Event detection over twitter social media streams
In recent years, microblogs have become an important source for reporting real-world events. A real-world occurrence reported in microblogs is also called a social event. Social events may hold critical materials that describe the situations during a crisis. In real applications, such as crisis mana...
Saved in:
| Published in: | The VLDB journal Vol. 23; no. 3; pp. 381 - 400 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2014
Springer |
| Subjects: | |
| ISSN: | 1066-8888, 0949-877X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In recent years, microblogs have become an important source for reporting real-world events. A real-world occurrence reported in microblogs is also called a social event. Social events may hold critical materials that describe the situations during a crisis. In real applications, such as crisis management and decision making, monitoring the critical events over social streams will enable watch officers to analyze a whole situation that is a composite event, and make the right decision based on the detailed contexts such as what is happening, where an event is happening, and who are involved. Although there has been significant research effort on detecting a target event in social networks based on a single source, in crisis, we often want to analyze the composite events contributed by different social users. So far, the problem of integrating ambiguous views from different users is not well investigated. To address this issue, we propose a novel framework to detect composite social events over streams, which fully exploits the information of social data over multiple dimensions. Specifically, we first propose a graphical model called location-time constrained topic (LTT) to capture the content, time, and location of social messages. Using LTT, a social message is represented as a probability distribution over a set of topics by inference, and the similarity between two messages is measured by the distance between their distributions. Then, the events are identified by conducting efficient similarity joins over social media streams. To accelerate the similarity join, we also propose a variable dimensional extendible hash over social streams. We have conducted extensive experiments to prove the high effectiveness and efficiency of the proposed approach. |
|---|---|
| AbstractList | In recent years, microblogs have become an important source for reporting real-world events. A real-world occurrence reported in microblogs is also called a social event. Social events may hold critical materials that describe the situations during a crisis. In real applications, such as crisis management and decision making, monitoring the critical events over social streams will enable watch officers to analyze a whole situation that is a composite event, and make the right decision based on the detailed contexts such as what is happening, where an event is happening, and who are involved. Although there has been significant research effort on detecting a target event in social networks based on a single source, in crisis, we often want to analyze the composite events contributed by different social users. So far, the problem of integrating ambiguous views from different users is not well investigated. To address this issue, we propose a novel framework to detect composite social events over streams, which fully exploits the information of social data over multiple dimensions. Specifically, we first propose a graphical model called location-time constrained topic (LTT) to capture the content, time, and location of social messages. Using LTT, a social message is represented as a probability distribution over a set of topics by inference, and the similarity between two messages is measured by the distance between their distributions. Then, the events are identified by conducting efficient similarity joins over social media streams. To accelerate the similarity join, we also propose a variable dimensional extendible hash over social streams. We have conducted extensive experiments to prove the high effectiveness and efficiency of the proposed approach. |
| Author | Zhou, Xiangmin Chen, Lei |
| Author_xml | – sequence: 1 givenname: Xiangmin surname: Zhou fullname: Zhou, Xiangmin email: xiangminemilyzhou@gmail.com, xiangmin.zhou@csiro.au organization: ICT Center, CSIRO – sequence: 2 givenname: Lei surname: Chen fullname: Chen, Lei organization: Department of Computer Science and Engineering, Hong Kong University of Science and Technology |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28589226$$DView record in Pascal Francis |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG978RidJM0mOUqpH1DwouAtZLOJpGx3SxIr_nuzrHjw0DnMXN5nhnkWaNYPvUPomsAtARB3qTQhMRCGgVHA7AzNQa0UlkK8z9CcQF1jWeoCLVLaAQCllM8R2Rxdn6vWZWdzGPpqOLpY5a-Qc5lpsMF01d61wVQpR2f26RKde9Mld_U7l-jtYfO6fsLbl8fn9f0WW0ZkxtIrZlbEM66MJY2ypqFWNKIFaISxnLCmsTWhUnFPOXglGVUt56xhBVWeLdHNtPdgkjWdj6a3IelDDHsTvzWVXCpK65IjU87GIaXo_F-EgB7d6MmNLm706Eazwoh_jA3ZjP_naEJ3kqQTmcqV_sNFvRs-Y19EnIB-ADhIeag |
| CitedBy_id | crossref_primary_10_1109_TCYB_2015_2489841 crossref_primary_10_1109_ACCESS_2023_3294474 crossref_primary_10_1016_j_is_2017_06_003 crossref_primary_10_1007_s11069_025_07120_7 crossref_primary_10_1061__ASCE_ME_1943_5479_0000745 crossref_primary_10_1016_j_eswa_2021_116086 crossref_primary_10_1109_ACCESS_2022_3214543 crossref_primary_10_1016_j_neucom_2018_03_086 crossref_primary_10_3390_app132212437 crossref_primary_10_1007_s00778_019_00545_0 crossref_primary_10_3390_w16233406 crossref_primary_10_1007_s10796_017_9790_y crossref_primary_10_1016_j_eswa_2018_08_022 crossref_primary_10_1016_j_jksuci_2024_102070 crossref_primary_10_1007_s10844_022_00730_8 crossref_primary_10_1109_TKDE_2017_2651805 crossref_primary_10_1007_s10707_016_0258_x crossref_primary_10_1007_s10479_017_2522_3 crossref_primary_10_3390_su12104223 crossref_primary_10_1016_j_knosys_2020_105695 crossref_primary_10_3390_informatics5030033 crossref_primary_10_1155_2020_9789431 crossref_primary_10_3390_app13148516 crossref_primary_10_1109_TBDATA_2022_3204207 crossref_primary_10_1007_s13278_016_0414_1 crossref_primary_10_3390_ijerph15112537 crossref_primary_10_1145_2903719 crossref_primary_10_1155_2014_360934 crossref_primary_10_1007_s11227_021_03717_4 crossref_primary_10_1016_j_ipm_2020_102261 crossref_primary_10_1016_j_knosys_2018_10_028 crossref_primary_10_1016_j_eswa_2017_12_038 crossref_primary_10_1111_mice_12457 crossref_primary_10_1177_0165551518785548 crossref_primary_10_1186_s40537_022_00642_y crossref_primary_10_1016_j_eswa_2019_06_005 crossref_primary_10_1016_j_jocs_2017_10_012 crossref_primary_10_1111_sjos_70012 crossref_primary_10_1007_s42001_024_00279_2 crossref_primary_10_1007_s11042_016_3877_1 crossref_primary_10_1007_s10707_019_00392_9 crossref_primary_10_1007_s12652_016_0354_7 crossref_primary_10_1007_s10618_022_00873_w crossref_primary_10_1080_13658816_2016_1146956 crossref_primary_10_3390_info11090450 crossref_primary_10_1016_j_neucom_2017_07_056 crossref_primary_10_1145_2967502 crossref_primary_10_1109_ACCESS_2020_2987483 crossref_primary_10_1007_s10489_022_03241_9 crossref_primary_10_1080_13614576_2015_1116322 crossref_primary_10_1109_TPAMI_2022_3144993 crossref_primary_10_1145_3695869 crossref_primary_10_1093_comjnl_bxw056 crossref_primary_10_1109_TKDE_2015_2445773 crossref_primary_10_1111_tgis_12589 crossref_primary_10_1007_s10479_020_03684_8 crossref_primary_10_1109_TBDATA_2018_2876405 crossref_primary_10_1109_TKDE_2023_3324510 crossref_primary_10_4018_IJSWIS_2020070106 crossref_primary_10_1007_s11042_018_6297_6 crossref_primary_10_1007_s10707_016_0247_0 crossref_primary_10_1145_3447585 crossref_primary_10_1007_s00778_019_00577_6 crossref_primary_10_1007_s10723_019_09482_2 crossref_primary_10_1016_j_ijdrr_2020_101788 crossref_primary_10_3390_su14031709 crossref_primary_10_1016_j_future_2015_11_023 crossref_primary_10_1134_S0361768821070070 crossref_primary_10_1109_TCSS_2020_2970602 crossref_primary_10_1109_TBDATA_2024_3381017 crossref_primary_10_1016_j_ins_2020_08_011 crossref_primary_10_3390_su9112027 crossref_primary_10_1007_s10618_021_00804_1 crossref_primary_10_1007_s11280_015_0379_4 crossref_primary_10_1007_s11280_016_0416_y crossref_primary_10_3390_ijgi13050141 crossref_primary_10_1002_asi_23896 crossref_primary_10_1587_transinf_2017EDP7311 crossref_primary_10_1016_j_procs_2018_10_415 crossref_primary_10_1109_TKDE_2021_3119686 crossref_primary_10_3390_computers14020042 crossref_primary_10_1109_JIOT_2022_3148000 crossref_primary_10_1109_TKDE_2019_2912574 crossref_primary_10_1016_j_is_2016_01_003 crossref_primary_10_1177_0165551518761012 crossref_primary_10_1080_20964471_2025_2454526 crossref_primary_10_1016_j_cosrev_2022_100500 crossref_primary_10_1145_3614099 crossref_primary_10_1007_s11280_016_0405_1 crossref_primary_10_1016_j_jag_2022_102967 crossref_primary_10_1186_s40537_022_00620_4 crossref_primary_10_1016_j_trc_2019_05_022 crossref_primary_10_1145_2700478 crossref_primary_10_1002_cpe_6104 crossref_primary_10_1016_j_future_2020_03_038 crossref_primary_10_1002_asi_24096 crossref_primary_10_1109_TKDE_2022_3227906 crossref_primary_10_1145_3469085 crossref_primary_10_1007_s11042_017_4644_7 crossref_primary_10_1109_ACCESS_2017_2675839 crossref_primary_10_3390_ijerph17072289 crossref_primary_10_1007_s10922_019_09493_0 crossref_primary_10_1016_j_neucom_2020_04_064 crossref_primary_10_1016_j_engappai_2019_103279 crossref_primary_10_1016_j_eswa_2018_07_051 crossref_primary_10_3390_app10175922 crossref_primary_10_3390_su17136143 crossref_primary_10_1016_j_physa_2019_122372 crossref_primary_10_1109_TBDATA_2019_2948594 crossref_primary_10_1145_3689948 crossref_primary_10_1007_s10472_020_09709_z |
| Cites_doi | 10.1145/1871437.1871535 10.1145/2393347.2396332 10.1145/93605.98741 10.1145/1645953.1646023 10.1145/290941.290954 10.1609/aaai.v24i1.7507 10.1145/1963405.1963443 10.1145/1529282.1529618 10.1109/ICDM.2011.144 10.1145/290941.290953 10.1007/s00778-011-0255-5 10.1145/1008992.1009100 10.1145/1291233.1291382 10.1145/2020408.2020476 10.1145/1148170.1148204 10.1145/1071610.1071612 10.1145/1718487.1718522 10.1145/1772690.1772777 10.1109/ICDM.2008.140 10.1007/s10791-012-9193-0 10.1145/1277741.1277780 10.1145/971697.602266 10.1109/TKDE.2009.171 10.1145/1150402.1150450 10.1109/ICDE.2012.36 10.1007/978-1-4615-0933-2_2 10.1145/312624.312649 10.1145/1277741.1277762 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2013 2015 INIST-CNRS |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2013 – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1007/s00778-013-0320-3 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 0949-877X |
| EndPage | 400 |
| ExternalDocumentID | 28589226 10_1007_s00778_013_0320_3 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 123 1N0 1SB 2.D 203 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKMM AALFJ AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTV AAYFX AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACM ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADL ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEBYY AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AENSD AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWIH AFWTZ AFWXC AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG CCLIF COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GUFHI GXS H13 HF~ HG5 HG6 HGAVV HMJXF HQYDN HRMNR HVGLF HZ~ I07 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LHSKQ LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P0- P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 W7O WK8 YLTOR YZZ Z45 Z7R Z7X Z83 Z88 Z8M Z8R Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEFXT AEJOY AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AKRVB ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB IQODW |
| ID | FETCH-LOGICAL-c318t-8f93a41f359ac1b9cab2c7b7d00b7ac513bbc612895f250f98329d553b38f99f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 194 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336383300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1066-8888 |
| IngestDate | Wed Apr 02 07:21:53 EDT 2025 Tue Nov 18 19:37:05 EST 2025 Sat Nov 29 03:17:16 EST 2025 Fri Feb 21 02:37:41 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Graphical model Location-time constrained topic Social streams Social event detection Variable dimensional extendible hash Crisis management Mobile phone Information integration Event detection Similarity Instant messaging Probability distribution Efficiency Localization Target detection Monitoring Data analysis Duplication Decision making Inference Social network Real time Reactive system Graph method Web site |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c318t-8f93a41f359ac1b9cab2c7b7d00b7ac513bbc612895f250f98329d553b38f99f3 |
| PageCount | 20 |
| ParticipantIDs | pascalfrancis_primary_28589226 crossref_primary_10_1007_s00778_013_0320_3 crossref_citationtrail_10_1007_s00778_013_0320_3 springer_journals_10_1007_s00778_013_0320_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-06-01 |
| PublicationDateYYYYMMDD | 2014-06-01 |
| PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | The International Journal on Very Large Data Bases |
| PublicationTitle | The VLDB journal |
| PublicationTitleAbbrev | The VLDB Journal |
| PublicationYear | 2014 |
| Publisher | Springer Berlin Heidelberg Springer |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer |
| References | Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: WWW, pp. 851–860 (2010) Zhao, Q., Mitra, P.: Event detection and visualization for social text streams. In: ICWSM (2007) YinJ.LampertA.CameronM.RobinsonB.PowerR.Using social media to enhance emergency situation awarenessIEEE Intell. Syst.20122765259 Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: an efficient and robust access method for points and rectangles. In: SIGMOD, pp. 322–331 (1990) Fung, G.P.C., Yu, J.X., Yu, P.S., Lu, H.: Parameter free bursty events detection in text streams. In: VLDB, pp. 181–192 (2005) ZhouXZhouXChenLBouguettayaAEfficient subsequence matching over large video databasesVLDB J.201221448950810.1007/s00778-011-0255-5 Yin, Z., Cao, L., Han, J., Zhai, C., Huang, T.S.: Geographical topic discovery and comparison. In: WWW, pp. 247–256 (2011) Sizov, S.: Geofolk: latent spatial semantics in web 2.0 social media. In: WSDM, pp. 281–290 (2010) Wan, X., Milios, E., Kalyaniwalla, N., Janssen, J.: Link-based event detection in email communication networks. In: SAC, pp. 1506–1510 (2009) Rattenbury, T., Good, N., Naaman, M.: Towards automatic extraction of event and place semantics from flickr tags. In: SIGIR, pp. 103–110 (2007) AlSumait, L., Barbará, D., Domeniconi, C.: On-line lda: adaptive topic models for mining text streams with applications to topic detection and tracking. In: ICDM, pp. 3–12 (2008) Wang, X., McCallum, A.: Topics over time: a non-markov continuous-time model of topical trends. In: KDD, pp. 424–433 (2006) Yu, C., Ooi, B.C., Tan, K.-L., Jagadish, H.V.: Indexing the distance: an efficient method to knn processing. In: VLDB, pp. 421–430 (2001) WangJZhaoZZhouJWangHCuiBQiGRecommending flickr groups with social topic modelInf. Retr.2012153–427829510.1007/s10791-012-9193-0 Wei, X., Croft, W.B.: Lda-based document models for ad-hoc retrieval. In: SIGIR, pp. 178–185 (2006) Allan, J., Papka, R., Lavrenko, V.: On-line new event detection and tracking. In: SIGIR, pp. 37–45 (1998) Lin, J., Snow, R., Morgan, W.: Smoothing techniques for adaptive online language models: topic tracking in tweet streams. In: KDD, pp. 422–429 (2011) Liu, S., Zhou, M.X., Pan, S., Qian, W., Cai, W., Lian, X.: Interactive, topic-based visual text summarization and analysis. In: CIKM, pp. 543–552 (2009) Wang, Y., Sundaram, H., Xie, L.: Social event detection with interaction graph modeling. In: ACM Multimedia, pp. 865–868 (2012) BleiDMNgAYJordanMILatent dirichlet allocationJ. Mach. Learn. Res.2003399310221112.68379 Chang, Y.-L., Chien, J.-T.: Latent dirichlet learning for document summarization. In: ICASSP, pp. 1689–1692 (2009) Yang, Y., Pierce, T., Carbonell, J.G.: A study of retrospective and on-line event detection. In: SIGIR, pp. 28–36 (1998) JagadishHVOoiBCTanK-LYuCZhangRiDistance: an adaptive b+-tree based indexing method for nearest neighbor searchTODS200530236439710.1145/1071610.1071612 Zunjarwad, A., Sundaram, H., Xie, L.: Contextual wisdom: social relations and correlations for multimedia event annotation. In: ACM Multimedia, pp. 615–624 (2007) Yao, J., Cui, B., Huang, Y., Jin, X.: Temporal and social context based burst detection from folksonomies. In: AAAI, pp. 1474–1479 (2010) YinHCuiBLiJYaoJChenCChallenging the long tail recommendationPVLDB201259896907 Yin, H., Cui, B., Lu, H., Huang, Y., Yao, J.: A unified model for stable and temporal topic detection from social media data. In: ICDE, pp. 618–629 (2013) http://en.wikipedia.org/wiki/kullback Yao, J., Cui, B., Xue, Z., Liu, Q.: Provenance-based indexing support in micro-blog platforms. In: ICDE, pp. 558–569 (2012) http://en.wikipedia.org/wiki/twitter ZhouXZhouXChenLShuYBouguettayaATaylorJAAdaptive subspace symbolization for content-based video detectionIEEE Trans. Knowl. Data Eng.201022101372138710.1109/TKDE.2009.171 Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984) Fiscus, J.G., Doddington, G.R.: Topic detection and tracking evaluation overview. In: Allan, J. (ed.) Topic detection and Tracking, pp. 17–31. Kluwer Academic Publishers, Norwell, USA (2002) Lin, C.X., Mei, Q., Han, J., Jiang, Y., Danilevsky, M.: The joint inference of topic diffusion and evolution in social communities. In: ICDM, pp. 378–387 (2011) Zhao, Q., Mitra, P., Chen, B.: Temporal and information flow based event detection from social text streams. In: AAAI, pp. 1501–1506 (2007) Lin, S., Özsu, M.T., Oria, V., Ng, R.T.: An extendible hash for multi-precision similarity querying of image databases. In: VLDB, pp. 221–230 (2001) Zhang, K., Zi, J., Wu, L.G.: New event detection based on indexing-tree and named entity. In: SIGIR, pp. 215–222 (2007) White, R.W., Jose, J.M.: A study of topic similarity measures. In: SIGIR, pp. 520–521 (2004) Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to geo-locating twitter users. In: CIKM, pp. 759–768 (2010) Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR, pp. 50–57 (1999) H Yin (320_CR30) 2012; 5 J Wang (320_CR22) 2012; 15 320_CR12 320_CR34 DM Blei (320_CR4) 2003; 3 320_CR35 320_CR10 320_CR32 320_CR11 320_CR33 320_CR31 320_CR29 320_CR1 320_CR27 320_CR2 320_CR28 320_CR3 320_CR25 320_CR26 320_CR5 320_CR6 HV Jagadish (320_CR13) 2005; 30 320_CR7 320_CR8 320_CR9 320_CR23 320_CR24 320_CR21 320_CR20 320_CR40 X Zhou (320_CR38) 2012; 21 320_CR18 320_CR19 320_CR16 320_CR17 320_CR14 320_CR36 320_CR15 320_CR37 X Zhou (320_CR39) 2010; 22 |
| References_xml | – reference: White, R.W., Jose, J.M.: A study of topic similarity measures. In: SIGIR, pp. 520–521 (2004) – reference: Lin, J., Snow, R., Morgan, W.: Smoothing techniques for adaptive online language models: topic tracking in tweet streams. In: KDD, pp. 422–429 (2011) – reference: Lin, C.X., Mei, Q., Han, J., Jiang, Y., Danilevsky, M.: The joint inference of topic diffusion and evolution in social communities. In: ICDM, pp. 378–387 (2011) – reference: Yao, J., Cui, B., Huang, Y., Jin, X.: Temporal and social context based burst detection from folksonomies. In: AAAI, pp. 1474–1479 (2010) – reference: Zhang, K., Zi, J., Wu, L.G.: New event detection based on indexing-tree and named entity. In: SIGIR, pp. 215–222 (2007) – reference: ZhouXZhouXChenLShuYBouguettayaATaylorJAAdaptive subspace symbolization for content-based video detectionIEEE Trans. Knowl. Data Eng.201022101372138710.1109/TKDE.2009.171 – reference: AlSumait, L., Barbará, D., Domeniconi, C.: On-line lda: adaptive topic models for mining text streams with applications to topic detection and tracking. In: ICDM, pp. 3–12 (2008) – reference: Zhao, Q., Mitra, P., Chen, B.: Temporal and information flow based event detection from social text streams. In: AAAI, pp. 1501–1506 (2007) – reference: Chang, Y.-L., Chien, J.-T.: Latent dirichlet learning for document summarization. In: ICASSP, pp. 1689–1692 (2009) – reference: http://en.wikipedia.org/wiki/twitter – reference: Lin, S., Özsu, M.T., Oria, V., Ng, R.T.: An extendible hash for multi-precision similarity querying of image databases. In: VLDB, pp. 221–230 (2001) – reference: Yin, Z., Cao, L., Han, J., Zhai, C., Huang, T.S.: Geographical topic discovery and comparison. In: WWW, pp. 247–256 (2011) – reference: JagadishHVOoiBCTanK-LYuCZhangRiDistance: an adaptive b+-tree based indexing method for nearest neighbor searchTODS200530236439710.1145/1071610.1071612 – reference: Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: an efficient and robust access method for points and rectangles. In: SIGMOD, pp. 322–331 (1990) – reference: Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to geo-locating twitter users. In: CIKM, pp. 759–768 (2010) – reference: http://en.wikipedia.org/wiki/kullback – reference: Fiscus, J.G., Doddington, G.R.: Topic detection and tracking evaluation overview. In: Allan, J. (ed.) Topic detection and Tracking, pp. 17–31. Kluwer Academic Publishers, Norwell, USA (2002) – reference: WangJZhaoZZhouJWangHCuiBQiGRecommending flickr groups with social topic modelInf. Retr.2012153–427829510.1007/s10791-012-9193-0 – reference: Fung, G.P.C., Yu, J.X., Yu, P.S., Lu, H.: Parameter free bursty events detection in text streams. In: VLDB, pp. 181–192 (2005) – reference: Wan, X., Milios, E., Kalyaniwalla, N., Janssen, J.: Link-based event detection in email communication networks. In: SAC, pp. 1506–1510 (2009) – reference: BleiDMNgAYJordanMILatent dirichlet allocationJ. Mach. Learn. Res.2003399310221112.68379 – reference: Zhao, Q., Mitra, P.: Event detection and visualization for social text streams. In: ICWSM (2007) – reference: ZhouXZhouXChenLBouguettayaAEfficient subsequence matching over large video databasesVLDB J.201221448950810.1007/s00778-011-0255-5 – reference: Yin, H., Cui, B., Lu, H., Huang, Y., Yao, J.: A unified model for stable and temporal topic detection from social media data. In: ICDE, pp. 618–629 (2013) – reference: Liu, S., Zhou, M.X., Pan, S., Qian, W., Cai, W., Lian, X.: Interactive, topic-based visual text summarization and analysis. In: CIKM, pp. 543–552 (2009) – reference: Wang, Y., Sundaram, H., Xie, L.: Social event detection with interaction graph modeling. In: ACM Multimedia, pp. 865–868 (2012) – reference: Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: WWW, pp. 851–860 (2010) – reference: Sizov, S.: Geofolk: latent spatial semantics in web 2.0 social media. In: WSDM, pp. 281–290 (2010) – reference: Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR, pp. 50–57 (1999) – reference: Wang, X., McCallum, A.: Topics over time: a non-markov continuous-time model of topical trends. In: KDD, pp. 424–433 (2006) – reference: Yao, J., Cui, B., Xue, Z., Liu, Q.: Provenance-based indexing support in micro-blog platforms. In: ICDE, pp. 558–569 (2012) – reference: Rattenbury, T., Good, N., Naaman, M.: Towards automatic extraction of event and place semantics from flickr tags. In: SIGIR, pp. 103–110 (2007) – reference: Wei, X., Croft, W.B.: Lda-based document models for ad-hoc retrieval. In: SIGIR, pp. 178–185 (2006) – reference: Yu, C., Ooi, B.C., Tan, K.-L., Jagadish, H.V.: Indexing the distance: an efficient method to knn processing. In: VLDB, pp. 421–430 (2001) – reference: Allan, J., Papka, R., Lavrenko, V.: On-line new event detection and tracking. In: SIGIR, pp. 37–45 (1998) – reference: Zunjarwad, A., Sundaram, H., Xie, L.: Contextual wisdom: social relations and correlations for multimedia event annotation. In: ACM Multimedia, pp. 615–624 (2007) – reference: YinHCuiBLiJYaoJChenCChallenging the long tail recommendationPVLDB201259896907 – reference: Yang, Y., Pierce, T., Carbonell, J.G.: A study of retrospective and on-line event detection. In: SIGIR, pp. 28–36 (1998) – reference: YinJ.LampertA.CameronM.RobinsonB.PowerR.Using social media to enhance emergency situation awarenessIEEE Intell. Syst.20122765259 – reference: Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984) – ident: 320_CR37 – ident: 320_CR6 doi: 10.1145/1871437.1871535 – ident: 320_CR24 doi: 10.1145/2393347.2396332 – ident: 320_CR8 – ident: 320_CR3 doi: 10.1145/93605.98741 – ident: 320_CR17 doi: 10.1145/1645953.1646023 – ident: 320_CR1 doi: 10.1145/290941.290954 – ident: 320_CR28 doi: 10.1609/aaai.v24i1.7507 – ident: 320_CR33 doi: 10.1145/1963405.1963443 – volume: 5 start-page: 896 issue: 9 year: 2012 ident: 320_CR30 publication-title: PVLDB – ident: 320_CR21 doi: 10.1145/1529282.1529618 – ident: 320_CR14 doi: 10.1109/ICDM.2011.144 – ident: 320_CR27 doi: 10.1145/290941.290953 – ident: 320_CR31 – volume: 21 start-page: 489 issue: 4 year: 2012 ident: 320_CR38 publication-title: VLDB J. doi: 10.1007/s00778-011-0255-5 – ident: 320_CR16 – ident: 320_CR26 doi: 10.1145/1008992.1009100 – ident: 320_CR40 doi: 10.1145/1291233.1291382 – ident: 320_CR10 – ident: 320_CR5 – ident: 320_CR15 doi: 10.1145/2020408.2020476 – ident: 320_CR25 doi: 10.1145/1148170.1148204 – ident: 320_CR36 – volume: 30 start-page: 364 issue: 2 year: 2005 ident: 320_CR13 publication-title: TODS doi: 10.1145/1071610.1071612 – ident: 320_CR20 doi: 10.1145/1718487.1718522 – ident: 320_CR19 doi: 10.1145/1772690.1772777 – ident: 320_CR34 – ident: 320_CR2 doi: 10.1109/ICDM.2008.140 – volume: 15 start-page: 278 issue: 3–4 year: 2012 ident: 320_CR22 publication-title: Inf. Retr. doi: 10.1007/s10791-012-9193-0 – ident: 320_CR35 doi: 10.1145/1277741.1277780 – ident: 320_CR9 doi: 10.1145/971697.602266 – volume: 22 start-page: 1372 issue: 10 year: 2010 ident: 320_CR39 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.171 – ident: 320_CR23 doi: 10.1145/1150402.1150450 – ident: 320_CR29 doi: 10.1109/ICDE.2012.36 – ident: 320_CR7 doi: 10.1007/978-1-4615-0933-2_2 – volume: 3 start-page: 993 year: 2003 ident: 320_CR4 publication-title: J. Mach. Learn. Res. – ident: 320_CR32 – ident: 320_CR12 doi: 10.1145/312624.312649 – ident: 320_CR18 doi: 10.1145/1277741.1277762 – ident: 320_CR11 |
| SSID | ssj0002225 |
| Score | 2.4834836 |
| Snippet | In recent years, microblogs have become an important source for reporting real-world events. A real-world occurrence reported in microblogs is also called a... |
| SourceID | pascalfrancis crossref springer |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 381 |
| SubjectTerms | Applied sciences Computer Science Computer science; control theory; systems Computer systems and distributed systems. User interface Database Management Exact sciences and technology Information retrieval. Graph Information systems. Data bases Memory organisation. Data processing Regular Paper Software Theoretical computing |
| Title | Event detection over twitter social media streams |
| URI | https://link.springer.com/article/10.1007/s00778-013-0320-3 |
| Volume | 23 |
| WOSCitedRecordID | wos000336383300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 0949-877X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002225 issn: 1066-8888 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60ehDE-sT6KDl4UgK7TrObHEVaPBXxRW9LNg8oaC3dVf--SfYBxQfoPROWSSbzzc58MwBngSGTakGFFJIOdMwoF4mkCpky1sVBMlVh2EQ6HvPJRNzWPO6iqXZvUpLhpW7Jbr7zjC-8QhoF2u8qrDlvx_28hrv7p_b59QFMSHEmCXXhHW9Smd9tseSMNueycHqx1UCLL5nR4HBG3X996jZs1fiSXFUXYgdWzGwXus3sBlKb8h7EQ1_oSLQpQy3WjPhSTlJ-TD27h1R_0kmglRBPJ5EvxT48joYP1ze0Hp_gFB3zknIrUA5ii0xIFedCyfxSpXmqoyhPpWIx5rlyAIcLZh0QssIZt9CMYY5OVFg8gM7sdWYOgRiNWiOi5UY5xOEwjY2MZVJwjcJg0oOo0WOm6t7ifsTFc9Z2RQ4qyZxKMq-SDHtw3orMq8Yavy3uLx1OK3HJGRcOQfbgojmJrDbC4uftjv60-hg2HEoaVPVhJ9ApF2_mFNbVezktFv1w-T4BLofSIA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60CgpiPbEeNQ8-KQu7zWY3eRRpqViLaJW-LdkcUNBauqv-fZPsAcUD9D0Tlkkm883OfDMAZ44hE0vmMc64F8qAeJRF3BOYCKVNHMRj4YZNxMMhHY_ZXcnjzqpq9yol6V7qmuxmO8_Ywivs-Y72uwwroXFYtmH-_cNT_fzaAMalOKPIM-EdrVKZ322x4Iw2ZjwzetHFQIsvmVHncHrNf33qFmyW-BJdFhdiG5bUdAea1ewGVJryLgRdW-iIpMpdLdYU2VJOlH9MLLsHFX_SkaOVIEsn4S_ZHjz2uqOrvleOTzCKDmjuUc0wDwONCeMiSJngaUfEaSx9P425IAFOU2EADmVEGyCkmTFuJgnBKTaiTON9aExfp-oAkJJYSoyxpkoYxGEwjfaVJpxRiZnCUQv8So-JKHuL2xEXz0ndFdmpJDEqSaxKEtyC81pkVjTW-G1xe-FwaokOJZQZBNmCi-okktIIs5-3O_zT6lNY649uB8ngenhzBOsGMYVFrdgxNPL5mzqBVfGeT7J5213ETxF81QQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFBHEecV5mXnwSSm2S9Mmj6IbijIGXthbSXOBgdaxVv37JukFhhcQ35NQTnKS7_R83zkAJ04hE0vmMc64F8qAeJRF3BOYCKVNHMRj4ZpNxMMhHY_ZqOpzmtds9zolWWoabJWmrDifSn3eCN9sFRpLwsKe7yTAi7AUWh69Ddfvn5qr2AYzLt0ZRZ4J9Wid1vxuibmHaW3Kc2MjXTa3-JIldY_PoP3vz96A9Qp3oovyoGzCgsq2oF33dECVi29D0LcESCRV4ThaGbIUT1R8TKzqB5V_2JGTmyArM-Ev-Q48DvoPl9de1VbBbEBAC49qhnkYaEwYF0HKBE97Ik5j6ftpzAUJcJoKA3woI9oAJM2M0zNJCE6xmco03oVW9pqpPUBKYikxxpoqYZCIwTraV5pwRiVmCkcd8GubJqKqOW5bXzwnTbVkZ5LEmCSxJklwB06bKdOy4MZvg7tzG9XM6FFCmUGWHTirdyWpnDP_ebn9P40-hpXR1SC5uxneHsCqAVJhSSE7hFYxe1NHsCzei0k-67oz-QlnV93o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event+detection+over+twitter+social+media+streams&rft.jtitle=The+VLDB+journal&rft.au=Zhou%2C+Xiangmin&rft.au=Chen%2C+Lei&rft.date=2014-06-01&rft.issn=1066-8888&rft.eissn=0949-877X&rft.volume=23&rft.issue=3&rft.spage=381&rft.epage=400&rft_id=info:doi/10.1007%2Fs00778-013-0320-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00778_013_0320_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-8888&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-8888&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-8888&client=summon |