Data mining–based hierarchical cooperative coevolutionary algorithm for TSK-type neuro-fuzzy networks design

This study proposes a data mining–based hierarchical cooperative coevolutionary algorithm (DMHCCA) for TSK-type neuro-fuzzy networks design. The proposed DMHCCA consists of two-level evolutions: the neuro-level evolution (NULE) and the network-level evolution (NWLE). In NULE, a data mining–based evo...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications Vol. 23; no. 2; pp. 485 - 498
Main Authors: Hsu, Chi-Yao, Lin, Sheng-Fuu, Chang, Jyun-Wei
Format: Journal Article
Language:English
Published: London Springer London 01.08.2013
Springer
Subjects:
ISSN:0941-0643, 1433-3058
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study proposes a data mining–based hierarchical cooperative coevolutionary algorithm (DMHCCA) for TSK-type neuro-fuzzy networks design. The proposed DMHCCA consists of two-level evolutions: the neuro-level evolution (NULE) and the network-level evolution (NWLE). In NULE, a data mining–based evolutionary learning algorithm is utilized to evolve neurons. The good combinations of neurons evolved in NULE are reserved for being the initial populations of NWLE. In NWLE, the initial population are mated and mutated to produce new structure of networks. Similar to NULE, the good neurons of evolved network in NWLE are inserted into the NULE. Thus, by interactive two-level evolutions, the neurons and structure of network can be evolved locally and globally, respectively. Simulation results using DMHCCA are reported and compared with other existing models. Application of DMHCCA to a three-dimensional (3D) surface alignment task is also described, and experimental results are presented better performance than other alignment systems.
AbstractList This study proposes a data mining–based hierarchical cooperative coevolutionary algorithm (DMHCCA) for TSK-type neuro-fuzzy networks design. The proposed DMHCCA consists of two-level evolutions: the neuro-level evolution (NULE) and the network-level evolution (NWLE). In NULE, a data mining–based evolutionary learning algorithm is utilized to evolve neurons. The good combinations of neurons evolved in NULE are reserved for being the initial populations of NWLE. In NWLE, the initial population are mated and mutated to produce new structure of networks. Similar to NULE, the good neurons of evolved network in NWLE are inserted into the NULE. Thus, by interactive two-level evolutions, the neurons and structure of network can be evolved locally and globally, respectively. Simulation results using DMHCCA are reported and compared with other existing models. Application of DMHCCA to a three-dimensional (3D) surface alignment task is also described, and experimental results are presented better performance than other alignment systems.
Author Lin, Sheng-Fuu
Chang, Jyun-Wei
Hsu, Chi-Yao
Author_xml – sequence: 1
  givenname: Chi-Yao
  surname: Hsu
  fullname: Hsu, Chi-Yao
  organization: Department of Electrical Engineering, National Chiao Tung University
– sequence: 2
  givenname: Sheng-Fuu
  surname: Lin
  fullname: Lin, Sheng-Fuu
  email: sflin@mail.nctu.edu.tw
  organization: Department of Electrical Engineering, National Chiao Tung University
– sequence: 3
  givenname: Jyun-Wei
  surname: Chang
  fullname: Chang, Jyun-Wei
  organization: Department of Electrical Engineering, National Chiao Tung University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27658250$$DView record in Pascal Francis
BookMark eNp9kMFuGyEQhlGVSrXdPkBve8mRdFiWZX2MkiaNEimHumc0ZsHGXYMF2JV96jvkDfskwXJy6cEnBvi_0cw3Jhc-eEPIVwZXDEB-SwCiZhRYTWHacAofyIg1nFMOorsgo_JYftuGfyLjlFYA0LSdGBF_ixmrtfPOL_79fZljMn21dCZi1Euncah0CJtyzW5nSm12YdhmFzzGfYXDIkSXl-vKhljNfj7SvN-YypttDNRuD4d9qfOfEH-nqjfJLfxn8tHikMyXt3NCft19n938oE_P9w83109Uc9Zlig1MrW5tW9teMtu0HCRKYxlYyaayY3M2tSDEvOMtRwk9b9D2KLnQwnBr-IRcnvpuMJUlbESvXVKb6NZlcFXLVnS1gJKTp5yOIaVorNIu43G_HNENioE66lUnvaroVUe96kiy_8j35ueY-sSkkvULE9UqbKMvIs5Ar2GGke0
