Comparing generative process synthesis approaches with superstructure optimization for the conception of supercritical CO2 Brayton cycles

In process synthesis, while heuristic-based approaches are most often used for proposing relevant alternatives (that must then be thoroughly analyzed), this strategy may not be the most efficient. When it comes to the search for innovative processes, prior domain knowledge may be scarce or may not e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & chemical engineering Ročník 201; s. 109255
Hlavní autoři: Rocha Azevedo, Antonio, Nabil, Tahar, Loubière, Valentin, Privat, Romain, Neveux, Thibaut, Commenge, Jean-Marc
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2025
Témata:
ISSN:0098-1354
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In process synthesis, while heuristic-based approaches are most often used for proposing relevant alternatives (that must then be thoroughly analyzed), this strategy may not be the most efficient. When it comes to the search for innovative processes, prior domain knowledge may be scarce or may not effectively exploit the properties contributing to the process novelty. Generative synthesis approaches that can freely explore the search space and that do not rely on any previous knowledge, have been proposed in the literature. Yet, a lack of benchmarks on complex problems strongly hinders their use. In this work, we address this gap by comparing two generative approaches, based on Evolutionary Programming and Machine Learning, to a superstructure optimization (which serves as a baseline). They are applied to the synthesis of supercritical CO2 Brayton cycles. Despite starting with no field of expertise, the generative approaches not only manage to identify multiple known heuristics of the domain, but also a counter-intuitive and new way of increasing the efficiency of sCO2 cycles — by expanding the fluid at lower temperatures. The approaches’ use-cases are discussed, based on the amount of computational resources necessary, implementation difficulties and quality of the results. [Display omitted] •Two generative synthesis approaches are benchmarked for a complex problem.•Both approaches discover a new heuristic for increasing efficiency of sCO2 cycles.•Large volumes of data are generated, which can be useful for data mining and ML.•The evolutionary method found good cycles despite starting from an empty flowsheet.•A better fine-tuning strategy is developed for training the ML-based approach.
AbstractList In process synthesis, while heuristic-based approaches are most often used for proposing relevant alternatives (that must then be thoroughly analyzed), this strategy may not be the most efficient. When it comes to the search for innovative processes, prior domain knowledge may be scarce or may not effectively exploit the properties contributing to the process novelty. Generative synthesis approaches that can freely explore the search space and that do not rely on any previous knowledge, have been proposed in the literature. Yet, a lack of benchmarks on complex problems strongly hinders their use. In this work, we address this gap by comparing two generative approaches, based on Evolutionary Programming and Machine Learning, to a superstructure optimization (which serves as a baseline). They are applied to the synthesis of supercritical CO2 Brayton cycles. Despite starting with no field of expertise, the generative approaches not only manage to identify multiple known heuristics of the domain, but also a counter-intuitive and new way of increasing the efficiency of sCO2 cycles — by expanding the fluid at lower temperatures. The approaches’ use-cases are discussed, based on the amount of computational resources necessary, implementation difficulties and quality of the results. [Display omitted] •Two generative synthesis approaches are benchmarked for a complex problem.•Both approaches discover a new heuristic for increasing efficiency of sCO2 cycles.•Large volumes of data are generated, which can be useful for data mining and ML.•The evolutionary method found good cycles despite starting from an empty flowsheet.•A better fine-tuning strategy is developed for training the ML-based approach.
