuzzy self-tuning of PID controllers publication-title: Fuzzy Sets & Systems doi: 10.1016/0165-0114(93)90183-I – volume: 46 start-page: 243 issue: 4 year: 2002 ident: 10.1016/j.conengprac.2021.105042_b14 article-title: Finite-time control for robot manipulators publication-title: Systems & Control Letters doi: 10.1016/S0167-6911(02)00130-5 – volume: 38 start-page: 943 issue: 4 year: 2008 ident: 10.1016/j.conengprac.2021.105042_b2 article-title: Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2008.926614 – volume: 16 start-page: 195 issue: 1 year: 2005 ident: 10.1016/j.conengprac.2021.105042_b39 article-title: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2004.839354 – volume: 17 start-page: 207 issue: 1 year: 2009 ident: 10.1016/j.conengprac.2021.105042_b35 article-title: Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2008.922584 – volume: 50 start-page: 3147 issue: 7 year: 2020 ident: 10.1016/j.conengprac.2021.105042_b22 article-title: Optimal output regulation of linear discrete-time systems with unknown dynamics using reinforcement learning publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2890046 – volume: 8 start-page: 1 issue: 1–2 year: 2020 ident: 10.1016/j.conengprac.2021.105042_b36 article-title: Synchronous reinforcement learning-based control for cognitive autonomy publication-title: Foundations and Trends in Systems and Control doi: 10.1561/2600000022 – volume: 45 start-page: 1128 issue: 6 year: 2019 ident: 10.1016/j.conengprac.2021.105042_b43 article-title: Data-driven dual-rate control for mixed separation thickening process in a wireless network environment publication-title: Acta Automatica Sinica – volume: 16 start-page: 3085 issue: 5 year: 2020 ident: 10.1016/j.conengprac.2021.105042_b44 article-title: New methods for optimal operational control of industrial processes using reinforcement learning on two time-scales publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2912018 – volume: 31 start-page: 6773 issue: 14 year: 2021 ident: 10.1016/j.conengprac.2021.105042_b41 article-title: Intelligent optimal tracking with asymmetric constraints of a nonlinear wastewater treatment system publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.5639 – volume: 121 year: 2020 ident: 10.1016/j.conengprac.2021.105042_b21 article-title: Cooperative adaptive optimal output regulation of discrete-time nonlinear multi-agent systems publication-title: Automatica doi: 10.1016/j.automatica.2020.109149 – volume: 26 start-page: 140 issue: 1 year: 2015 ident: 10.1016/j.conengprac.2021.105042_b25 article-title: Actor–critic-based optimal tracking for partially unknown nonlinear discrete-time systems publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2014.2358227 – volume: 29 start-page: 2042 issue: 6 year: 2018 ident: 10.1016/j.conengprac.2021.105042_b28 article-title: Optimal and autonomous control using reinforcement learning: A survey publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2773458 – volume: 29 start-page: 4607 issue: 10 year: 2018 ident: 10.1016/j.conengprac.2021.105042_b19 article-title: Tracking control for linear discrete-time networked control systems with unknown dynamics and dropout publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2771459 – volume: 32 start-page: 4334 issue: 10 year: 2021 ident: 10.1016/j.conengprac.2021.105042_b45 article-title: Off-policy reinforcement learning for tracking in continuous-time systems on two time-scales publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.3017461 – volume: 51 start-page: 142 issue: 1 year: 2021 ident: 10.1016/j.conengprac.2021.105042_b32 article-title: Adaptive dynamic programming for control: A survey and recent advances publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2020.3042876 – volume: 115 start-page: 321 issue: 2 year: 2000 ident: 10.1016/j.conengprac.2021.105042_b42 article-title: A PID type fuzzy controller with self-tuning