CitedBy_id crossref_primary_10_1007_s00521_018_3809_2
Cites_doi 10.1109/TFUZZ.2006.889920
10.1109/ICNN.1995.487513
10.1007/s12530-010-9024-8
10.1016/j.datak.2009.04.005
10.1016/j.imavis.2004.05.007
10.1109/ICNN.1993.298623
10.1109/TSMC.1985.6313399
10.1016/j.eswa.2010.01.003
10.1109/91.649900
10.1109/91.660805
10.1109/72.774232
10.1109/3477.891151
10.1109/72.80202
10.1016/j.ins.2009.01.045
10.1016/0165-0114(95)00196-4
10.1109/72.159063
10.4103/0256-4602.48469
10.1109/TFUZZ.2008.924186
10.1109/34.121791
10.1109/3477.990874
10.1109/3477.836377
10.1109/21.199466
10.1016/j.neucom.2006.04.004
10.1142/4177
10.1109/91.963761
10.1016/S0031-3203(03)00239-5
10.1145/342009.335372
10.1016/j.imavis.2007.04.003
10.1016/0165-0114(91)90110-C
10.1109/TSMCB.2004.833330
10.1145/1068009.1068092
ContentType Journal Article
Copyright Springer-Verlag London Limited 2012
2014 INIST-CNRS
Copyright_xml – notice: Springer-Verlag London Limited 2012
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1007/s00521-012-0943-0
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
Applied Sciences
Statistics
EISSN 1433-3058
EndPage 498
ExternalDocumentID 27658250
10_1007_s00521_012_0943_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
IQODW
ID FETCH-LOGICAL-c318t-a409fc6f62fd71f46307a7ef10f719781b19f055b8363a70d34afda735c5e3fe3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000322139500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Mon Jul 21 09:16:48 EDT 2025
Sat Nov 29 02:58:56 EST 2025
Tue Nov 18 21:56:28 EST 2025
Fri Feb 21 02:34:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Network-level evolution
Data mining–based evolutionary learning algorithm
Hierarchical cooperative coevolutionary algorithm
Neuro-level evolution
Three-dimensional surface alignment
Network structure
Neural computation
Three-dimensional calculations
Evolutionary algorithm
Neural network
Data mining
Surface
Alignment
Experimental result
Neuron
Data mining―based evolutionary learning algorithm
System performance
Experimental design
Learning algorithm
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-a409fc6f62fd71f46307a7ef10f719781b19f055b8363a70d34afda735c5e3fe3
PageCount 14
ParticipantIDs pascalfrancis_primary_27658250
crossref_citationtrail_10_1007_s00521_012_0943_0
crossref_primary_10_1007_s00521_012_0943_0
springer_journals_10_1007_s00521_012_0943_0
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2013
Publisher Springer London
Springer
Publisher_xml – name: Springer London
– name: Springer
References LinCJLinCTAn ART-based fuzzy adaptive learning control networkIEEE Trans Fuzzy Syst19975447749610.1109/91.649900
LiuHYanJZhangDThree-dimensional surface registration: a neural network strategyNeurocomputing20067059760210.1016/j.neucom.2006.04.004
BeslPMckayNA method for registration of 3-D shapesIEEE Trans Pattern Anal Mach Intell199214223925610.1109/34.121791
Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Proceeding of ACM-SIGMOD, Dallas, Tx, pp 1–12
Cowder RS (1990) Predicting the mackey-glass time series with cascade-correlation learning. In: Proceedings of the 1990 connectionist models summer school, pp. 117–123
Agrawal R, Srikant R (1994) Fast algorithm for mining association rules. In: Proceeding of the international conference on VLDB, pp 487–499
TakagiHSuzukiNKodaTKojimaYNeural networks designed on approximated reasoning architecture and their applicationIEEE Trans Neural Netw19923575275910.1109/72.159063
CordonOHerreraFHoffmannFMagdalenaLGenetic fuzzy systems evolutionary tuning and learning of fuzzy knowledge bases, advances in fuzzy systems-applications and theory2001NJ, USAWorld Scientific Publishing10.1142/4177
Mizutani E, Jang J-SR (1995) Coactive neural fuzzy modeling. In: Proceeding of IEEE international conference on neural networks, pp 760–765
LinCJChenCHLinCTAn efficient evolutionary algorithm for fuzzy inference systemsEvol Syst2011228399
Gomez FJ (2003) Robust non-linear control through neuroevolution, Ph. D. Disseration, The University of Texas at Austin
De Jong KA (1975) Analysis of the behavior of a class of genetic adaptive systems, Ph. D. Dissertation, Dep. Computer and Communication Sciences, Univ. Michigan, Ann Arbor, MI
JuangCFLinCTAn on-line self-constructing neural fuzzy inference network and its applicationsIEEE Trans Fuzzy Syst199861123110.1109/91.660805
TanbeerSKAhmedCFJeongBSParallel and distributed algorithm for frequent pattern mining in large databaseIETE Tech Rev200926556510.4103/0256-4602.48469
LiuYHImproving ICP with easy implementation for free-form surface matchingPattern Recogn2004372112261059.6811110.1016/S0031-3203(03)00239-5
LinFJLinCHShenPHSelf-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor driveIEEE Trans Fuzzy Syst20019575175910.1109/91.963761
Wu YT, An YJ, Geller J, Wu YT (2006) A data mining based genetic algorithm. In: Proceeding of IEEE workshop SEUS-WCCIA, pp 27–28
JuangCFLinCTA recurrent self-organizing neural fuzzy inference networkIEEE Trans Neural Netw199910482884510.1109/72.774232
TakagiTSugenoMFuzzy identification of systems and its applications to modeling and controlIEEE Trans Syst Man Cybern1985151161320576.9302110.1109/TSMC.1985.6313399
LinSFChengYCTwo-strategy reinforcement evolutionary algorithm using data-mining based crossover strategy with TSK-type fuzzy controllersInt J Innovat Comput Control20106938633885
LiMWangZA hybrid coevolutionary algorithm for designing fuzzy classifiersInf Sci2009179121970198310.1016/j.ins.2009.01.045
ShankarSPurusothamanTUtility sentient frequent itemset mining and association rule mining: a literature survey and comparative studyInt J Soft Comput Appl200948195
CoxEFuzzy modeling and genetic algorithms for data mining and exploration20051San Francisco, USAMorgan Kaufman Publications1113.68072
ZhangJGeYOngSHChuiCKTeohSHYanCHRapid surface registration of 3D volumes using a neural network approachImage Vis Comput20082620121010.1016/j.imavis.2007.04.003
Gomez F, Schmidhuber J (2005) Co-evolving recurrent neurons learn deep memory POMDPs. In: Proceeding of conference on genetic and evolutionary computation, pp 491–498
LinCTJouCPGA-based fuzzy reinforcement learning for control of a magnetic bearing systemIEEE Trans Syst Man Cybern Part B2000302276289
LinC-JChinC-CPrediction and identification using wavelet-based recurrent fuzzy neural networksIEEE Trans Syst Man Cybern Part B20043452144215410.1109/TSMCB.2004.833330
MastorocostasPATheocharisJBA recurrent fuzzy-neural model for dynamic system identificationIEEE Trans Syst Man Cybern200232217619010.1109/3477.990874
ChetverikovDStepanovDKreskPRobust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithmImage Vis Comput20052329930910.1016/j.imavis.2004.05.007
MoriartyDEMiikkulainenREfficient reinforcement learning through symbiotic evolutionMach Learn1996221132
RabbaniTvan den HeuvelFAVosselmannGSegmentation of point clouds using smoothness constraintProc ISPRS200635248253
NarendraKSParthasarathyKIdentification and control of dynamical systems using neural networksIEEE Trans Neural Netw1990142710.1109/72.80202
KozaJKGenetic programming: on the programming of computers by means of natural selection1992Cambridge, MAMIT Press0850.68161
HsuYCLinSFChengYCMulti groups cooperation based symbiotic evolution for TSK-type neuro-fuzzy systems designExp Syst Appl20103775320533010.1016/j.eswa.2010.01.003
TowellGGShavlikJWExtracting refined rules from knowledge-based neural networksMach Learn19931371101
BandyopadhyaySMurthyCAPalSKVGA-classifier: design and applications, IEEE TransSyst Man Cybern Part B200030689089510.1109/3477.891151
CarseBFogartyTCMunroAEvolving fuzzy rule based controllers using genetic algorithmsFuzzy Sets Syst199680327329310.1016/0165-0114(95)00196-4
FogelLJZuradaJMMarksRJIIGoldbergCEvolutionary programming in perspective: the top-down viewComputational intelligence: imitating life1994Piscataway, NJIEEE Press
SugenoMTanakaKSuccessive identification of a fuzzy model and its applications to prediction of a complex systemFuzzy Sets Syst199142331533411279780741.9305210.1016/0165-0114(91)90110-C
LinCJHsuYCReinforcement hybrid evolutionary learning for recurrent wavelet-based neuro-fuzzy systemsIEEE Trans Fuzzy Syst200715472974510.1109/TFUZZ.2006.889920
LinCTLeeCSGNeural fuzzy systems: a neuro-fuzzy synergism to intelligent system1996Englewood Cliffs, NJPrentice-Hall
WangLXMendelJMGenerating fuzzy rules by learning from examplesIEEE Trans Syst Man Cybern199222614141427121246410.1109/21.199466
Riemiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceeding of IEEE international conference on neural networks, pp 586–591
Karr CL (1991) Design of an adaptive fuzzy logic controller using a genetic algorithm. In: Proceeding of the 4th international conference on genetic algorithms, pp 450–457
GoldbergDEGenetic algorithms in search optimization and machine learning1989Reading, MAAddison-Wesley0721.68056
JuangCFLinJYLinCTGenetic reinforcement learning through symbiotic evolution for fuzzy controller designIEEE Trans Syst Man Cybern Part B2000302290302
ChenCHLinCJLinCTUsing an efficient immune symbiotic evolution learning for compensatory neuro-fuzzy controllerIEEE Trans Fuzzy Syst200917366868210.1109/TFUZZ.2008.924186
LeeJTWuHWLeeTYLiuYHChenKTMining closed patterns in multi-sequence time-series databaseData Knowl Eng2009681071109010.1016/j.datak.2009.04.005
GG Towell (943_CR2) 1993; 13
DE Goldberg (943_CR15) 1989
CT Lin (943_CR1) 1996
CJ Lin (943_CR28) 2007; 15
CF Juang (943_CR13) 1999; 10
B Carse (943_CR23) 1996; 80
YC Hsu (943_CR29) 2010; 37
DE Moriarty (943_CR42) 1996; 22
943_CR25
LJ Fogel (943_CR17) 1994
M Li (943_CR18) 2009; 179
943_CR26
943_CR27
SK Tanbeer (943_CR31) 2009; 26
M Sugeno (943_CR36) 1991; 42
CT Lin (943_CR20) 2000; 30
S Bandyopadhyay (943_CR22) 2000; 30
FJ Lin (943_CR8) 2001; 9
C-J Lin (943_CR11) 2004; 34
943_CR40
943_CR7
KS Narendra (943_CR12) 1990; 1
943_CR41
943_CR21
JT Lee (943_CR30) 2009; 68
H Liu (943_CR44) 2006; 70
T Takagi (943_CR5) 1985; 15
SF Lin (943_CR37) 2010; 6
E Cox (943_CR39) 2005
P Besl (943_CR48) 1992; 14
S Shankar (943_CR35) 2009; 4
T Rabbani (943_CR43) 2006; 35
PA Mastorocostas (943_CR14) 2002; 32
LX Wang (943_CR4) 1992; 22
J Zhang (943_CR45) 2008; 26
H Takagi (943_CR9) 1992; 3
CJ Lin (943_CR3) 1997; 5
JK Koza (943_CR16) 1992
D Chetverikov (943_CR46) 2005; 23
O Cordon (943_CR38) 2001
943_CR19
CH Chen (943_CR24) 2009; 17
CF Juang (943_CR6) 1998; 6
YH Liu (943_CR47) 2004; 37
943_CR10
943_CR32
943_CR33
943_CR34
References_xml – reference: LinCTJouCPGA-based fuzzy reinforcement learning for control of a magnetic bearing systemIEEE Trans Syst Man Cybern Part B2000302276289
– reference: TakagiTSugenoMFuzzy identification of systems and its applications to modeling and controlIEEE Trans Syst Man Cybern1985151161320576.9302110.1109/TSMC.1985.6313399
– reference: Gomez F, Schmidhuber J (2005) Co-evolving recurrent neurons learn deep memory POMDPs. In: Proceeding of conference on genetic and evolutionary computation, pp 491–498
– reference: Agrawal R, Srikant R (1994) Fast algorithm for mining association rules. In: Proceeding of the international conference on VLDB, pp 487–499
– reference: ShankarSPurusothamanTUtility sentient frequent itemset mining and association rule mining: a literature survey and comparative studyInt J Soft Comput Appl200948195
– reference: Riemiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceeding of IEEE international conference on neural networks, pp 586–591
– reference: SugenoMTanakaKSuccessive identification of a fuzzy model and its applications to prediction of a complex systemFuzzy Sets Syst199142331533411279780741.9305210.1016/0165-0114(91)90110-C
– reference: HsuYCLinSFChengYCMulti groups cooperation based symbiotic evolution for TSK-type neuro-fuzzy systems designExp Syst Appl20103775320533010.1016/j.eswa.2010.01.003
– reference: CordonOHerreraFHoffmannFMagdalenaLGenetic fuzzy systems evolutionary tuning and learning of fuzzy knowledge bases, advances in fuzzy systems-applications and theory2001NJ, USAWorld Scientific Publishing10.1142/4177
– reference: ChetverikovDStepanovDKreskPRobust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithmImage Vis Comput20052329930910.1016/j.imavis.2004.05.007
– reference: LinCJLinCTAn ART-based fuzzy adaptive learning control networkIEEE Trans Fuzzy Syst19975447749610.1109/91.649900
– reference: Wu YT, An YJ, Geller J, Wu YT (2006) A data mining based genetic algorithm. In: Proceeding of IEEE workshop SEUS-WCCIA, pp 27–28
– reference: Gomez FJ (2003) Robust non-linear control through neuroevolution, Ph. D. Disseration, The University of Texas at Austin
– reference: JuangCFLinCTAn on-line self-constructing neural fuzzy inference network and its applicationsIEEE Trans Fuzzy Syst199861123110.1109/91.660805
– reference: TanbeerSKAhmedCFJeongBSParallel and distributed algorithm for frequent pattern mining in large databaseIETE Tech Rev200926556510.4103/0256-4602.48469
– reference: MastorocostasPATheocharisJBA recurrent fuzzy-neural model for dynamic system identificationIEEE Trans Syst Man Cybern200232217619010.1109/3477.990874
– reference: De Jong KA (1975) Analysis of the behavior of a class of genetic adaptive systems, Ph. D. Dissertation, Dep. Computer and Communication Sciences, Univ. Michigan, Ann Arbor, MI
– reference: ChenCHLinCJLinCTUsing an efficient immune symbiotic evolution learning for compensatory neuro-fuzzy controllerIEEE Trans Fuzzy Syst200917366868210.1109/TFUZZ.2008.924186
– reference: BeslPMckayNA method for registration of 3-D shapesIEEE Trans Pattern Anal Mach Intell199214223925610.1109/34.121791
– reference: LeeJTWuHWLeeTYLiuYHChenKTMining closed patterns in multi-sequence time-series databaseData Knowl Eng2009681071109010.1016/j.datak.2009.04.005
– reference: LinCJHsuYCReinforcement hybrid evolutionary learning for recurrent wavelet-based neuro-fuzzy systemsIEEE Trans Fuzzy Syst200715472974510.1109/TFUZZ.2006.889920
– reference: MoriartyDEMiikkulainenREfficient reinforcement learning through symbiotic evolutionMach Learn1996221132
– reference: WangLXMendelJMGenerating fuzzy rules by learning from examplesIEEE Trans Syst Man Cybern199222614141427121246410.1109/21.199466
– reference: JuangCFLinCTA recurrent self-organizing neural fuzzy inference networkIEEE Trans Neural Netw199910482884510.1109/72.774232
– reference: CoxEFuzzy modeling and genetic algorithms for data mining and exploration20051San Francisco, USAMorgan Kaufman Publications1113.68072
– reference: Cowder RS (1990) Predicting the mackey-glass time series with cascade-correlation learning. In: Proceedings of the 1990 connectionist models summer school, pp. 117–123
– reference: Mizutani E, Jang J-SR (1995) Coactive neural fuzzy modeling. In: Proceeding of IEEE international conference on neural networks, pp 760–765
– reference: BandyopadhyaySMurthyCAPalSKVGA-classifier: design and applications, IEEE TransSyst Man Cybern Part B200030689089510.1109/3477.891151
– reference: TowellGGShavlikJWExtracting refined rules from knowledge-based neural networksMach Learn19931371101
– reference: JuangCFLinJYLinCTGenetic reinforcement learning through symbiotic evolution for fuzzy controller designIEEE Trans Syst Man Cybern Part B2000302290302
– reference: LinSFChengYCTwo-strategy reinforcement evolutionary algorithm using data-mining based crossover strategy with TSK-type fuzzy controllersInt J Innovat Comput Control20106938633885
– reference: LiMWangZA hybrid coevolutionary algorithm for designing fuzzy classifiersInf Sci2009179121970198310.1016/j.ins.2009.01.045
– reference: ZhangJGeYOngSHChuiCKTeohSHYanCHRapid surface registration of 3D volumes using a neural network approachImage Vis Comput20082620121010.1016/j.imavis.2007.04.003
– reference: KozaJKGenetic programming: on the programming of computers by means of natural selection1992Cambridge, MAMIT Press0850.68161
– reference: LiuYHImproving ICP with easy implementation for free-form surface matchingPattern Recogn2004372112261059.6811110.1016/S0031-3203(03)00239-5
– reference: CarseBFogartyTCMunroAEvolving fuzzy rule based controllers using genetic algorithmsFuzzy Sets Syst199680327329310.1016/0165-0114(95)00196-4
– reference: NarendraKSParthasarathyKIdentification and control of dynamical systems using neural networksIEEE Trans Neural Netw1990142710.1109/72.80202
– reference: LinC-JChinC-CPrediction and identification using wavelet-based recurrent fuzzy neural networksIEEE Trans Syst Man Cybern Part B20043452144215410.1109/TSMCB.2004.833330
– reference: LinCJChenCHLinCTAn efficient evolutionary algorithm for fuzzy inference systemsEvol Syst2011228399
– reference: LiuHYanJZhangDThree-dimensional surface registration: a neural network strategyNeurocomputing20067059760210.1016/j.neucom.2006.04.004
– reference: LinCTLeeCSGNeural fuzzy systems: a neuro-fuzzy synergism to intelligent system1996Englewood Cliffs, NJPrentice-Hall
– reference: Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Proceeding of ACM-SIGMOD, Dallas, Tx, pp 1–12
– reference: FogelLJZuradaJMMarksRJIIGoldbergCEvolutionary programming in perspective: the top-down viewComputational intelligence: imitating life1994Piscataway, NJIEEE Press
– reference: Karr CL (1991) Design of an adaptive fuzzy logic controller using a genetic algorithm. In: Proceeding of the 4th international conference on genetic algorithms, pp 450–457
– reference: RabbaniTvan den HeuvelFAVosselmannGSegmentation of point clouds using smoothness constraintProc ISPRS200635248253
– reference: GoldbergDEGenetic algorithms in search optimization and machine learning1989Reading, MAAddison-Wesley0721.68056
– reference: LinFJLinCHShenPHSelf-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor driveIEEE Trans Fuzzy Syst20019575175910.1109/91.963761
– reference: TakagiHSuzukiNKodaTKojimaYNeural networks designed on approximated reasoning architecture and their applicationIEEE Trans Neural Netw19923575275910.1109/72.159063
– volume: 15
  start-page: 729
  issue: 4
  year: 2007
  ident: 943_CR28
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2006.889920
– ident: 943_CR10
  doi: 10.1109/ICNN.1995.487513
– volume: 6
  start-page: 3863
  issue: 9
  year: 2010
  ident: 943_CR37
  publication-title: Int J Innovat Comput Control
– ident: 943_CR25
  doi: 10.1007/s12530-010-9024-8
– volume: 68
  start-page: 1071
  year: 2009
  ident: 943_CR30
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2009.04.005
– volume: 23
  start-page: 299
  year: 2005
  ident: 943_CR46
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2004.05.007
– ident: 943_CR7
  doi: 10.1109/ICNN.1993.298623
– volume: 15
  start-page: 116
  year: 1985
  ident: 943_CR5
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1985.6313399
– ident: 943_CR26
– volume: 37
  start-page: 5320
  issue: 7
  year: 2010
  ident: 943_CR29
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2010.01.003
– volume: 5
  start-page: 477
  issue: 4
  year: 1997
  ident: 943_CR3
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.649900
– volume: 6
  start-page: 12
  issue: 1
  year: 1998
  ident: 943_CR6
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.660805
– volume: 10
  start-page: 828
  issue: 4
  year: 1999
  ident: 943_CR13
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.774232