ArticleNumber 109255
Author Privat, Romain
Neveux, Thibaut
Loubière, Valentin
Commenge, Jean-Marc
Rocha Azevedo, Antonio
Nabil, Tahar
Author_xml – sequence: 1
  givenname: Antonio
  orcidid: 0000-0002-0633-1252
  surname: Rocha Azevedo
  fullname: Rocha Azevedo, Antonio
  email: antonio.rocha-azevedo@univ-lorraine.fr
  organization: Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France
– sequence: 2
  givenname: Tahar
  orcidid: 0009-0004-3400-0997
  surname: Nabil
  fullname: Nabil, Tahar
  organization: EDF R&D, Boulevard Gaspard Monge, F-91120, Palaiseau, France
– sequence: 3
  givenname: Valentin
  surname: Loubière
  fullname: Loubière, Valentin
  organization: EDF R&D Chatou, 6 quai Watier, 78400, Chatou, France
– sequence: 4
  givenname: Romain
  orcidid: 0000-0001-6174-9160
  surname: Privat
  fullname: Privat, Romain
  organization: Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France
– sequence: 5
  givenname: Thibaut
  orcidid: 0000-0002-7460-702X
  surname: Neveux
  fullname: Neveux, Thibaut
  organization: EDF R&D Chatou, 6 quai Watier, 78400, Chatou, France
– sequence: 6
  givenname: Jean-Marc
  orcidid: 0000-0003-2792-9357
  surname: Commenge
  fullname: Commenge, Jean-Marc
  organization: Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France
BookMark eNqNkMtOwzAQRb0oEm3hH8wHpDjOg2QJES-pUjewtpzxpHXV2JHtFoU_4K9xCQuWrEa6o3M1cxZkZqxBQm5StkpZWt7uV2D7AXbYo9muOONFzGteFDMyZ6yukjQr8kuy8H7PGON5Vc3JVxMR6bTZ0i0adDLoE9LBWUDvqR9N2KHXnsohZjJ2e_qhw47644DOB3eEcHRI7RB0rz8jbQ3trKMRo2AN4PAT2W4iwOmgQR5os-H0wckxxCWMcEB_RS46efB4_TuX5P3p8a15Sdab59fmfp1AllYhkWWWAa-ykiuopMJSpZApJlXRFW1e10VZVkzxsmVdnWZ5Cwy5ZAq7umwrlHfZktRTLzjrvcNODE730o0iZeLsUezFH4_i7FFMHiPbTCzGA08anfCgMX6ptEMIQln9j5ZvRpGLeQ
Cites_doi 10.1016/S0098-1354(03)00152-2
10.1016/j.coche.2024.101012
10.1016/j.applthermaleng.2020.116447
10.1016/B978-0-323-95879-0.50115-6
10.1016/j.compchemeng.2022.107676
10.1016/j.energy.2016.10.007
10.1016/j.apenergy.2017.02.048
10.1002/cite.201800091
10.1016/j.swevo.2018.03.011
10.1016/j.energy.2012.01.041
10.1007/s11705-021-2055-9
10.1007/s11081-023-09798-9
10.1002/aic.16443
10.1016/j.memsci.2018.08.024
10.1002/aic.11228
10.3390/en17051129
10.3389/fceng.2023.1144115
10.1002/aic.690310302
10.1016/j.ces.2018.04.015
10.1002/aic.17938
10.1016/j.compchemeng.2005.07.007
10.1016/j.compchemeng.2020.106808
10.1016/j.cep.2022.108885
10.1016/B978-0-323-85159-6.50048-8
10.3390/en16145470
10.1016/0098-1354(95)00219-7
10.1021/acssuschemeng.1c03362
10.1016/j.asr.2012.11.006
10.1021/acscentsci.7b00572
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.compchemeng.2025.109255
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compchemeng_2025_109255
S0098135425002595
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAFTH
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
9DU
AAYXX
ACLOT
CITATION
EFLBG
~HD
ID FETCH-LOGICAL-c318t-a633c28362dc8ade6d1c3d0ad5f5b49956680d26b0f9134bc0e2a0def96b8ea73
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001529471800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-1354
IngestDate Sat Nov 29 07:40:26 EST 2025
Sat Aug 16 17:02:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Process synthesis
Evolutionary programming
Artificial intelligence
Superstructure
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-a633c28362dc8ade6d1c3d0ad5f5b49956680d26b0f9134bc0e2a0def96b8ea73
ORCID 0000-0002-7460-702X
0000-0003-2792-9357
0000-0001-6174-9160
0009-0004-3400-0997
0000-0002-0633-1252
OpenAccessLink https://dx.doi.org/10.1016/j.compchemeng.2025.109255
ParticipantIDs crossref_primary_10_1016_j_compchemeng_2025_109255
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2025_109255
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Computers & chemical engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Stops, Leenhouts, Gao, Schweidtmann (b30) 2023; 69
Nabil, T., Le Moullec, Y., Le Coz, A., 2019. Machine Learning Based Design of a Supercritical CO2 Concentrating Solar Power Plant. In: 3rd European Supercritical CO2 Conference. Paris, France, pp. 148–157.
Ahn, Bae, Kim, Cho, Baik, Lee, Cha (b1) 2014
Drugan (b5) 2019; 44
Ramírez-Santos, Bozorg, Addis, Piccialli, Castel, Favre (b26) 2018; 566
Davis, Ierapetritou (b3) 2007; 53
Nabil, Commenge, Neveux (b19) 2022; vol. 49
Wang, Lampe, Voll, Yang, Bardow (b34) 2016; 116
Crespi, Gavagnin, Sánchez, Martínez (b2) 2017; 195
Zheng, Chen, Zhang, Sahinidis, Siirola (b39) 2022; 159
URL
Zhang, Sahinidis, Siirola (b36) 2019; 65
White, Bianchi, Chai, Tassou, Sayma (b35) 2021; 185
Khan, Lapkin (b11) 2022; 180
McBride, Sundmacher (b15) 2019; 91
Martinez-Hernandez (b14) 2022
Schlueter, Erb, Gerdts, Kemble, Ruckmann (b28) 2013; 51
Gao, Schweidtmann (b7) 2024; 44
Mencarelli, Chen, Pagot, Grossmann (b16) 2020; 136
Nabil, Noaman, Morosuk (b21) 2023; 5
Midgley (b17) 2020
Kraft (b12) 1988
Zhao, Mecheri, Neveux, Privat, Jaubert, Le Moullec (b38) 2023; 16
Göttl, Grimm, Burger (b10) 2022; 16
Neveux (b22) 2018; 185
Vogel, Hirtreiter, Schulze Balhorn, Schweidtmann (b32) 2023; 24
Molière, Privat, Jaubert, Geiger (b18) 2024; 17
Lemmon, Bell, Huber, McLinden (b13) 2018
Neveux, Addis, Castel, Piccialli, Favre (b23) 2022; vol. 51
Türkay, Grossmann (b31) 1996; 20
.
Powell (b25) 1994
Zhao (b37) 2018
Douglas (b4) 1985; 31
Piña-Martinez, Lasala, Privat, Falk, Jaubert (b24) 2021; 9
Rocha Azevedo, Nabil, Loubière, Valentin, Privat, Neveux, Commenge (b27) 2024
Farkas, Rev, Lelkes (b6) 2005; 29
Voll, Lampe, Wrobel, Bardow (b33) 2012; 45
Gómez-Bombarelli, Wei, Duvenaud, Hernández-Lobato, Sánchez-Lengeling, Sheberla, Aguilera-Iparraguirre, Hirzel, Adams, Aspuru-Guzik (b9) 2018; 4
Gao, Yang, Shanbhag, Schweidtmann (b8) 2023
Siirola, Hauan, Westerberg (b29) 2003; 27
Khan (10.1016/j.compchemeng.2025.109255_b11) 2022; 180
Powell (10.1016/j.compchemeng.2025.109255_b25) 1994
Midgley (10.1016/j.compchemeng.2025.109255_b17) 2020
Nabil (10.1016/j.compchemeng.2025.109255_b19) 2022; vol. 49
Molière (10.1016/j.compchemeng.2025.109255_b18) 2024; 17
White (10.1016/j.compchemeng.2025.109255_b35) 2021; 185
Neveux (10.1016/j.compchemeng.2025.109255_b22) 2018; 185
Zhao (10.1016/j.compchemeng.2025.109255_b37) 2018
Zheng (10.1016/j.compchemeng.2025.109255_b39) 2022; 159
Kraft (10.1016/j.compchemeng.2025.109255_b12) 1988
Neveux (10.1016/j.compchemeng.2025.109255_b23) 2022; vol. 51
Nabil (10.1016/j.compchemeng.2025.109255_b21) 2023; 5
Gao (10.1016/j.compchemeng.2025.109255_b8) 2023
Siirola (10.1016/j.compchemeng.2025.109255_b29) 2003; 27
Vogel (10.1016/j.compchemeng.2025.109255_b32) 2023; 24
Göttl (10.1016/j.compchemeng.2025.109255_b10) 2022; 16
Türkay (10.1016/j.compchemeng.2025.109255_b31) 1996; 20
Zhang (10.1016/j.compchemeng.2025.109255_b36) 2019; 65
Lemmon (10.1016/j.compchemeng.2025.109255_b13) 2018
Gao (10.1016/j.compchemeng.2025.109255_b7) 2024; 44
Davis (10.1016/j.compchemeng.2025.109255_b3) 2007; 53
10.1016/j.compchemeng.2025.109255_b20
Mencarelli (10.1016/j.compchemeng.2025.109255_b16) 2020; 136
Ahn (10.1016/j.compchemeng.2025.109255_b1) 2014
Stops (10.1016/j.compchemeng.2025.109255_b30) 2023; 69
Gómez-Bombarelli (10.1016/j.compchemeng.2025.109255_b9) 2018; 4