scaling factors publication-title: Fuzzy Sets & Systems doi: 10.1016/S0165-0114(98)00159-6 – volume: 71 start-page: 348 year: 2016 ident: 10.1016/j.conengprac.2021.105042_b3 article-title: Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design publication-title: Automatica doi: 10.1016/j.automatica.2016.05.003 – volume: 47 start-page: 3429 issue: 10 year: 2017 ident: 10.1016/j.conengprac.2021.105042_b38 article-title: Adaptive critic nonlinear robust control: A survey publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2017.2712188 – volume: 68 start-page: 46 year: 2017 ident: 10.1016/j.conengprac.2021.105042_b16 article-title: Finite-time control of underactuated spacecraft hovering publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2017.08.006 – volume: 50 start-page: 1167 issue: 4 year: 2014 ident: 10.1016/j.conengprac.2021.105042_b27 article-title: Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics publication-title: Automatica doi: 10.1016/j.automatica.2014.02.015 – volume: 30 start-page: 1308 issue: 5 year: 2018 ident: 10.1016/j.conengprac.2021.105042_b31 article-title: Off-policy interleaved Q-learning: Optimal control for affine nonlinear discrete-time systems publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2861945 – volume: 63 start-page: 3581 issue: 10 year: 2018 ident: 10.1016/j.conengprac.2021.105042_b11 article-title: Leader-to-formation stability of multi-agent systems: An adaptive optimal control approach publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2018.2799526 – volume: 12 start-page: 457 issue: 5 year: 1976 ident: 10.1016/j.conengprac.2021.105042_b7 article-title: The internal model principle of control theory publication-title: Automatica doi: 10.1016/0005-1098(76)90006-6 – year: 2018 ident: 10.1016/j.conengprac.2021.105042_b24 – year: 2020 ident: 10.1016/j.conengprac.2021.105042_b40 article-title: An approximate neuro-optimal solution of discounted guaranteed cost control design publication-title: IEEE Transactions on Cybernetics |
| SSID | ssj0016991 |
| Score | 2.6291406 |
| Snippet | In this paper, we investigate the learning-based adaptive optimal output regulation problem with convergence rate requirement for disturbed linear... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105042 |
| SubjectTerms | Adaptive dynamic programming Assured convergence rate Optimal output regulation Reinforcement learning Value iteration |
| Title | Value iteration and adaptive optimal output regulation with assured convergence rate |
| URI | https://dx.doi.org/10.1016/j.conengprac.2021.105042 |
| Volume | 121 |
| WOSCitedRecordID | wos000792789000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVg44E9ID7FxkB-4G0KypdjWzxN2xAgNCFRRnmK_JFInUZWtem0n8-1r-NEMIkhxEtaRXXd-J46xzfH5xLy2tNoldskFSZNSsPzRLG0SGzRAptXvGL-Cf7ZJ356KuZz-Tk8aF_7cgK868T1tVz-11DDOQi22zr7F-GOXwon4D0EHY4QdjjeKvBn6mLTHKBb8qA1VlYtvUboEl5-OP656Zeb_mCFlejdx3CT29olDC1q0Vfo0-m8JKYU9iiI25vRyTDutYp6nEVIQ39fRIGP8knZb42T3sQUNCp1h9vnNIF9vJgmJGAtO-pYfJZs2CkzypJ8urFyMjs0Xn_T4GQreJFUEs2M4myMG6Z_m9kxyXAOgeng-txlweI-z1yd4hT9uX7xzf7iunQ95s5lVpbzu2Q750zC1Ld9-OFk_jE-bKokFlYcfmIQfKEM8Ob-bmYxE2Yye0gehCUFPUQoPCJ3mu4x2ZkYTT4hMw8KGkFBARR0AAUNoKAICjqCgjpQ0AAKOgEFdaB4Sr6-O5kdvU9CPY3EwMzdJ0oyljelVEK2Jis1kG3BrGgrDRzc2KZotE4NFy0H0qyAO1aVtIoXmVG2yvOseEa2OhiO54T6laVi1gqt4S6ghW21LSudFZbnJWO7hA_jU5tgNu9qnlzUg6rwvB5HtnYjW-PI7pIstlyi4cot2rwdQlAH4oiEsAb0_LH13j-1fkHuj3-CfbLVrzbNS3LPXPWL9epVgNpP6VCZuQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Value+iteration+and+adaptive+optimal+output+regulation+with+assured+convergence+rate&rft.jtitle=Control+engineering+practice&rft.au=Jiang%2C+Yi&rft.au=Gao%2C+Weinan&rft.au=Na%2C+Jing&rft.au=Zhang%2C+Di&rft.date=2022-04-01&rft.pub=Elsevier+Ltd&rft.issn=0967-0661&rft.eissn=1873-6939&rft.volume=121&rft_id=info:doi/10.1016%2Fj.conengprac.2021.105042&rft.externalDocID=S096706612100294X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |