An astrophysics-inspired Grey wolf algorithm for numerical optimization and its application to engineering design problems

•Three novel strategies are proposed which utilize the concepts of astrophysics and prey weight.•The proposed strategies have been tested on thirteen standard benchmark test functions and compared with existing techniques.•The proposed strategies provide better results than the other techniques for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in engineering software (1992) Jg. 112; S. 231 - 254
Hauptverfasser: Kumar, Vijay, Kumar, Dinesh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.10.2017
Schlagworte:
ISSN:0965-9978
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Three novel strategies are proposed which utilize the concepts of astrophysics and prey weight.•The proposed strategies have been tested on thirteen standard benchmark test functions and compared with existing techniques.•The proposed strategies provide better results than the other techniques for noisy and scalable environment.•The effect of control parameter has also been investigated on the proposed strategies.•The proposed strategies have been evaluated on seven well-known constrained engineering design problems. In this paper, modified schemes are proposed for preventing a grey wolf optimizer (GWO) from premature exploration and convergence on optimization problems. Three novel strategies are developed to improve the performance of existing GWO. The first strategy uses the concept of prey weight. The second strategy uses the astrophysics concepts, which guide the grey wolves toward more promising areas of the search space. The beauty of this strategy is to let each grey wolf learn from not only movement of sun (symbolizes prey) in the search space but also the wolves are made to explore and exploit simultaneously. Third strategy combines the both, first and second strategies to take advantages of prey weight and astrophysics strategies. The proposed improvements in GWO have been evaluated on thirteen benchmark test functions. The performance of the proposed modifications has been compared with other five recently developed state-of-the-art techniques. The effects of scalability, noise, and control parameter have also been investigated. The statistical tests have been performed to validate the significance of modified variants. The proposed variants are also applied for seven well-known constrained engineering design problems. The experimental results depict the supremacy of the proposed modified algorithm in solving engineering design problems when compared with several existing techniques.
AbstractList •Three novel strategies are proposed which utilize the concepts of astrophysics and prey weight.•The proposed strategies have been tested on thirteen standard benchmark test functions and compared with existing techniques.•The proposed strategies provide better results than the other techniques for noisy and scalable environment.•The effect of control parameter has also been investigated on the proposed strategies.•The proposed strategies have been evaluated on seven well-known constrained engineering design problems. In this paper, modified schemes are proposed for preventing a grey wolf optimizer (GWO) from premature exploration and convergence on optimization problems. Three novel strategies are developed to improve the performance of existing GWO. The first strategy uses the concept of prey weight. The second strategy uses the astrophysics concepts, which guide the grey wolves toward more promising areas of the search space. The beauty of this strategy is to let each grey wolf learn from not only movement of sun (symbolizes prey) in the search space but also the wolves are made to explore and exploit simultaneously. Third strategy combines the both, first and second strategies to take advantages of prey weight and astrophysics strategies. The proposed improvements in GWO have been evaluated on thirteen benchmark test functions. The performance of the proposed modifications has been compared with other five recently developed state-of-the-art techniques. The effects of scalability, noise, and control parameter have also been investigated. The statistical tests have been performed to validate the significance of modified variants. The proposed variants are also applied for seven well-known constrained engineering design problems. The experimental results depict the supremacy of the proposed modified algorithm in solving engineering design problems when compared with several existing techniques.