– ident: 943_CR41
– volume: 30
  start-page: 890
  issue: 6
  year: 2000
  ident: 943_CR22
  publication-title: Syst Man Cybern Part B
  doi: 10.1109/3477.891151
– volume: 4
  start-page: 81
  year: 2009
  ident: 943_CR35
  publication-title: Int J Soft Comput Appl
– volume: 1
  start-page: 4
  year: 1990
  ident: 943_CR12
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.80202
– volume: 179
  start-page: 1970
  issue: 12
  year: 2009
  ident: 943_CR18
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.01.045
– volume-title: Genetic algorithms in search optimization and machine learning
  year: 1989
  ident: 943_CR15
– volume: 80
  start-page: 273
  issue: 3
  year: 1996
  ident: 943_CR23
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/0165-0114(95)00196-4
– volume: 3
  start-page: 752
  issue: 5
  year: 1992
  ident: 943_CR9
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.159063
– volume: 30
  start-page: 276
  issue: 2
  year: 2000
  ident: 943_CR20
  publication-title: IEEE Trans Syst Man Cybern Part B
– volume: 26
  start-page: 55
  year: 2009
  ident: 943_CR31
  publication-title: IETE Tech Rev
  doi: 10.4103/0256-4602.48469
– volume: 17
  start-page: 668
  issue: 3
  year: 2009
  ident: 943_CR24
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2008.924186
– ident: 943_CR19
– volume-title: Neural fuzzy systems: a neuro-fuzzy synergism to intelligent system
  year: 1996
  ident: 943_CR1
– volume: 22
  start-page: 11
  year: 1996
  ident: 943_CR42
  publication-title: Mach Learn
– volume: 14
  start-page: 239
  issue: 2
  year: 1992
  ident: 943_CR48
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.121791
– volume: 32
  start-page: 176
  issue: 2
  year: 2002
  ident: 943_CR14
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/3477.990874
– ident: 943_CR21
  doi: 10.1109/3477.836377
– volume: 22
  start-page: 1414
  issue: 6
  year: 1992
  ident: 943_CR4
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.199466
– volume-title: Genetic programming: on the programming of computers by means of natural selection
  year: 1992
  ident: 943_CR16
– volume: 70
  start-page: 597
  year: 2006
  ident: 943_CR44
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.04.004
– volume-title: Genetic fuzzy systems evolutionary tuning and learning of fuzzy knowledge bases, advances in fuzzy systems-applications and theory
  year: 2001
  ident: 943_CR38
  doi: 10.1142/4177
– volume: 9
  start-page: 751
  issue: 5
  year: 2001
  ident: 943_CR8
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.963761
– volume-title: Computational intelligence: imitating life
  year: 1994
  ident: 943_CR17
– ident: 943_CR40
– volume: 37
  start-page: 211
  year: 2004
  ident: 943_CR47
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(03)00239-5
– ident: 943_CR33
  doi: 10.1145/342009.335372
– volume: 26
  start-page: 201
  year: 2008
  ident: 943_CR45
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2007.04.003
– volume-title: Fuzzy modeling and genetic algorithms for data mining and exploration
  year: 2005
  ident: 943_CR39
– volume: 42
  start-page: 315
  issue: 3
  year: 1991
  ident: 943_CR36
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/0165-0114(91)90110-C
– volume: 34
  start-page: 2144
  issue: 5
  year: 2004
  ident: 943_CR11
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCB.2004.833330
– ident: 943_CR27
  doi: 10.1145/1068009.1068092
– volume: 13
  start-page: 71
  year: 1993
  ident: 943_CR2
  publication-title: Mach Learn
– ident: 943_CR34
– ident: 943_CR32
– volume: 35
  start-page: 248
  year: 2006
  ident: 943_CR43
  publication-title: Proc ISPRS
SSID ssj0004685
Score 1.9601431
Snippet This study proposes a data mining–based hierarchical cooperative coevolutionary algorithm (DMHCCA) for TSK-type neuro-fuzzy networks design. The proposed...
SourceID pascalfrancis
crossref
springer
SourceType Index Database
Enrichment Source
Publisher
StartPage 485
SubjectTerms Applied sciences
Artificial Intelligence
Combinatorics
Combinatorics. Ordered structures
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer science; control theory; systems
Data Mining and Knowledge Discovery
Designs and configurations
Exact sciences and technology
Experimental design
Image Processing and Computer Vision
Learning and adaptive systems
Mathematics
Original Article
Probability and statistics
Probability and Statistics in Computer Science
Sciences and techniques of general use
Statistics
Title Data mining–based hierarchical cooperative coevolutionary algorithm for TSK-type neuro-fuzzy networks design
URI https://link.springer.com/article/10.1007/s00521-012-0943-0
Volume 23
WOSCitedRecordID wos000322139500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPQhifWJ9lBw8KYHtZndTj6IWQRGxKuJlSZOMCvbB7rZQT_4H_6G_xEl2tyg-QG85JCFMZjKTzOT7CNnBEBxAA2cSBLBAR2hSEiImjFEYoXodoRzO7Jk4P2_e3u5fFP-407LavUxJupN68tnNvmDaq6_PbDUcw3v6DHq7prXGy_bNh8-QjocT-9iSnoCXqczvpvjkjOYHMkW5QE5o8SUz6hxOq_qvpS6ShSK-pAe5QiyRKdNbJtWSu4EWprxCekcyk7Tr6CHeXl6tM9PU8mK7zAIukKp-f2ByXHBsm1GhozIZU_l0308es4cuxZCXXrVPmX3JpQ4bk8Hw-XmMbVdenlLtSkRWyXXr-OrwhBXcC0yhlWdM4r0PVASRD1o0IIjwLJDCQMMD0bA4WZ3GPnhh2GnyiEvhaR5I0FLwUIWGg-FrpNLr98w6oTIEnwMqgDQmML4vOZcWcybUSnvNjqkRr9yEWBXA5JYf4ymeQCo7ecYoz9jKM_ZqZHcyZJCjcvzWuf5pZycjfIHhF4aANbJXbmNcWHD683Qbf-q9SeZ8R6BhSwa3SCVLhmabzKpR9pgmdTJ9Ed7Vnf6-A31x7Mg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SBQWxPrE-ag6elMB2s7tpj6IWpbWIVultSZOMCtqW7iroyf_gP_SXOEl3i8UH6C2HJITJTGaSmXwfIbsYggNo4EyCABboCE1KQsSEMQojVK8rlMOZbYpWq9rp1M6zf9xJXu2epyTdST3-7GZfMO3V12e2Go7hPX06QIdl6_guLq8_fYZ0PJzYx5b0BDxPZX43xYQzmh_IBOUCI0KLL5lR53DqxX8tdZEsZPElPRgpxBKZMr1lUsy5G2hmyiukdyRTSR8cPcT765t1ZppaXmyXWcAFUtXvD8wIFxzb5inTUTl8pvL-pj-8S28fKIa8tH3ZYPYllzpsTAaPLy_P2Hbl5QnVrkRklVzVj9uHJyzjXmAKrTxlEu99oCKIfNCiAkGEZ4EUBioeiIrFyepWauCFYbfKIy6Fp3kgQUvBQxUaDoavkUKv3zPrhMoQfA6oANKYwPi-5FxazJlQK-1Vu6ZEvHwTYpUBk1t-jPt4DKns5BmjPGMrz9grkb3xkMEIleO3zuWJnR2P8AWGXxgClsh-vo1xZsHJz9Nt_Kn3Dpk9aZ814-Zpq7FJ5nxHpmHLB7dIIR0-mm0yo57Su2RYdlr8AQoU7qw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iIoL4FuszB09KcLvZ3dSjqEWxFMEH3pY0yahgt6W7LdST_8F_6C9xkt0tFh8g3nJIQpjMJDOZyfcRsocuOIAGziQIYIGO0KQkREwYo9BD9VpCOZzZhmg2a_f3R1cFz2laVruXKcn8T4NFaUqyw66Gw9HHN_uaacNgn9nKOIYx-1RgOYNsuH599-ljpOPkxD62vCfgZVrzuynGLqa5rkxRRpCTW3zJkrrLp77w72UvkvnC76THuaIskQmTLJOFktOBFia-QpJTmUnadrQR769v9pLT1PJlu4wDLpaqTqdrcrxwbJtBobuyN6Ty-aHTe8oe2xRdYXpzfcnsCy91mJkM-i8vQ2y7svOUalc6skpu62c3J-es4GRgCq0_YxLjQVARRD5oUYUgwjNCCgNVD0TV4me1qkfghWGrxiMuhad5IEFLwUMVGg6Gr5HJpJOYdUJlCD4HVAxpTGB8X3IuLRZNqJX2ai1TIV65IbEqAMstb8ZzPIJadvKMUZ6xlWfsVcj-aEg3R-v4rfPO2C6PRvgC3TJ0DSvkoNzSuLDs9OfpNv7Ue5fMXJ3W48ZF83KTzPqOY8NWFW6RyazXN9tkWg2yp7S34xT6A4zi95A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+mining%E2%80%93based+hierarchical+cooperative+coevolutionary+algorithm+for+TSK-type+neuro-fuzzy+networks+design&rft.jtitle=Neural+computing+%26+applications&rft.au=Hsu%2C+Chi-Yao&rft.au=Lin%2C+Sheng-Fuu&rft.au=Chang%2C+Jyun-Wei&rft.date=2013-08-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=23&rft.issue=2&rft.spage=485&rft.epage=498&rft_id=info:doi/10.1007%2Fs00521-012-0943-0&rft.externalDocID=10_1007_s00521_012_0943_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon