Event detection over twitter social media streams

In recent years, microblogs have become an important source for reporting real-world events. A real-world occurrence reported in microblogs is also called a social event. Social events may hold critical materials that describe the situations during a crisis. In real applications, such as crisis mana...

Full description

Saved in:
Bibliographic Details
Published in:The VLDB journal Vol. 23; no. 3; pp. 381 - 400
Main Authors: Zhou, Xiangmin, Chen, Lei
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2014
Springer
Subjects:
ISSN:1066-8888, 0949-877X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent years, microblogs have become an important source for reporting real-world events. A real-world occurrence reported in microblogs is also called a social event. Social events may hold critical materials that describe the situations during a crisis. In real applications, such as crisis management and decision making, monitoring the critical events over social streams will enable watch officers to analyze a whole situation that is a composite event, and make the right decision based on the detailed contexts such as what is happening, where an event is happening, and who are involved. Although there has been significant research effort on detecting a target event in social networks based on a single source, in crisis, we often want to analyze the composite events contributed by different social users. So far, the problem of integrating ambiguous views from different users is not well investigated. To address this issue, we propose a novel framework to detect composite social events over streams, which fully exploits the information of social data over multiple dimensions. Specifically, we first propose a graphical model called location-time constrained topic (LTT) to capture the content, time, and location of social messages. Using LTT, a social message is represented as a probability distribution over a set of topics by inference, and the similarity between two messages is measured by the distance between their distributions. Then, the events are identified by conducting efficient similarity joins over social media streams. To accelerate the similarity join, we also propose a variable dimensional extendible hash over social streams. We have conducted extensive experiments to prove the high effectiveness and efficiency of the proposed approach.
AbstractList In recent years, microblogs have become an important source for reporting real-world events. A real-world occurrence reported in microblogs is also called a social event. Social events may hold critical materials that describe the situations during a crisis. In real applications, such as crisis management and decision making, monitoring the critical events over social streams will enable watch officers to analyze a whole situation that is a composite event, and make the right decision based on the detailed contexts such as what is happening, where an event is happening, and who are involved. Although there has been significant research effort on detecting a target event in social networks based on a single source, in crisis, we often want to analyze the composite events contributed by different social users. So far, the problem of integrating ambiguous views from different users is not well investigated. To address this issue, we propose a novel framework to detect composite social events over streams, which fully exploits the information of social data over multiple dimensions. Specifically, we first propose a graphical model called location-time constrained topic (LTT) to capture the content, time, and location of social messages. Using LTT, a social message is represented as a probability distribution over a set of topics by inference, and the similarity between two messages is measured by the distance between their distributions. Then, the events are identified by conducting efficient similarity joins over social media streams. To accelerate the similarity join, we also propose a variable dimensional extendible hash over social streams. We have conducted extensive experiments to prove the high effectiveness and efficiency of the proposed approach.
Author Zhou, Xiangmin
Chen, Lei
Author_xml – sequence: 1
  givenname: Xiangmin
  surname: Zhou
  fullname: Zhou, Xiangmin
  email: xiangminemilyzhou@gmail.com, xiangmin.zhou@csiro.au
  organization: ICT Center, CSIRO
– sequence: 2
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
  organization: Department of Computer Science and Engineering, Hong Kong University of Science and Technology
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28589226$$DView record in Pascal Francis
BookMark eNp9kE1LAzEQhoNUsK3-AG978RidJM0mOUqpH1DwouAtZLOJpGx3SxIr_nuzrHjw0DnMXN5nhnkWaNYPvUPomsAtARB3qTQhMRCGgVHA7AzNQa0UlkK8z9CcQF1jWeoCLVLaAQCllM8R2Rxdn6vWZWdzGPpqOLpY5a-Qc5lpsMF01d61wVQpR2f26RKde9Mld_U7l-jtYfO6fsLbl8fn9f0WW0ZkxtIrZlbEM66MJY2ypqFWNKIFaISxnLCmsTWhUnFPOXglGVUt56xhBVWeLdHNtPdgkjWdj6a3IelDDHsTvzWVXCpK65IjU87GIaXo_F-EgB7d6MmNLm706Eazwoh_jA3ZjP_naEJ3kqQTmcqV_sNFvRs-Y19EnIB-ADhIeag
CitedBy_id crossref_primary_10_1109_TCYB_2015_2489841
crossref_primary_10_1109_ACCESS_2023_3294474
crossref_primary_10_1016_j_is_2017_06_003
crossref_primary_10_1007_s11069_025_07120_7
crossref_primary_10_1061__ASCE_ME_1943_5479_0000745
crossref_primary_10_1016_j_eswa_2021_116086
crossref_primary_10_1109_ACCESS_2022_3214543
crossref_primary_10_1016_j_neucom_2018_03_086
crossref_primary_10_3390_app132212437
crossref_primary_10_1007_s00778_019_00545_0
crossref_primary_10_3390_w16233406
crossref_primary_10_1007_s10796_017_9790_y
crossref_primary_10_1016_j_eswa_2018_08_022
crossref_primary_10_1016_j_jksuci_2024_102070
crossref_primary_10_1007_s10844_022_00730_8
crossref_primary_10_1109_TKDE_2017_2651805
crossref_primary_10_1007_s10707_016_0258_x
crossref_primary_10_1007_s10479_017_2522_3
crossref_primary_10_3390_su12104223
crossref_primary_10_1016_j_knosys_2020_105695
crossref_primary_10_3390_informatics5030033
crossref_primary_10_1155_2020_9789431
crossref_primary_10_3390_app13148516
crossref_primary_10_1109_TBDATA_2022_3204207
crossref_primary_10_1007_s13278_016_0414_1
crossref_primary_10_3390_ijerph15112537
crossref_primary_10_1145_2903719
crossref_primary_10_1155_2014_360934
crossref_primary_10_1007_s11227_021_03717_4
crossref_primary_10_1016_j_ipm_2020_102261
crossref_primary_10_1016_j_knosys_2018_10_028
crossref_primary_10_1016_j_eswa_2017_12_038
crossref_primary_10_1111_mice_12457
crossref_primary_10_1177_0165551518785548
crossref_primary_10_1186_s40537_022_00642_y
crossref_primary_10_1016_j_eswa_2019_06_005
crossref_primary_10_1016_j_jocs_2017_10_012
crossref_primary_10_1111_sjos_70012
crossref_primary_10_1007_s42001_024_00279_2
crossref_primary_10_1007_s11042_016_3877_1
crossref_primary_10_1007_s10707_019_00392_9
crossref_primary_10_1007_s12652_016_0354_7
crossref_primary_10_1007_s10618_022_00873_w
crossref_primary_10_1080_13658816_2016_1146956
crossref_primary_10_3390_info11090450
crossref_primary_10_1016_j_neucom_2017_07_056
crossref_primary_10_1145_2967502
crossref_primary_10_1109_ACCESS_2020_2987483
crossref_primary_10_1007_s10489_022_03241_9
crossref_primary_10_1080_13614576_2015_1116322
crossref_primary_10_1109_TPAMI_2022_3144993
crossref_primary_10_1145_3695869
crossref_primary_10_1093_comjnl_bxw056
crossref_primary_10_1109_TKDE_2015_2445773
crossref_primary_10_1111_tgis_12589
crossref_primary_10_1007_s10479_020_03684_8
crossref_primary_10_1109_TBDATA_2018_2876405
crossref_primary_10_1109_TKDE_2023_3324510
crossref_primary_10_4018_IJSWIS_2020070106
crossref_primary_10_1007_s11042_018_6297_6
crossref_primary_10_1007_s10707_016_0247_0
crossref_primary_10_1145_3447585
crossref_primary_10_1007_s00778_019_00577_6
crossref_primary_10_1007_s10723_019_09482_2
crossref_primary_10_1016_j_ijdrr_2020_101788
crossref_primary_10_3390_su14031709
crossref_primary_10_1016_j_future_2015_11_023
crossref_primary_10_1134_S0361768821070070
crossref_primary_10_1109_TCSS_2020_2970602
crossref_primary_10_1109_TBDATA_2024_3381017
crossref_primary_10_1016_j_ins_2020_08_011
crossref_primary_10_3390_su9112027
crossref_primary_10_1007_s10618_021_00804_1
crossref_primary_10_1007_s11280_015_0379_4
crossref_primary_10_1007_s11280_016_0416_y
crossref_primary_10_3390_ijgi13050141
crossref_primary_10_1002_asi_23896
crossref_primary_10_1587_transinf_2017EDP7311
crossref_primary_10_1016_j_procs_2018_10_415
crossref_primary_10_1109_TKDE_2021_3119686
crossref_primary_10_3390_computers14020042
crossref_primary_10_1109_JIOT_2022_3148000
crossref_primary_10_1109_TKDE_2019_2912574
crossref_primary_10_1016_j_is_2016_01_003
crossref_primary_10_1177_0165551518761012
crossref_primary_10_1080_20964471_2025_2454526
crossref_primary_10_1016_j_cosrev_2022_100500
crossref_primary_10_1145_3614099
crossref_primary_10_1007_s11280_016_0405_1
crossref_primary_10_1016_j_jag_2022_102967
crossref_primary_10_1186_s40537_022_00620_4
crossref_primary_10_1016_j_trc_2019_05_022
crossref_primary_10_1145_2700478
crossref_primary_10_1002_cpe_6104
crossref_primary_10_1016_j_future_2020_03_038
crossref_primary_10_1002_asi_24096
crossref_primary_10_1109_TKDE_2022_3227906
crossref_primary_10_1145_3469085
crossref_primary_10_1007_s11042_017_4644_7
crossref_primary_10_1109_ACCESS_2017_2675839
crossref_primary_10_3390_ijerph17072289
crossref_primary_10_1007_s10922_019_09493_0
crossref_primary_10_1016_j_neucom_2020_04_064
crossref_primary_10_1016_j_engappai_2019_103279
crossref_primary_10_1016_j_eswa_2018_07_051
crossref_primary_10_3390_app10175922
crossref_primary_10_3390_su17136143
crossref_primary_10_1016_j_physa_2019_122372
crossref_primary_10_1109_TBDATA_2019_2948594
crossref_primary_10_1145_3689948
crossref_primary_10_1007_s10472_020_09709_z
Cites_doi 10.1145/1871437.1871535
10.1145/2393347.2396332
10.1145/93605.98741
10.1145/1645953.1646023
10.1145/290941.290954
10.1609/aaai.v24i1.7507
10.1145/1963405.1963443
10.1145/1529282.1529618
10.1109/ICDM.2011.144
10.1145/290941.290953
10.1007/s00778-011-0255-5
10.1145/1008992.1009100
10.1145/1291233.1291382
10.1145/2020408.2020476
10.1145/1148170.1148204
10.1145/1071610.1071612
10.1145/1718487.1718522
10.1145/1772690.1772777
10.1109/ICDM.2008.140
10.1007/s10791-012-9193-0
10.1145/1277741.1277780
10.1145/971697.602266
10.1109/TKDE.2009.171
10.1145/1150402.1150450
10.1109/ICDE.2012.36
10.1007/978-1-4615-0933-2_2
10.1145/312624.312649
10.1145/1277741.1277762
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2013
2015 INIST-CNRS
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1007/s00778-013-0320-3
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 0949-877X
EndPage 400
ExternalDocumentID 28589226
10_1007_s00778_013_0320_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
123
1N0
1SB
2.D
203
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKMM
AALFJ
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTV
AAYFX
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADL
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEBYY
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AENSD
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWIH
AFWTZ
AFWXC
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
CCLIF
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GUFHI
GXS
H13
HF~
HG5
HG6
HGAVV
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I07
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LHSKQ
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
W7O
WK8
YLTOR
YZZ
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEFXT
AEJOY
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AKRVB
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
IQODW
ID FETCH-LOGICAL-c318t-8f93a41f359ac1b9cab2c7b7d00b7ac513bbc612895f250f98329d553b38f99f3
IEDL.DBID RSV
ISICitedReferencesCount 194
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336383300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1066-8888
IngestDate Wed Apr 02 07:21:53 EDT 2025
Tue Nov 18 19:37:05 EST 2025
Sat Nov 29 03:17:16 EST 2025
Fri Feb 21 02:37:41 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Graphical model
Location-time constrained topic
Social streams
Social event detection
Variable dimensional extendible hash
Crisis management
Mobile phone
Information integration
Event detection
Similarity
Instant messaging
Probability distribution
Efficiency
Localization
Target detection
Monitoring
Data analysis
Duplication
Decision making
Inference
Social network
Real time
Reactive system
Graph method
Web site
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-8f93a41f359ac1b9cab2c7b7d00b7ac513bbc612895f250f98329d553b38f99f3
PageCount 20
ParticipantIDs pascalfrancis_primary_28589226
crossref_primary_10_1007_s00778_013_0320_3
crossref_citationtrail_10_1007_s00778_013_0320_3
springer_journals_10_1007_s00778_013_0320_3
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle The International Journal on Very Large Data Bases
PublicationTitle The VLDB journal
PublicationTitleAbbrev The VLDB Journal
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
References Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: WWW, pp. 851–860 (2010)
Zhao, Q., Mitra, P.: Event detection and visualization for social text streams. In: ICWSM (2007)
YinJ.LampertA.CameronM.RobinsonB.PowerR.Using social media to enhance emergency situation awarenessIEEE Intell. Syst.20122765259
Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: an efficient and robust access method for points and rectangles. In: SIGMOD, pp. 322–331 (1990)
Fung, G.P.C., Yu, J.X., Yu, P.S., Lu, H.: Parameter free bursty events detection in text streams. In: VLDB, pp. 181–192 (2005)
ZhouXZhouXChenLBouguettayaAEfficient subsequence matching over large video databasesVLDB J.201221448950810.1007/s00778-011-0255-5
Yin, Z., Cao, L., Han, J., Zhai, C., Huang, T.S.: Geographical topic discovery and comparison. In: WWW, pp. 247–256 (2011)
Sizov, S.: Geofolk: latent spatial semantics in web 2.0 social media. In: WSDM, pp. 281–290 (2010)
Wan, X., Milios, E., Kalyaniwalla, N., Janssen, J.: Link-based event detection in email communication networks. In: SAC, pp. 1506–1510 (2009)
Rattenbury, T., Good, N., Naaman, M.: Towards automatic extraction of event and place semantics from flickr tags. In: SIGIR, pp. 103–110 (2007)
AlSumait, L., Barbará, D., Domeniconi, C.: On-line lda: adaptive topic models for mining text streams with applications to topic detection and tracking. In: ICDM, pp. 3–12 (2008)
Wang, X., McCallum, A.: Topics over time: a non-markov continuous-time model of topical trends. In: KDD, pp. 424–433 (2006)
Yu, C., Ooi, B.C., Tan, K.-L., Jagadish, H.V.: Indexing the distance: an efficient method to knn processing. In: VLDB, pp. 421–430 (2001)
WangJZhaoZZhouJWangHCuiBQiGRecommending flickr groups with social topic modelInf. Retr.2012153–427829510.1007/s10791-012-9193-0
Wei, X., Croft, W.B.: Lda-based document models for ad-hoc retrieval. In: SIGIR, pp. 178–185 (2006)
Allan, J., Papka, R., Lavrenko, V.: On-line new event detection and tracking. In: SIGIR, pp. 37–45 (1998)
Lin, J., Snow, R., Morgan, W.: Smoothing techniques for adaptive online language models: topic tracking in tweet streams. In: KDD, pp. 422–429 (2011)
Liu, S., Zhou, M.X., Pan, S., Qian, W., Cai, W., Lian, X.: Interactive, topic-based visual text summarization and analysis. In: CIKM, pp. 543–552 (2009)
Wang, Y., Sundaram, H., Xie, L.: Social event detection with interaction graph modeling. In: ACM Multimedia, pp. 865–868 (2012)
BleiDMNgAYJordanMILatent dirichlet allocationJ. Mach. Learn. Res.2003399310221112.68379
Chang, Y.-L., Chien, J.-T.: Latent dirichlet learning for document summarization. In: ICASSP, pp. 1689–1692 (2009)
Yang, Y., Pierce, T., Carbonell, J.G.: A study of retrospective and on-line event detection. In: SIGIR, pp. 28–36 (1998)
JagadishHVOoiBCTanK-LYuCZhangRiDistance: an adaptive b+-tree based indexing method for nearest neighbor searchTODS200530236439710.1145/1071610.1071612
Zunjarwad, A., Sundaram, H., Xie, L.: Contextual wisdom: social relations and correlations for multimedia event annotation. In: ACM Multimedia, pp. 615–624 (2007)
Yao, J., Cui, B., Huang, Y., Jin, X.: Temporal and social context based burst detection from folksonomies. In: AAAI, pp. 1474–1479 (2010)
YinHCuiBLiJYaoJChenCChallenging the long tail recommendationPVLDB201259896907
Yin, H., Cui, B., Lu, H., Huang, Y., Yao, J.: A unified model for stable and temporal topic detection from social media data. In: ICDE, pp. 618–629 (2013)
http://en.wikipedia.org/wiki/kullback
Yao, J., Cui, B., Xue, Z., Liu, Q.: Provenance-based indexing support in micro-blog platforms. In: ICDE, pp. 558–569 (2012)
http://en.wikipedia.org/wiki/twitter
ZhouXZhouXChenLShuYBouguettayaATaylorJAAdaptive subspace symbolization for content-based video detectionIEEE Trans. Knowl. Data Eng.201022101372138710.1109/TKDE.2009.171
Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)
Fiscus, J.G., Doddington, G.R.: Topic detection and tracking evaluation overview. In: Allan, J. (ed.) Topic detection and Tracking, pp. 17–31. Kluwer Academic Publishers, Norwell, USA (2002)
Lin, C.X., Mei, Q., Han, J., Jiang, Y., Danilevsky, M.: The joint inference of topic diffusion and evolution in social communities. In: ICDM, pp. 378–387 (2011)
Zhao, Q., Mitra, P., Chen, B.: Temporal and information flow based event detection from social text streams. In: AAAI, pp. 1501–1506 (2007)
Lin, S., Özsu, M.T., Oria, V., Ng, R.T.: An extendible hash for multi-precision similarity querying of image databases. In: VLDB, pp. 221–230 (2001)
Zhang, K., Zi, J., Wu, L.G.: New event detection based on indexing-tree and named entity. In: SIGIR, pp. 215–222 (2007)
White, R.W., Jose, J.M.: A study of topic similarity measures. In: SIGIR, pp. 520–521 (2004)
Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to geo-locating twitter users. In: CIKM, pp. 759–768 (2010)
Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR, pp. 50–57 (1999)
H Yin (320_CR30) 2012; 5
J Wang (320_CR22) 2012; 15
320_CR12
320_CR34
DM Blei (320_CR4) 2003; 3
320_CR35
320_CR10
320_CR32
320_CR11
320_CR33
320_CR31
320_CR29
320_CR1
320_CR27
320_CR2
320_CR28
320_CR3
320_CR25
320_CR26
320_CR5
320_CR6
HV Jagadish (320_CR13) 2005; 30
320_CR7
320_CR8
320_CR9
320_CR23
320_CR24
320_CR21
320_CR20
320_CR40
X Zhou (320_CR38) 2012; 21
320_CR18
320_CR19
320_CR16
320_CR17
320_CR14
320_CR36
320_CR15
320_CR37
X Zhou (320_CR39) 2010; 22
References_xml – reference: White, R.W., Jose, J.M.: A study of topic similarity measures. In: SIGIR, pp. 520–521 (2004)
– reference: Lin, J., Snow, R., Morgan, W.: Smoothing techniques for adaptive online language models: topic tracking in tweet streams. In: KDD, pp. 422–429 (2011)
– reference: Lin, C.X., Mei, Q., Han, J., Jiang, Y., Danilevsky, M.: The joint inference of topic diffusion and evolution in social communities. In: ICDM, pp. 378–387 (2011)
– reference: Yao, J., Cui, B., Huang, Y., Jin, X.: Temporal and social context based burst detection from folksonomies. In: AAAI, pp. 1474–1479 (2010)
– reference: Zhang, K., Zi, J., Wu, L.G.: New event detection based on indexing-tree and named entity. In: SIGIR, pp. 215–222 (2007)
– reference: ZhouXZhouXChenLShuYBouguettayaATaylorJAAdaptive subspace symbolization for content-based video detectionIEEE Trans. Knowl. Data Eng.201022101372138710.1109/TKDE.2009.171
– reference: AlSumait, L., Barbará, D., Domeniconi, C.: On-line lda: adaptive topic models for mining text streams with applications to topic detection and tracking. In: ICDM, pp. 3–12 (2008)
– reference: Zhao, Q., Mitra, P., Chen, B.: Temporal and information flow based event detection from social text streams. In: AAAI, pp. 1501–1506 (2007)
– reference: Chang, Y.-L., Chien, J.-T.: Latent dirichlet learning for document summarization. In: ICASSP, pp. 1689–1692 (2009)
– reference: http://en.wikipedia.org/wiki/twitter
– reference: Lin, S., Özsu, M.T., Oria, V., Ng, R.T.: An extendible hash for multi-precision similarity querying of image databases. In: VLDB, pp. 221–230 (2001)
– reference: Yin, Z., Cao, L., Han, J., Zhai, C., Huang, T.S.: Geographical topic discovery and comparison. In: WWW, pp. 247–256 (2011)
– reference: JagadishHVOoiBCTanK-LYuCZhangRiDistance: an adaptive b+-tree based indexing method for nearest neighbor searchTODS200530236439710.1145/1071610.1071612
– reference: Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: an efficient and robust access method for points and rectangles. In: SIGMOD, pp. 322–331 (1990)
– reference: Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to geo-locating twitter users. In: CIKM, pp. 759–768 (2010)
– reference: http://en.wikipedia.org/wiki/kullback
– reference: Fiscus, J.G., Doddington, G.R.: Topic detection and tracking evaluation overview. In: Allan, J. (ed.) Topic detection and Tracking, pp. 17–31. Kluwer Academic Publishers, Norwell, USA (2002)
– reference: WangJZhaoZZhouJWangHCuiBQiGRecommending flickr groups with social topic modelInf. Retr.2012153–427829510.1007/s10791-012-9193-0
– reference: Fung, G.P.C., Yu, J.X., Yu, P.S., Lu, H.: Parameter free bursty events detection in text streams. In: VLDB, pp. 181–192 (2005)
– reference: Wan, X., Milios, E., Kalyaniwalla, N., Janssen, J.: Link-based event detection in email communication networks. In: SAC, pp. 1506–1510 (2009)
– reference: BleiDMNgAYJordanMILatent dirichlet allocationJ. Mach. Learn. Res.2003399310221112.68379
– reference: Zhao, Q., Mitra, P.: Event detection and visualization for social text streams. In: ICWSM (2007)
– reference: ZhouXZhouXChenLBouguettayaAEfficient subsequence matching over large video databasesVLDB J.201221448950810.1007/s00778-011-0255-5
– reference: Yin, H., Cui, B., Lu, H., Huang, Y., Yao, J.: A unified model for stable and temporal topic detection from social media data. In: ICDE, pp. 618–629 (2013)
– reference: Liu, S., Zhou, M.X., Pan, S., Qian, W., Cai, W., Lian, X.: Interactive, topic-based visual text summarization and analysis. In: CIKM, pp. 543–552 (2009)
– reference: Wang, Y., Sundaram, H., Xie, L.: Social event detection with interaction graph modeling. In: ACM Multimedia, pp. 865–868 (2012)
– reference: Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: WWW, pp. 851–860 (2010)
– reference: Sizov, S.: Geofolk: latent spatial semantics in web 2.0 social media. In: WSDM, pp. 281–290 (2010)
– reference: Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR, pp. 50–57 (1999)
– reference: Wang, X., McCallum, A.: Topics over time: a non-markov continuous-time model of topical trends. In: KDD, pp. 424–433 (2006)
– reference: Yao, J., Cui, B., Xue, Z., Liu, Q.: Provenance-based indexing support in micro-blog platforms. In: ICDE, pp. 558–569 (2012)
– reference: Rattenbury, T., Good, N., Naaman, M.: Towards automatic extraction of event and place semantics from flickr tags. In: SIGIR, pp. 103–110 (2007)
– reference: Wei, X., Croft, W.B.: Lda-based document models for ad-hoc retrieval. In: SIGIR, pp. 178–185 (2006)
– reference: Yu, C., Ooi, B.C., Tan, K.-L., Jagadish, H.V.: Indexing the distance: an efficient method to knn processing. In: VLDB, pp. 421–430 (2001)
– reference: Allan, J., Papka, R., Lavrenko, V.: On-line new event detection and tracking. In: SIGIR, pp. 37–45 (1998)
– reference: Zunjarwad, A., Sundaram, H., Xie, L.: Contextual wisdom: social relations and correlations for multimedia event annotation. In: ACM Multimedia, pp. 615–624 (2007)
– reference: YinHCuiBLiJYaoJChenCChallenging the long tail recommendationPVLDB201259896907
– reference: Yang, Y., Pierce, T., Carbonell, J.G.: A study of retrospective and on-line event detection. In: SIGIR, pp. 28–36 (1998)
– reference: YinJ.LampertA.CameronM.RobinsonB.PowerR.Using social media to enhance emergency situation awarenessIEEE Intell. Syst.20122765259
– reference: Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)
– ident: 320_CR37
– ident: 320_CR6
  doi: 10.1145/1871437.1871535
– ident: 320_CR24
  doi: 10.1145/2393347.2396332
– ident: 320_CR8
– ident: 320_CR3
  doi: 10.1145/93605.98741
– ident: 320_CR17
  doi: 10.1145/1645953.1646023
– ident: 320_CR1
  doi: 10.1145/290941.290954
– ident: 320_CR28
  doi: 10.1609/aaai.v24i1.7507
– ident: 320_CR33
  doi: 10.1145/1963405.1963443
– volume: 5
  start-page: 896
  issue: 9
  year: 2012
  ident: 320_CR30
  publication-title: PVLDB
– ident: 320_CR21
  doi: 10.1145/1529282.1529618
– ident: 320_CR14
  doi: 10.1109/ICDM.2011.144
– ident: 320_CR27
  doi: 10.1145/290941.290953
– ident: 320_CR31
– volume: 21
  start-page: 489
  issue: 4
  year: 2012
  ident: 320_CR38
  publication-title: VLDB J.
  doi: 10.1007/s00778-011-0255-5
– ident: 320_CR16
– ident: 320_CR26
  doi: 10.1145/1008992.1009100
– ident: 320_CR40
  doi: 10.1145/1291233.1291382
– ident: 320_CR10
– ident: 320_CR5
– ident: 320_CR15
  doi: 10.1145/2020408.2020476
– ident: 320_CR25
  doi: 10.1145/1148170.1148204
– ident: 320_CR36
– volume: 30
  start-page: 364
  issue: 2
  year: 2005
  ident: 320_CR13
  publication-title: TODS
  doi: 10.1145/1071610.1071612
– ident: 320_CR20
  doi: 10.1145/1718487.1718522
– ident: 320_CR19
  doi: 10.1145/1772690.1772777
– ident: 320_CR34
– ident: 320_CR2
  doi: 10.1109/ICDM.2008.140
– volume: 15
  start-page: 278
  issue: 3–4
  year: 2012
  ident: 320_CR22
  publication-title: Inf. Retr.
  doi: 10.1007/s10791-012-9193-0
– ident: 320_CR35
  doi: 10.1145/1277741.1277780
– ident: 320_CR9
  doi: 10.1145/971697.602266
– volume: 22
  start-page: 1372
  issue: 10
  year: 2010
  ident: 320_CR39
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.171
– ident: 320_CR23
  doi: 10.1145/1150402.1150450
– ident: 320_CR29
  doi: 10.1109/ICDE.2012.36
– ident: 320_CR7
  doi: 10.1007/978-1-4615-0933-2_2
– volume: 3
  start-page: 993
  year: 2003
  ident: 320_CR4
  publication-title: J. Mach. Learn. Res.
– ident: 320_CR32
– ident: 320_CR12
  doi: 10.1145/312624.312649
– ident: 320_CR18
  doi: 10.1145/1277741.1277762
– ident: 320_CR11
SSID ssj0002225
Score 2.4834836
Snippet In recent years, microblogs have become an important source for reporting real-world events. A real-world occurrence reported in microblogs is also called a...
SourceID pascalfrancis
crossref
springer
SourceType Index Database
Enrichment Source
Publisher
StartPage 381
SubjectTerms Applied sciences
Computer Science
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Database Management
Exact sciences and technology
Information retrieval. Graph
Information systems. Data bases
Memory organisation. Data processing
Regular Paper
Software
Theoretical computing
Title Event detection over twitter social media streams
URI https://link.springer.com/article/10.1007/s00778-013-0320-3
Volume 23
WOSCitedRecordID wos000336383300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 0949-877X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002225
  issn: 1066-8888
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60ehDE-sT6KDl4UgK7TrObHEVaPBXxRW9LNg8oaC3dVf--SfYBxQfoPROWSSbzzc58MwBngSGTakGFFJIOdMwoF4mkCpky1sVBMlVh2EQ6HvPJRNzWPO6iqXZvUpLhpW7Jbr7zjC-8QhoF2u8qrDlvx_28hrv7p_b59QFMSHEmCXXhHW9Smd9tseSMNueycHqx1UCLL5nR4HBG3X996jZs1fiSXFUXYgdWzGwXus3sBlKb8h7EQ1_oSLQpQy3WjPhSTlJ-TD27h1R_0kmglRBPJ5EvxT48joYP1ze0Hp_gFB3zknIrUA5ii0xIFedCyfxSpXmqoyhPpWIx5rlyAIcLZh0QssIZt9CMYY5OVFg8gM7sdWYOgRiNWiOi5UY5xOEwjY2MZVJwjcJg0oOo0WOm6t7ifsTFc9Z2RQ4qyZxKMq-SDHtw3orMq8Yavy3uLx1OK3HJGRcOQfbgojmJrDbC4uftjv60-hg2HEoaVPVhJ9ApF2_mFNbVezktFv1w-T4BLofSIA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60CgpiPbEeNQ8-KQu7zWY3eRRpqViLaJW-LdkcUNBauqv-fZPsAcUD9D0Tlkkm883OfDMAZ44hE0vmMc64F8qAeJRF3BOYCKVNHMRj4YZNxMMhHY_ZXcnjzqpq9yol6V7qmuxmO8_Ywivs-Y72uwwroXFYtmH-_cNT_fzaAMalOKPIM-EdrVKZ322x4Iw2ZjwzetHFQIsvmVHncHrNf33qFmyW-BJdFhdiG5bUdAea1ewGVJryLgRdW-iIpMpdLdYU2VJOlH9MLLsHFX_SkaOVIEsn4S_ZHjz2uqOrvleOTzCKDmjuUc0wDwONCeMiSJngaUfEaSx9P425IAFOU2EADmVEGyCkmTFuJgnBKTaiTON9aExfp-oAkJJYSoyxpkoYxGEwjfaVJpxRiZnCUQv8So-JKHuL2xEXz0ndFdmpJDEqSaxKEtyC81pkVjTW-G1xe-FwaokOJZQZBNmCi-okktIIs5-3O_zT6lNY649uB8ngenhzBOsGMYVFrdgxNPL5mzqBVfGeT7J5213ETxF81QQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFBHEecV5mXnwSSm2S9Mmj6IbijIGXthbSXOBgdaxVv37JukFhhcQ35NQTnKS7_R83zkAJ04hE0vmMc64F8qAeJRF3BOYCKVNHMRj4ZpNxMMhHY_ZqOpzmtds9zolWWoabJWmrDifSn3eCN9sFRpLwsKe7yTAi7AUWh69Ddfvn5qr2AYzLt0ZRZ4J9Wid1vxuibmHaW3Kc2MjXTa3-JIldY_PoP3vz96A9Qp3oovyoGzCgsq2oF33dECVi29D0LcESCRV4ThaGbIUT1R8TKzqB5V_2JGTmyArM-Ev-Q48DvoPl9de1VbBbEBAC49qhnkYaEwYF0HKBE97Ik5j6ftpzAUJcJoKA3woI9oAJM2M0zNJCE6xmco03oVW9pqpPUBKYikxxpoqYZCIwTraV5pwRiVmCkcd8GubJqKqOW5bXzwnTbVkZ5LEmCSxJklwB06bKdOy4MZvg7tzG9XM6FFCmUGWHTirdyWpnDP_ebn9P40-hpXR1SC5uxneHsCqAVJhSSE7hFYxe1NHsCzei0k-67oz-QlnV93o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event+detection+over+twitter+social+media+streams&rft.jtitle=The+VLDB+journal&rft.au=Zhou%2C+Xiangmin&rft.au=Chen%2C+Lei&rft.date=2014-06-01&rft.issn=1066-8888&rft.eissn=0949-877X&rft.volume=23&rft.issue=3&rft.spage=381&rft.epage=400&rft_id=info:doi/10.1007%2Fs00778-013-0320-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00778_013_0320_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-8888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-8888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-8888&client=summon