Author Kumar, Dinesh
Kumar, Vijay
Author_xml – sequence: 1
  givenname: Vijay
  surname: Kumar
  fullname: Kumar, Vijay
  email: vijaykumarchahar@gmail.com, vijay_kumar@thapar.edu
  organization: Computer Science and Engineering Department, Thapar University, Patiala, Punjab, India
– sequence: 2
  givenname: Dinesh
  surname: Kumar
  fullname: Kumar, Dinesh
  email: dinesh_chutani@yahoo.com
  organization: Computer Science and Engineering Department, GJUS&T, Hisar, Haryana, India
BookMark eNqNkE1LxDAQhnNQ0FX_Q_5A66TbbtuLsIpfsOBFzyFNJruztElJorL-euuuIHjR08AM78M7z4wdOe-QMS4gFyAWl9tcmTd06-htygsQdQ5VDtAcsVNoF1XWtnVzwmYxbgFECYU4ZR9Lx1VMwY-bXSQdM3JxpICG3wfc8XffW676tQ-UNgO3PnD3OmAgrXrux0QDfahEfoI4wylFrsaxn677XfJ8akMOp4Bbc4OR1o6PwXc9DvGcHVvVR7z4nmfs5e72-eYhWz3dP94sV5meiyZlbWU7A0LXtmgKUyN0UHaVQIBaGF0WaJRVbVOArVrVmcq0MLdlWTRlUWs7x_kZuzpwdfAxBrRSU9oXTEFRLwXIL3tyK3_syS97Eio52ZsAzS_AGGhQYfef6PUhitODb4RBRk3oNJrJsU7SePob8glJn5nU
CitedBy_id crossref_primary_10_3233_IDT_200055
crossref_primary_10_1007_s11042_020_10139_6
crossref_primary_10_1007_s00521_018_3785_6
crossref_primary_10_3390_math10132211
crossref_primary_10_3390_app11114795
crossref_primary_10_1109_ACCESS_2019_2934994
crossref_primary_10_1016_j_asoc_2018_11_039
crossref_primary_10_1109_ACCESS_2019_2958288
crossref_primary_10_1007_s11831_022_09742_7
crossref_primary_10_1007_s00521_019_04483_4
crossref_primary_10_3390_aerospace10030293
crossref_primary_10_1016_j_asoc_2021_107476
crossref_primary_10_1002_int_22707
crossref_primary_10_1007_s00500_023_08415_2
crossref_primary_10_1007_s00500_019_03939_y
crossref_primary_10_1109_ACCESS_2020_3005182
crossref_primary_10_1016_j_knosys_2021_107139
crossref_primary_10_1016_j_engappai_2017_10_024
crossref_primary_10_1155_2021_2298215
crossref_primary_10_1016_j_eswa_2020_113698
crossref_primary_10_1016_j_asoc_2019_105521
crossref_primary_10_1016_j_compbiomed_2023_107216
crossref_primary_10_1016_j_asoc_2020_106099
crossref_primary_10_3390_math12223464
crossref_primary_10_1007_s00521_021_06747_4
crossref_primary_10_1007_s10489_022_04132_9
crossref_primary_10_1109_ACCESS_2020_3004380
crossref_primary_10_1007_s12065_020_00479_5
crossref_primary_10_1080_09720510_2017_1395182
crossref_primary_10_3390_app132312944
crossref_primary_10_1155_2019_2653512
crossref_primary_10_1016_j_asoc_2020_106833
crossref_primary_10_1016_j_advengsoft_2022_103185
crossref_primary_10_1109_ACCESS_2021_3113323
crossref_primary_10_1016_j_engappai_2019_103457
crossref_primary_10_1016_j_dajour_2022_100144
crossref_primary_10_1016_j_ins_2019_07_022
crossref_primary_10_3390_app15020537
crossref_primary_10_1016_j_heliyon_2024_e35958
crossref_primary_10_1007_s00366_021_01572_8
crossref_primary_10_2478_amns_2024_1790
crossref_primary_10_1007_s11600_018_0148_8
crossref_primary_10_1155_2021_9210050
crossref_primary_10_1109_ACCESS_2019_2910813
crossref_primary_10_3390_pr11123386
crossref_primary_10_1007_s00500_022_07389_x
crossref_primary_10_1007_s12145_024_01275_w
crossref_primary_10_1016_j_simpat_2019_102065
crossref_primary_10_1016_j_apm_2018_03_005
crossref_primary_10_1016_j_oceaneng_2021_110121
crossref_primary_10_1080_0305215X_2025_2469664
crossref_primary_10_1016_j_jocs_2022_101636
crossref_primary_10_1155_2022_3603607
crossref_primary_10_1088_1742_6596_2526_1_012073
crossref_primary_10_3390_math9182335
crossref_primary_10_1155_2021_6639671
crossref_primary_10_1016_j_advengsoft_2024_103831
Cites_doi 10.1016/j.ins.2009.03.004
10.1109/4235.771163
10.1016/j.knosys.2015.12.022
10.1007/s00521-015-1870-7
10.1080/01969722.2014.929349
10.1016/j.knosys.2015.07.006
10.1109/MCI.2006.329691
10.1016/j.advengsoft.2013.12.007
10.1007/s00521-014-1806-7
10.1109/ICITEED.2015.7408911
10.1080/15325008.2015.1041625
10.1115/1.2919393
10.1016/j.neucom.2015.06.083
10.1109/JSEE.2015.00037
10.1109/TEVC.2003.814902
10.1016/j.asoc.2012.11.026
10.1155/2016/7950348
10.1016/j.compstruc.2012.07.010
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.advengsoft.2017.05.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EndPage 254
ExternalDocumentID 10_1016_j_advengsoft_2017_05_008
S0965997817302272
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-95fbd01c7f282d7e0b04b51e0071dc42edafa9820f59abd5d903f4428427cf3e3
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405456900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0965-9978
IngestDate Tue Nov 18 22:43:19 EST 2025
Sat Nov 29 06:18:35 EST 2025
Fri Feb 23 02:27:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Astrophysics concept
Constrained design problems
Grey wolf optimizer
Function optimization
Meta-heuristics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-95fbd01c7f282d7e0b04b51e0071dc42edafa9820f59abd5d903f4428427cf3e3
PageCount 24
ParticipantIDs crossref_citationtrail_10_1016_j_advengsoft_2017_05_008
crossref_primary_10_1016_j_advengsoft_2017_05_008
elsevier_sciencedirect_doi_10_1016_j_advengsoft_2017_05_008
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationTitle Advances in engineering software (1992)
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mirjalili, Mirjalili, Hatamlou (bib0018) 2016; 27
Kumar, Chhabra, Kumar (bib0015) 2014; 45
Sadollah, Bahreininejad, Eskandar, Hamdi (bib0023) 2013; 13
Jitkongchuen, D., 2015, A Hybrid differential evolution with grey wolf optimizer for continuous global optimization, International Conference on Information Technology and Electrical Engineering, pp. 51–54, Chiang Mai.
Rashedi, Nezamabadi-pour, Saryazdi (bib0021) 2009; 179
Ray, Liew (bib0022) 2003; 7
Wen, Shao-Hong, Jian-Jun, Wen-Zhuan, Ming-Zhu (bib0026) 2016; 31
Mirjalili (bib0017) 2015; 89
Yao, Liu, Lin (bib0028) 1999; 3
Arora (bib0001) 1989
Korayem, Khorsid, Kassem (bib0013) 2015; 83
Emary, Zawbaa, Grosan (bib0005) 2017
Goldberg (bib0007) 1989
Zhu, Xu, Li, Wu, Liu (bib0030) 2015; 26
Kishor, Singh (bib0012) 2016
Mittal, Singh, Sohi (bib0020) 2016
Dorigo, Birattari, Stutzle (bib0002) 2006; 1
Mirjalili (bib0019) 2016; 96
Emary, Zawbaa, Hassanien (bib0004) 2016; 172
Kamboj (bib0009) 2015
Kannan, Kramer (bib0010) 1994; 116
El-Fergany, Hasanien (bib0003) 2015; 43
Eskandar, Sadollah, Bahreininejad, Hamdi (bib0006) 2012; 110
Zhang, Zhou (bib0029) 2015
Kennedy, Eberhart (bib0011) 1995; 4
Wen (bib0027) 2016
Sarafrazi, Nezamaadi-pour, Seydnejad (bib0025) 2015; 27
Mirjalili, Mirjalili, Lewis (bib0016) 2014; 69
Saremi, Mirjalili, Mirjalili (bib0024) 2015; 26
Kishor (10.1016/j.advengsoft.2017.05.008_bib0012) 2016
Wen (10.1016/j.advengsoft.2017.05.008_bib0027) 2016
Mirjalili (10.1016/j.advengsoft.2017.05.008_bib0019) 2016; 96
Zhu (10.1016/j.advengsoft.2017.05.008_bib0030) 2015; 26
Zhang (10.1016/j.advengsoft.2017.05.008_bib0029) 2015
Sarafrazi (10.1016/j.advengsoft.2017.05.008_bib0025) 2015; 27
10.1016/j.advengsoft.2017.05.008_bib0008
Mirjalili (10.1016/j.advengsoft.2017.05.008_bib0017) 2015; 89
Goldberg (10.1016/j.advengsoft.2017.05.008_bib0007) 1989
Arora (10.1016/j.advengsoft.2017.05.008_bib0001) 1989
Emary (10.1016/j.advengsoft.2017.05.008_bib0004) 2016; 172
Emary (10.1016/j.advengsoft.2017.05.008_bib0005) 2017
Kannan (10.1016/j.advengsoft.2017.05.008_bib0010) 1994; 116
Yao (10.1016/j.advengsoft.2017.05.008_bib0028) 1999; 3
Eskandar (10.1016/j.advengsoft.2017.05.008_bib0006) 2012; 110
Mirjalili (10.1016/j.advengsoft.2017.05.008_bib0018) 2016; 27
Dorigo (10.1016/j.advengsoft.2017.05.008_bib0002) 2006; 1
Mittal (10.1016/j.advengsoft.2017.05.008_bib0020) 2016
Korayem (10.1016/j.advengsoft.2017.05.008_bib0013) 2015; 83
Kumar (10.1016/j.advengsoft.2017.05.008_bib0015) 2014; 45
Kamboj (10.1016/j.advengsoft.2017.05.008_bib0009) 2015
Rashedi (10.1016/j.advengsoft.2017.05.008_bib0021) 2009; 179
El-Fergany (10.1016/j.advengsoft.2017.05.008_bib0003) 2015; 43
Sadollah (10.1016/j.advengsoft.2017.05.008_bib0023) 2013; 13
Wen (10.1016/j.advengsoft.2017.05.008_bib0026) 2016; 31
Mirjalili (10.1016/j.advengsoft.2017.05.008_bib0016) 2014; 69
Kennedy (10.1016/j.advengsoft.2017.05.008_bib0011) 1995; 4
Saremi (10.1016/j.advengsoft.2017.05.008_bib0024) 2015; 26
Ray (10.1016/j.advengsoft.2017.05.008_bib0022) 2003; 7
References_xml – volume: 43
  start-page: 1548
  year: 2015
  end-page: 1559
  ident: bib0003
  article-title: Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms
  publication-title: Electr Power Compon Syst
– volume: 45
  start-page: 486
  year: 2014
  end-page: 511
  ident: bib0015
  article-title: Variance-based harmony search algorithm for unimodal and multimodal optimization problems with application to clustering
  publication-title: Cybern Syst
– volume: 83
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib0013
  article-title: Using grey wolf algorithm to solve the capacitated vehicle routing problem
  publication-title: Mater Sci Eng
– year: 1989
  ident: bib0001
  article-title: Introduction to optimum design
– reference: Jitkongchuen, D., 2015, A Hybrid differential evolution with grey wolf optimizer for continuous global optimization, International Conference on Information Technology and Electrical Engineering, pp. 51–54, Chiang Mai.
– volume: 110
  start-page: 151
  year: 2012
  end-page: 166
  ident: bib0006
  article-title: Water cycle algorithm: a novel metaheuristic method for solving constrained engineering optimization problems
  publication-title: Comput Struct
– start-page: 1
  year: 2017
  end-page: 14
  ident: bib0005
  article-title: Experienced grey wolf optimization through reinforcement learning and neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0011
  article-title: Particle swarm optimization
  publication-title: IEEE International Conference on Neural Networks
– start-page: 1
  year: 2016
  end-page: 16
  ident: bib0020
  article-title: Modified grey wolf optimizer for global engineering optimization
  publication-title: Appl Comput Intell Soft Comput
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: bib0018
  article-title: Multi-Verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput Appl
– volume: 31
  start-page: 1991
  year: 2016
  end-page: 1997
  ident: bib0026
  article-title: Hybrid grey wolf optimization algorithm for high dimensional optimization
  publication-title: Control Decis
– volume: 1
  start-page: 28
  year: 2006
  end-page: 39
  ident: bib0002
  article-title: Ant colony optimization
  publication-title: IEEE Comput Intell Mag
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: bib0004
  article-title: Binary Grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: bib0021
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf Sci
– volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: bib0028
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans Evol Comput
– start-page: 1037
  year: 2016
  end-page: 1049
  ident: bib0012
  article-title: Empirical study of grey wolf optimizer
  publication-title: International Conference on Soft Computing for Problem Solving
– start-page: 1
  year: 2015
  end-page: 17
  ident: bib0029
  article-title: Grey wolf optimizer based on powell local optimization method for clustering analysis
  publication-title: Discrete Dyn Nature Soc
– start-page: 1
  year: 2015
  end-page: 13
  ident: bib0009
  article-title: A novel hybrid PSO-GWO approach for unit commitment problem
  publication-title: Neural Comput Appl
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: bib0017
  article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm
  publication-title: Knowledge-based Syst
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: bib0023
  article-title: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl Soft Comput
– year: 1989
  ident: bib0007
  article-title: Genetic algorithms in Search, optimization and machine learning
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib0016
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
– volume: 7
  start-page: 386
  year: 2003
  end-page: 396
  ident: bib0022
  article-title: Society and civilization: an optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Trans Evol Comput
– start-page: 643
  year: 2016
  end-page: 648
  ident: bib0027
  article-title: Grey wolf optimizer based on nonlinear adjustment control parameter
  publication-title: International Conference on Sensors, Mechatronics and Automation
– volume: 116
  start-page: 405
  year: 1994
  end-page: 411
  ident: bib0010
  article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: J Mech Des.
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: bib0019
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-based Syst
– volume: 26
  start-page: 1257
  year: 2015
  end-page: 1263
  ident: bib0024
  article-title: Evolutionary population dynamics and grey wolf optimizer
  publication-title: Neural Comput Appl
– volume: 27
  start-page: 288
  year: 2015
  end-page: 296
  ident: bib0025
  article-title: A novel hyrid algorithm of GSA with kepler algorithm for numerical optimization
  publication-title: Comput Inf Sci
– volume: 26
  start-page: 317
  year: 2015
  end-page: 328
  ident: bib0030
  article-title: Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC
  publication-title: J Syst Eng Electron
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.advengsoft.2017.05.008_bib0021
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.03.004
– start-page: 1
  year: 2015
  ident: 10.1016/j.advengsoft.2017.05.008_bib0029
  article-title: Grey wolf optimizer based on powell local optimization method for clustering analysis
  publication-title: Discrete Dyn Nature Soc
– volume: 3
  start-page: 82
  year: 1999
  ident: 10.1016/j.advengsoft.2017.05.008_bib0028
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.771163
– volume: 27
  start-page: 288
  year: 2015
  ident: 10.1016/j.advengsoft.2017.05.008_bib0025
  article-title: A novel hyrid algorithm of GSA with kepler algorithm for numerical optimization
  publication-title: Comput Inf Sci
– start-page: 1
  year: 2017
  ident: 10.1016/j.advengsoft.2017.05.008_bib0005
  article-title: Experienced grey wolf optimization through reinforcement learning and neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.advengsoft.2017.05.008_bib0019
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-based Syst
  doi: 10.1016/j.knosys.2015.12.022
– start-page: 1037
  year: 2016
  ident: 10.1016/j.advengsoft.2017.05.008_bib0012
  article-title: Empirical study of grey wolf optimizer
– volume: 27
  start-page: 495
  year: 2016
  ident: 10.1016/j.advengsoft.2017.05.008_bib0018
  article-title: Multi-Verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1870-7
– volume: 45
  start-page: 486
  year: 2014
  ident: 10.1016/j.advengsoft.2017.05.008_bib0015
  article-title: Variance-based harmony search algorithm for unimodal and multimodal optimization problems with application to clustering
  publication-title: Cybern Syst
  doi: 10.1080/01969722.2014.929349
– start-page: 643
  year: 2016
  ident: 10.1016/j.advengsoft.2017.05.008_bib0027
  article-title: Grey wolf optimizer based on nonlinear adjustment control parameter
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.advengsoft.2017.05.008_bib0017
  article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm
  publication-title: Knowledge-based Syst
  doi: 10.1016/j.knosys.2015.07.006
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 10.1016/j.advengsoft.2017.05.008_bib0002
  article-title: Ant colony optimization
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2006.329691
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.advengsoft.2017.05.008_bib0016
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– start-page: 1
  year: 2015
  ident: 10.1016/j.advengsoft.2017.05.008_bib0009
  article-title: A novel hybrid PSO-GWO approach for unit commitment problem
  publication-title: Neural Comput Appl
– volume: 26
  start-page: 1257
  year: 2015
  ident: 10.1016/j.advengsoft.2017.05.008_bib0024
  article-title: Evolutionary population dynamics and grey wolf optimizer
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1806-7
– ident: 10.1016/j.advengsoft.2017.05.008_bib0008
  doi: 10.1109/ICITEED.2015.7408911
– volume: 43
  start-page: 1548
  issue: 13
  year: 2015
  ident: 10.1016/j.advengsoft.2017.05.008_bib0003
  article-title: Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms
  publication-title: Electr Power Compon Syst
  doi: 10.1080/15325008.2015.1041625
– volume: 31
  start-page: 1991
  issue: 11
  year: 2016
  ident: 10.1016/j.advengsoft.2017.05.008_bib0026
  article-title: Hybrid grey wolf optimization algorithm for high dimensional optimization
  publication-title: Control Decis
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.advengsoft.2017.05.008_bib0011
  article-title: Particle swarm optimization
– volume: 116
  start-page: 405
  year: 1994
  ident: 10.1016/j.advengsoft.2017.05.008_bib0010
  article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: J Mech Des.
  doi: 10.1115/1.2919393
– year: 1989
  ident: 10.1016/j.advengsoft.2017.05.008_bib0001
– volume: 172
  start-page: 371
  year: 2016
  ident: 10.1016/j.advengsoft.2017.05.008_bib0004
  article-title: Binary Grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– year: 1989
  ident: 10.1016/j.advengsoft.2017.05.008_bib0007
– volume: 26
  start-page: 317
  year: 2015
  ident: 10.1016/j.advengsoft.2017.05.008_bib0030
  article-title: Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC
  publication-title: J Syst Eng Electron
  doi: 10.1109/JSEE.2015.00037
– volume: 83
  start-page: 1
  year: 2015
  ident: 10.1016/j.advengsoft.2017.05.008_bib0013
  article-title: Using grey wolf algorithm to solve the capacitated vehicle routing problem
  publication-title: Mater Sci Eng
– volume: 7
  start-page: 386
  year: 2003
  ident: 10.1016/j.advengsoft.2017.05.008_bib0022
  article-title: Society and civilization: an optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2003.814902
– volume: 13
  start-page: 2592
  year: 2013
  ident: 10.1016/j.advengsoft.2017.05.008_bib0023
  article-title: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.11.026
– start-page: 1
  year: 2016
  ident: 10.1016/j.advengsoft.2017.05.008_bib0020
  article-title: Modified grey wolf optimizer for global engineering optimization
  publication-title: Appl Comput Intell Soft Comput
  doi: 10.1155/2016/7950348
– volume: 110
  start-page: 151
  year: 2012
  ident: 10.1016/j.advengsoft.2017.05.008_bib0006
  article-title: Water cycle algorithm: a novel metaheuristic method for solving constrained engineering optimization problems
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2012.07.010
SSID ssj0014021
Score 2.4305942
Snippet •Three novel strategies are proposed which utilize the concepts of astrophysics and prey weight.•The proposed strategies have been tested on thirteen standard...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 231
SubjectTerms Astrophysics concept
Constrained design problems
Function optimization
Grey wolf optimizer
Meta-heuristics
Title An astrophysics-inspired Grey wolf algorithm for numerical optimization and its application to engineering design problems
URI https://dx.doi.org/10.1016/j.advengsoft.2017.05.008
Volume 112
WOSCitedRecordID wos000405456900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0965-9978
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0014021
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ji9RAFC6aHg96cBmVGTfq4K2JZK8UnoKOqIdBcJS-haSWmW56kqGTWfDkT_dVakmBDY6IlxAKqivp9-Vt9dV7CL2mImKRzPOAR0IEaRxmQZNHLMhjGTZNDUaQpWOzCXJ8XCyX9Mts9tOehbnakLYtbm7oxX8VNYyBsNXR2b8Qt_tRGIB7EDpcQexwvZXgy3ZR98O20zmLPli1ajNdqLwTfP_X3UYu6s1pt10NZ-cjybC91Ls24JWC_jg3BzPdroK3xa0cVTEVMFzwkf6xME1pet_RLTW3YGTb-lN6UPvXim2mCkRRGnuZCMf2_r5aT9QeN_peEfTP_CwFWD7LdzOpM3t8ZuIqjTnIPAso1T18nDo2tGqjUI2N0LY51gWnf1P7OgOxflNzsBCn6k0UaU_XZA2LydQ5AuJXtbRaOQINF8cEjPheTDJazNFe-elo-dntREF8PXZdtI9q2GCaI7h7vd0ujue2nDxE9028gUuNk0doJtp99MDEHtho9h6GbHsPO7aP7nm1Kh-jH2WLd-IKK1xhhSvscIUBV9jhCvu4woArDLjCHq7w0GEPJFjjCltcPUHfPhydvPsYmMYdAQMTMQQ0kw0PI0YkBPSciLAJ0yaLhPJnOUtjwWtZU_A9ZUbrhmecholMIRBOY8JkIpKnaN52rThAOKtBTEXBx0i5oSElEJ_nIiI5K5IkTQ8Rsf91xUxVe9VcZVNZ-uK6mqRUKSlVYVaBlA5R5GZe6Mout5jz1oqzMh6q9jwrQOIfZz_7p9nP0d3pw3qB5sP2UrxEd9jVsOq3rwxsfwEcS8Il
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+astrophysics-inspired+Grey+wolf+algorithm+for+numerical+optimization+and+its+application+to+engineering+design+problems&rft.jtitle=Advances+in+engineering+software+%281992%29&rft.au=Kumar%2C+Vijay&rft.au=Kumar%2C+Dinesh&rft.date=2017-10-01&rft.pub=Elsevier+Ltd&rft.issn=0965-9978&rft.volume=112&rft.spage=231&rft.epage=254&rft_id=info:doi/10.1016%2Fj.advengsoft.2017.05.008&rft.externalDocID=S0965997817302272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-9978&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-9978&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-9978&client=summon