Farkas (10.1016/j.compchemeng.2025.109255_b6) 2005; 29
Ramírez-Santos (10.1016/j.compchemeng.2025.109255_b26) 2018; 566
Schlueter (10.1016/j.compchemeng.2025.109255_b28) 2013; 51
Douglas (10.1016/j.compchemeng.2025.109255_b4) 1985; 31
Drugan (10.1016/j.compchemeng.2025.109255_b5) 2019; 44
Martinez-Hernandez (10.1016/j.compchemeng.2025.109255_b14) 2022
Voll (10.1016/j.compchemeng.2025.109255_b33) 2012; 45
Wang (10.1016/j.compchemeng.2025.109255_b34) 2016; 116
Piña-Martinez (10.1016/j.compchemeng.2025.109255_b24) 2021; 9
Rocha Azevedo (10.1016/j.compchemeng.2025.109255_b27) 2024
Crespi (10.1016/j.compchemeng.2025.109255_b2) 2017; 195
McBride (10.1016/j.compchemeng.2025.109255_b15) 2019; 91
Zhao (10.1016/j.compchemeng.2025.109255_b38) 2023; 16
References_xml – year: 1988
  ident: b12
  article-title: A Software Package for Sequential Quadratic Programming
  publication-title: Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungsbericht
– volume: 31
  start-page: 353
  year: 1985
  end-page: 362
  ident: b4
  article-title: A hierarchical decision procedure for process synthesis
  publication-title: AIChE J.
– year: 2023
  ident: b8
  article-title: Transfer learning for process design with reinforcement learning
– volume: 51
  start-page: 1116
  year: 2013
  end-page: 1131
  ident: b28
  article-title: MIDACO on MINLP space applications
  publication-title: Adv. Space Res.
– volume: 185
  year: 2021
  ident: b35
  article-title: Review of supercritical CO2 technologies and systems for power generation
  publication-title: Appl. Therm. Eng.
– volume: 136
  year: 2020
  ident: b16
  article-title: A review on superstructure optimization approaches in process system engineering
  publication-title: Comput. Chem. Eng.
– year: 2022
  ident: b14
  article-title: Digitalisation of chemical processes as graphs and applications of modular decomposition to process design and analysis
  publication-title: Digit. Chem. Eng.
– year: 2018
  ident: b13
  article-title: NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, version 10.0, national institute of standards and technology
– volume: 91
  start-page: 228
  year: 2019
  end-page: 239
  ident: b15
  article-title: Overview of surrogate modeling in chemical process engineering
  publication-title: Chem. Ing. Tech.
– volume: 53
  start-page: 2001
  year: 2007
  end-page: 2012
  ident: b3
  article-title: A kriging method for the solution of nonlinear programs with black-box functions
  publication-title: AIChE J.
– volume: 69
  year: 2023
  ident: b30
  article-title: Flowsheet generation through hierarchical reinforcement learning and graph neural networks
  publication-title: AIChE J.
– volume: 24
  start-page: 2911
  year: 2023
  end-page: 2933
  ident: b32
  article-title: SFILES 2.0: An extended text-based flowsheet representation
  publication-title: Optim. Eng.
– volume: 29
  start-page: 2180
  year: 2005
  end-page: 2197
  ident: b6
  article-title: Process flowsheet superstructures: Structural multiplicity and redundancy: Part I: Basic GDP and MINLP representations
  publication-title: Comput. Chem. Eng.
– volume: 44
  start-page: 228
  year: 2019
  end-page: 246
  ident: b5
  article-title: Reinforcement learning versus evolutionary computation: A survey on hybrid algorithms
  publication-title: Swarm Evol. Comput.
– volume: 9
  start-page: 11807
  year: 2021
  end-page: 11824
  ident: b24
  article-title: Design of promising working fluids for emergent combined cooling, heating, and power (CCHP) systems
  publication-title: ACS Sustain. Chem. Eng.
– volume: 116
  start-page: 1104
  year: 2016
  end-page: 1116
  ident: b34
  article-title: Multi-objective superstructure-free synthesis and optimization of thermal power plants
  publication-title: Energy
– volume: 195
  start-page: 152
  year: 2017
  end-page: 183
  ident: b2
  article-title: Supercritical carbon dioxide cycles for power generation: A review
  publication-title: Appl. Energy
– volume: 180
  year: 2022
  ident: b11
  article-title: Designing the process designer: Hierarchical reinforcement learning for optimisation-based process design
  publication-title: Chem. Eng. Process. - Process. Intensif.
– volume: 17
  start-page: 1129
  year: 2024
  ident: b18
  article-title: Supercritical CO2 power technology: Strengths but challenges
  publication-title: Energies
– volume: 5
  year: 2023
  ident: b21
  article-title: Data-driven structural synthesis of supercritical CO2 power cycles
  publication-title: Front. Chem. Eng.
– reference: , URL:
– year: 2018
  ident: b37
  article-title: Conception and Optimization of Supercritical CO2 Brayton Cycles for Coal-Fired Power Plant Application
– volume: 20
  start-page: 959
  year: 1996
  end-page: 978
  ident: b31
  article-title: Logic-based MINLP algorithms for the optimal synthesis of process networks
  publication-title: Comput. Chem. Eng.
– volume: 185
  start-page: 209
  year: 2018
  end-page: 221
  ident: b22
  article-title: Ab-initio process synthesis using evolutionary programming
  publication-title: Chem. Eng. Sci.
– volume: 27
  start-page: 1801
  year: 2003
  end-page: 1811
  ident: b29
  article-title: Toward agent-based process systems engineering: Proposed framework and application to non-convex optimization
  publication-title: Comput. Chem. Eng.
– reference: .
– start-page: 372
  year: 2024
  end-page: 377
  ident: b27
  article-title: Representation learning for flowsheets: Generating structures for process synthesis
  publication-title: Book of Abstracts
– volume: vol. 49
  start-page: 289
  year: 2022
  end-page: 294
  ident: b19
  article-title: Generative approaches for the synthesis of process structures
  publication-title: Computer Aided Chemical Engineering
– start-page: 51
  year: 1994
  end-page: 67
  ident: b25
  article-title: A direct search optimization method that models the objective and constraint functions by linear interpolation
  publication-title: Advances in Optimization and Numerical Analysis
– volume: 16
  start-page: 288
  year: 2022
  end-page: 302
  ident: b10
  article-title: Automated synthesis of steady-state continuous processes using reinforcement learning
  publication-title: Front. Chem. Sci. Eng.
– volume: 159
  year: 2022
  ident: b39
  article-title: Learning process patterns via multiple sequence alignment
  publication-title: Comput. Chem. Eng.
– year: 2014
  ident: b1
  article-title: Cycle layout studies of S-CO2 cycle for the next generation nuclear system application
  publication-title: The Korean Nuclear Society Autumn Meeting (2014)
– volume: 45
  start-page: 424
  year: 2012
  end-page: 435
  ident: b33
  article-title: Superstructure-free synthesis and optimization of distributed industrial energy supply systems
  publication-title: Energy
– volume: vol. 51
  start-page: 685
  year: 2022
  end-page: 690
  ident: b23
  article-title: A comparison of process synthesis approaches for multistage separation processes by gas permeation
  publication-title: Computer Aided Chemical Engineering
– volume: 44
  year: 2024
  ident: b7
  article-title: Deep reinforcement learning for process design: Review and perspective
  publication-title: Curr. Opin. Chem. Eng.
– volume: 566
  start-page: 346
  year: 2018
  end-page: 366
  ident: b26
  article-title: Optimization of multistage membrane gas separation processes. Example of application to CO2 capture from blast furnace gas
  publication-title: J. Membr. Sci.
– year: 2020
  ident: b17
  article-title: Deep reinforcement learning for process synthesis
– reference: Nabil, T., Le Moullec, Y., Le Coz, A., 2019. Machine Learning Based Design of a Supercritical CO2 Concentrating Solar Power Plant. In: 3rd European Supercritical CO2 Conference. Paris, France, pp. 148–157.
– volume: 65
  start-page: 592
  year: 2019
  end-page: 603
  ident: b36
  article-title: Pattern recognition in chemical process flowsheets
  publication-title: AIChE J.
– volume: 16
  start-page: 5470
  year: 2023
  ident: b38
  article-title: Search for the optimal design of a supercritical-CO2 brayton power cycle from a superstructure-based approach implemented in a commercial simulation software
  publication-title: Energies
– volume: 4
  start-page: 268
  year: 2018
  end-page: 276
  ident: b9
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Central Sci.
– volume: 27
  start-page: 1801
  issue: 12
  year: 2003
  ident: 10.1016/j.compchemeng.2025.109255_b29
  article-title: Toward agent-based process systems engineering: Proposed framework and application to non-convex optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(03)00152-2
– volume: 44
  year: 2024
  ident: 10.1016/j.compchemeng.2025.109255_b7
  article-title: Deep reinforcement learning for process design: Review and perspective
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2024.101012
– year: 2014
  ident: 10.1016/j.compchemeng.2025.109255_b1
  article-title: Cycle layout studies of S-CO2 cycle for the next generation nuclear system application
– volume: 185
  year: 2021
  ident: 10.1016/j.compchemeng.2025.109255_b35
  article-title: Review of supercritical CO2 technologies and systems for power generation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116447
– ident: 10.1016/j.compchemeng.2025.109255_b20
– volume: vol. 51
  start-page: 685
  year: 2022
  ident: 10.1016/j.compchemeng.2025.109255_b23
  article-title: A comparison of process synthesis approaches for multistage separation processes by gas permeation
  doi: 10.1016/B978-0-323-95879-0.50115-6
– volume: 159
  year: 2022
  ident: 10.1016/j.compchemeng.2025.109255_b39
  article-title: Learning process patterns via multiple sequence alignment
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107676
– volume: 116
  start-page: 1104
  year: 2016
  ident: 10.1016/j.compchemeng.2025.109255_b34
  article-title: Multi-objective superstructure-free synthesis and optimization of thermal power plants
  publication-title: Energy
  doi: 10.1016/j.energy.2016.10.007
– volume: 195
  start-page: 152
  year: 2017
  ident: 10.1016/j.compchemeng.2025.109255_b2
  article-title: Supercritical carbon dioxide cycles for power generation: A review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.02.048
– volume: 91
  start-page: 228
  issue: 3
  year: 2019
  ident: 10.1016/j.compchemeng.2025.109255_b15
  article-title: Overview of surrogate modeling in chemical process engineering
  publication-title: Chem. Ing. Tech.
  doi: 10.1002/cite.201800091
– volume: 44
  start-page: 228
  year: 2019
  ident: 10.1016/j.compchemeng.2025.109255_b5
  article-title: Reinforcement learning versus evolutionary computation: A survey on hybrid algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.03.011
– volume: 45
  start-page: 424
  issue: 1
  year: 2012
  ident: 10.1016/j.compchemeng.2025.109255_b33
  article-title: Superstructure-free synthesis and optimization of distributed industrial energy supply systems
  publication-title: Energy
  doi: 10.1016/j.energy.2012.01.041
– year: 2018
  ident: 10.1016/j.compchemeng.2025.109255_b13
– volume: 16
  start-page: 288
  issue: 2
  year: 2022
  ident: 10.1016/j.compchemeng.2025.109255_b10
  article-title: Automated synthesis of steady-state continuous processes using reinforcement learning
  publication-title: Front. Chem. Sci. Eng.
  doi: 10.1007/s11705-021-2055-9
– volume: 24
  start-page: 2911
  issue: 4
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109255_b32
  article-title: SFILES 2.0: An extended text-based flowsheet representation
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-023-09798-9
– volume: 65
  start-page: 592
  issue: 2
  year: 2019
  ident: 10.1016/j.compchemeng.2025.109255_b36
  article-title: Pattern recognition in chemical process flowsheets
  publication-title: AIChE J.
  doi: 10.1002/aic.16443
– year: 2022
  ident: 10.1016/j.compchemeng.2025.109255_b14
  article-title: Digitalisation of chemical processes as graphs and applications of modular decomposition to process design and analysis
  publication-title: Digit. Chem. Eng.
– volume: 566
  start-page: 346
  year: 2018
  ident: 10.1016/j.compchemeng.2025.109255_b26
  article-title: Optimization of multistage membrane gas separation processes. Example of application to CO2 capture from blast furnace gas
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.08.024
– volume: 53
  start-page: 2001
  issue: 8
  year: 2007
  ident: 10.1016/j.compchemeng.2025.109255_b3
  article-title: A kriging method for the solution of nonlinear programs with black-box functions
  publication-title: AIChE J.
  doi: 10.1002/aic.11228
– volume: 17
  start-page: 1129
  issue: 5
  year: 2024
  ident: 10.1016/j.compchemeng.2025.109255_b18
  article-title: Supercritical CO2 power technology: Strengths but challenges
  publication-title: Energies
  doi: 10.3390/en17051129
– volume: 5
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109255_b21
  article-title: Data-driven structural synthesis of supercritical CO2 power cycles
  publication-title: Front. Chem. Eng.
  doi: 10.3389/fceng.2023.1144115
– volume: 31
  start-page: 353
  issue: 3
  year: 1985
  ident: 10.1016/j.compchemeng.2025.109255_b4
  article-title: A hierarchical decision procedure for process synthesis
  publication-title: AIChE J.
  doi: 10.1002/aic.690310302
– volume: 185
  start-page: 209
  year: 2018
  ident: 10.1016/j.compchemeng.2025.109255_b22
  article-title: Ab-initio process synthesis using evolutionary programming
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.04.015
– volume: 69
  issue: 1
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109255_b30
  article-title: Flowsheet generation through hierarchical reinforcement learning and graph neural networks
  publication-title: AIChE J.
  doi: 10.1002/aic.17938
– volume: 29
  start-page: 2180
  issue: 10
  year: 2005
  ident: 10.1016/j.compchemeng.2025.109255_b6
  article-title: Process flowsheet superstructures: Structural multiplicity and redundancy: Part I: Basic GDP and MINLP representations
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2005.07.007
– volume: 136
  year: 2020
  ident: 10.1016/j.compchemeng.2025.109255_b16
  article-title: A review on superstructure optimization approaches in process system engineering
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106808
– volume: 180
  year: 2022
  ident: 10.1016/j.compchemeng.2025.109255_b11
  article-title: Designing the process designer: Hierarchical reinforcement learning for optimisation-based process design
  publication-title: Chem. Eng. Process. - Process. Intensif.
  doi: 10.1016/j.cep.2022.108885
– volume: vol. 49
  start-page: 289
  year: 2022
  ident: 10.1016/j.compchemeng.2025.109255_b19
  article-title: Generative approaches for the synthesis of process structures
  doi: 10.1016/B978-0-323-85159-6.50048-8
– start-page: 51
  year: 1994
  ident: 10.1016/j.compchemeng.2025.109255_b25
  article-title: A direct search optimization method that models the objective and constraint functions by linear interpolation
– year: 1988
  ident: 10.1016/j.compchemeng.2025.109255_b12
  article-title: A Software Package for Sequential Quadratic Programming
– year: 2018
  ident: 10.1016/j.compchemeng.2025.109255_b37
– volume: 16
  start-page: 5470
  issue: 14
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109255_b38
  article-title: Search for the optimal design of a supercritical-CO2 brayton power cycle from a superstructure-based approach implemented in a commercial simulation software
  publication-title: Energies
  doi: 10.3390/en16145470
– start-page: 372
  year: 2024
  ident: 10.1016/j.compchemeng.2025.109255_b27
  article-title: Representation learning for flowsheets: Generating structures for process synthesis
– volume: 20
  start-page: 959
  issue: 8
  year: 1996
  ident: 10.1016/j.compchemeng.2025.109255_b31
  article-title: Logic-based MINLP algorithms for the optimal synthesis of process networks
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(95)00219-7
– year: 2023
  ident: 10.1016/j.compchemeng.2025.109255_b8
– volume: 9
  start-page: 11807
  issue: 35
  year: 2021
  ident: 10.1016/j.compchemeng.2025.109255_b24
  article-title: Design of promising working fluids for emergent combined cooling, heating, and power (CCHP) systems
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c03362
– volume: 51
  start-page: 1116
  issue: 7
  year: 2013
  ident: 10.1016/j.compchemeng.2025.109255_b28
  article-title: MIDACO on MINLP space applications
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2012.11.006
– volume: 4
  start-page: 268
  issue: 2
  year: 2018
  ident: 10.1016/j.compchemeng.2025.109255_b9
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Central Sci.
  doi: 10.1021/acscentsci.7b00572
– year: 2020
  ident: 10.1016/j.compchemeng.2025.109255_b17
SSID ssj0002488
Score 2.4715385
Snippet In process synthesis, while heuristic-based approaches are most often used for proposing relevant alternatives (that must then be thoroughly analyzed), this...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 109255
SubjectTerms Artificial intelligence
Evolutionary programming
Process synthesis
Superstructure
Title Comparing generative process synthesis approaches with superstructure optimization for the conception of supercritical CO2 Brayton cycles
URI https://dx.doi.org/10.1016/j.compchemeng.2025.109255
Volume 201
WOSCitedRecordID wos001529471800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0098-1354
  databaseCode: AIEXJ
  dateStart: 19950611
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002488
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9RAEF7OVqR-KL5itcoKfpNIbnPZbMAvx1FRkVqwyn0L-xZ7xSah1x5t_0F_jP_RmexukvqCivglHMvNhuw8zM7szjxDyDOlxgo2ag2xiYEAxcQqkrGJo5znejIWUuSlaJtNZLu7Yj7P90ajr6EWZvUlqypxdpY3_1XVMAbKxtLZv1B3NykMwG9QOjxB7fD8I8XPXGfB6jN2R7ae2Ltx9QBIUAAeH5KQBDJxuwxp6g16gsgmi3cKNZiSI1-j2aUialfj6H3MVkKHVgmz9wyAIs-RpkOfY67d0O8NzSOWLdR0YCmwPRtif_OjD-Tz6YVdWVN7egOwO3V3ao2UwC3K5IHsMovf1adq0V76C3eo_knidrrooL93jG3cXC75kfTj_rSDpV3enD-CC2U4fc5Ta9ZzCIUTx0YdzDpzYj9sEe604hA13ODnwpe-wDchsRZzlMHfMXB_wPlxenAX4Y95eo2ssyzNwYiuT9_szN92Wz-bCBFIWlHgBnnaJxT-4oU_d4gGTs7-LbLpoxM6dai6TUa2ukNuDjgr75LLDl-0xxf1-KIdvmiPL4r4olfxRYf4ooAvCmK0xxetS3oFXxTwRT2-qMPXPfLx1c7-7HXk-3lEGnaOk0jyJNHgznJmtJDGcjPWiYmlSctUTbDEmovYMK7iEvNBlI4tA8Nhy5wrYWWW3CdrVV3ZB4TakpcQPFgMECdWZ8poqw2suOBGcqa2CAuLWjSOtqUI-YyHxUATBWqicJrYIi_D8hfe_3R-ZQHY-b34w38Tf0Q2esBvkzVQiH1MruvVyWJ5_MQj7RuYg7y0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+generative+process+synthesis+approaches+with+superstructure+optimization+for+the+conception+of+supercritical+CO2+Brayton+cycles&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Rocha+Azevedo%2C+Antonio&rft.au=Nabil%2C+Tahar&rft.au=Loubi%C3%A8re%2C+Valentin&rft.au=Privat%2C+Romain&rft.date=2025-10-01&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.volume=201&rft_id=info:doi/10.1016%2Fj.compchemeng.2025.109255&rft.externalDocID=S0098135425002595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon