Artificial intelligence based medical decision support system for early and accurate breast cancer prediction

•A soft-computing and machine learning based medical decision support system is proposed for breast cancer disease classification.•Two soft-computing algorithms eagle strategy optimization (ESO) algorithm and the gravitational search optimization (GSO) algorithm are employed for the first time for t...

Full description

Saved in:
Bibliographic Details
Published in:Advances in engineering software (1992) Vol. 175; p. 103338
Main Authors: Singh, Law Kumar, Khanna, Munish, Singh, Rekha
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.01.2023
Subjects:
ISSN:0965-9978
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A soft-computing and machine learning based medical decision support system is proposed for breast cancer disease classification.•Two soft-computing algorithms eagle strategy optimization (ESO) algorithm and the gravitational search optimization (GSO) algorithm are employed for the first time for this problem. A novel intelligent classification approach based on these two algorithms for breast cancer infection is also proposed.•12 experiments have been performed using three soft-computing algorithms(for feature selection) and 6 state-of-the-art machine learning classifier(for classification).WDBC dataset is used for the method evaluation.•We have been able to attain astonishing results with accuracy up to 98.9578%, sensitivity up to 0.9696, specificity up to 1.000, precision 1.000, F1- score up to 0.9696, and an AUC 0.9980(close to maximum i.e., 1.0000). Feature selection, which picks the optimal subset of characteristics related to the target data by deleting unnecessary data, is one of the most important aspects of the machine learning area. A major part of big data preprocessing is feature selection (reduction). There are 2n alternative feature subsets for every n features, making it difficult to choose the best set of features from a dataset using typical feature selection techniques. Consequently, the present study proposes and suggests a unique feature selection method based on the Eagle Strategy(ESO) Optimization, Gravitational Search Optimization (GSO) algorithm, and their hybrid algorithm. We chose this infection as our subject of investigation since the number of women with breast cancer is increasing rapidly on a global scale. After lung cancer, which affects more women than any other kind of cancer, breast cancer is the second leading cause of cancer mortality. The goal of this study is to categorize breast cancer into two groups using the benchmark feature set (Wisconsin Diagnostic Breast Cancer (WDBC)) and to choose the fewest features (feature selection) to achieve maximum accuracy. This work also provides a hybrid technique for finding important features that combines two algorithms, ESO and the GSO algorithm, while reducing insignificant characteristics (features) and complexity. Soft computing technologies and machine learning algorithms provide a framework for prognostic research by classifying data instances as relevant or irrelevant depending on cancer severity. Thus, this work presented a new approach for classifying breast cancer tumors. In this research, we coupled soft computing methodologies—our implemented algorithms are applied for the first time to this problem—with artificial intelligence-based machine learning strategies to create a prediction model. The efficacy of our suggested technique was evaluated using WDBC breast cancer data sets, and the findings show that our proposed hybrid algorithm performs very well in breast cancer classification. We have been able to attain astonishing results with accuracy up to 98.9578%, sensitivity up to 0.9705, specificity up to 1.000, precision up to 1.000, F1-score up to 0.9696, and an AUC up to 0.9980 (close to maximum, i.e., 1.0000). Our study's goal is to incorporate our findings into a valid clinical prediction system, allowing visual science specialists to make more accurate and effective judgments in the future. Furthermore, our suggested technology might be used to detect a wide range of diseases.
AbstractList •A soft-computing and machine learning based medical decision support system is proposed for breast cancer disease classification.•Two soft-computing algorithms eagle strategy optimization (ESO) algorithm and the gravitational search optimization (GSO) algorithm are employed for the first time for this problem. A novel intelligent classification approach based on these two algorithms for breast cancer infection is also proposed.•12 experiments have been performed using three soft-computing algorithms(for feature selection) and 6 state-of-the-art machine learning classifier(for classification).WDBC dataset is used for the method evaluation.•We have been able to attain astonishing results with accuracy up to 98.9578%, sensitivity up to 0.9696, specificity up to 1.000, precision 1.000, F1- score up to 0.9696, and an AUC 0.9980(close to maximum i.e., 1.0000). Feature selection, which picks the optimal subset of characteristics related to the target data by deleting unnecessary data, is one of the most important aspects of the machine learning area. A major part of big data preprocessing is feature selection (reduction). There are 2n alternative feature subsets for every n features, making it difficult to choose the best set of features from a dataset using typical feature selection techniques. Consequently, the present study proposes and suggests a unique feature selection method based on the Eagle Strategy(ESO) Optimization, Gravitational Search Optimization (GSO) algorithm, and their hybrid algorithm. We chose this infection as our subject of investigation since the number of women with breast cancer is increasing rapidly on a global scale. After lung cancer, which affects more women than any other kind of cancer, breast cancer is the second leading cause of cancer mortality. The goal of this study is to categorize breast cancer into two groups using the benchmark feature set (Wisconsin Diagnostic Breast Cancer (WDBC)) and to choose the fewest features (feature selection) to achieve maximum accuracy. This work also provides a hybrid technique for finding important features that combines two algorithms, ESO and the GSO algorithm, while reducing insignificant characteristics (features) and complexity. Soft computing technologies and machine learning algorithms provide a framework for prognostic research by classifying data instances as relevant or irrelevant depending on cancer severity. Thus, this work presented a new approach for classifying breast cancer tumors. In this research, we coupled soft computing methodologies—our implemented algorithms are applied for the first time to this problem—with artificial intelligence-based machine learning strategies to create a prediction model. The efficacy of our suggested technique was evaluated using WDBC breast cancer data sets, and the findings show that our proposed hybrid algorithm performs very well in breast cancer classification. We have been able to attain astonishing results with accuracy up to 98.9578%, sensitivity up to 0.9705, specificity up to 1.000, precision up to 1.000, F1-score up to 0.9696, and an AUC up to 0.9980 (close to maximum, i.e., 1.0000). Our study's goal is to incorporate our findings into a valid clinical prediction system, allowing visual science specialists to make more accurate and effective judgments in the future. Furthermore, our suggested technology might be used to detect a wide range of diseases.
ArticleNumber 103338
Author Singh, Law Kumar
Khanna, Munish
Singh, Rekha
Author_xml – sequence: 1
  givenname: Law Kumar
  surname: Singh
  fullname: Singh, Law Kumar
  email: lawkumarcs@gmail.com
  organization: Department of Computer Engineering and Applications, GLA University, Mathura, Uttar Pradesh, INDIA
– sequence: 2
  givenname: Munish
  surname: Khanna
  fullname: Khanna, Munish
  organization: Department of Computer Science and Engineering, Hindustan College of Science and Technology, Mathura, Uttar Pradesh, INDIA
– sequence: 3
  givenname: Rekha
  surname: Singh
  fullname: Singh, Rekha
  organization: Department of Physics, Uttar Pradesh Rajarshi Tandon Open University, Prayagraj, Uttar Pradesh, INDIA
BookMark eNqNkMtqwzAQAHVIoUnbf9APOJVkW7YvhTT0BYFecheb1Soo-BEkJZC_r00KhV7ak2DFDLuzYLN-6IkxLsVSCqkfD0uwZ-r3cXBpqYRS4zjP83rG5qLRZdY0VX3LFjEehJCFUHLOulVI3nn00HLfJ2pbv6ceie8gkuUdWY_jlyX00Q89j6fjcQiJx0tM1HE3BE4Q2guH3nJAPAVIIxwIYuIIoynwY5gsacTv2Y2DNtLD93vHtq8v2_V7tvl8-1ivNhnmsk5Z7SqSsrG6qSpRaaUdCgSotStRkC6ronAaUDbOSVkop0uUalfIsimRlMvvWH3VYhhiDOTMMfgOwsVIYaZS5mB-SpmplLmWGtGnXyj6BNPuKYBv_yN4vgpovO_sKZiIfipqfSBMxg7-b8kXfRiTAg
CitedBy_id crossref_primary_10_3390_app131910755
crossref_primary_10_1016_j_compbiomed_2025_110785
crossref_primary_10_1016_j_bspc_2023_105080
crossref_primary_10_1109_ACCESS_2023_3308446
crossref_primary_10_1016_j_bspc_2023_105269
crossref_primary_10_1109_ACCESS_2023_3312305
crossref_primary_10_3390_info15110725
crossref_primary_10_1208_s12249_025_03193_6
crossref_primary_10_1007_s11042_024_18179_y
crossref_primary_10_1007_s13721_025_00512_6
crossref_primary_10_3390_bioengineering11111148
crossref_primary_10_2478_amns_2023_2_01388
crossref_primary_10_1007_s11042_024_19549_2
crossref_primary_10_1016_j_compbiolchem_2024_108110
crossref_primary_10_1016_j_slast_2025_100314
crossref_primary_10_1007_s11042_024_18473_9
crossref_primary_10_26634_jfet_19_4_20913
crossref_primary_10_1109_ACCESS_2024_3424907
crossref_primary_10_1155_2023_9713905
crossref_primary_10_3390_electronics12244923
crossref_primary_10_1007_s00521_023_09358_3
crossref_primary_10_1007_s11042_023_17044_8
crossref_primary_10_1097_MD_0000000000041749
crossref_primary_10_1007_s43621_024_00725_1
crossref_primary_10_1109_ACCESS_2023_3327058
crossref_primary_10_1088_1402_4896_ada18d
crossref_primary_10_1016_j_health_2023_100218
crossref_primary_10_1371_journal_pone_0300622
crossref_primary_10_1016_j_measurement_2023_113525
crossref_primary_10_1007_s11042_025_20707_3
crossref_primary_10_1007_s41060_024_00513_0
crossref_primary_10_1016_j_compbiomed_2024_109648
crossref_primary_10_1002_cnr2_70262
crossref_primary_10_1016_j_ijmedinf_2024_105724
crossref_primary_10_1007_s13369_025_10447_9
crossref_primary_10_1016_j_bspc_2024_106268
crossref_primary_10_1016_j_displa_2024_102648
crossref_primary_10_1371_journal_pone_0318219
crossref_primary_10_1080_10255842_2025_2553347
crossref_primary_10_2174_0126662558348090241210063629
crossref_primary_10_1016_j_compbiomed_2023_107356
crossref_primary_10_1155_2024_7221343
crossref_primary_10_3390_diagnostics14242896
crossref_primary_10_3390_life13102093
crossref_primary_10_1016_j_jnlest_2025_100315
Cites_doi 10.1002/cam4.2811
10.1109/TITB.2009.2039485
10.1016/j.eswa.2013.09.022
10.1007/s12652-018-1031-9
10.1109/ACCESS.2018.2843443
10.1016/j.eswa.2015.01.065
10.1109/LSP.2014.2337313
10.3390/s18092799
10.1016/j.compmedimag.2016.07.004
10.1007/s00500-019-03856-0
10.1016/j.patrec.2018.11.004
10.1016/j.canep.2012.02.007
10.1016/j.eswa.2010.02.126
10.1016/j.advengsoft.2022.103283
10.1007/s10916-019-1397-z
10.1016/j.cmpb.2016.07.020
10.1016/j.jbi.2020.103591
10.1038/s41598-021-03430-5
10.1186/1471-2407-7-222
10.7717/peerj.6201
10.1016/j.bbe.2019.12.004
10.1016/j.eswa.2008.01.009
10.1016/j.eswa.2011.01.120
10.1007/s42979-020-00305-w
10.1016/j.ijsu.2010.05.012
10.1016/j.compbiomed.2020.103974
10.1109/ACCESS.2020.3016715
10.2307/2531595
10.1007/s00521-020-05296-6
10.1016/j.csbj.2014.11.005
10.1016/j.ipm.2018.10.014
10.1007/s00521-015-2103-9
10.1016/j.procs.2016.04.224
10.1080/02533839.2019.1676658
10.3390/healthcare8020111
10.31557/APJCP.2019.20.12.3777
10.1016/j.artmed.2017.02.003
10.1016/j.ejor.2017.12.001
10.1016/j.asoc.2019.105941
10.1016/j.artmed.2015.07.005
10.7717/peerj-cs.344
10.1016/j.ins.2009.03.004
10.1016/j.tele.2017.01.007
10.1007/s13721-013-0045-7
10.1038/s41598-017-16665-y
10.1016/j.jbi.2014.01.010
10.26719/2009.15.3.612
10.1016/j.measurement.2015.04.028
10.1385/MO:22:4:343
10.1016/j.eswa.2019.112824
10.1023/B:JOMG.0000048770.90334.3b
10.1016/j.eswa.2012.02.004
10.1016/j.eswa.2020.114161
10.1007/s00500-019-04218-6
10.1016/j.cmpb.2017.12.012
10.1016/j.asoc.2018.10.036
10.1016/j.eswa.2018.08.040
10.1016/j.eswa.2009.04.067
10.1002/ijc.11237
10.1016/j.bspc.2021.103141
10.1007/BF02785842
10.7717/peerj-cs.427
10.1016/j.ijsu.2006.06.015
10.1007/s42979-020-00296-8
10.1016/S1470-2045(13)70567-9
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.advengsoft.2022.103338
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
ExternalDocumentID 10_1016_j_advengsoft_2022_103338
S0965997822002393
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-8f7e119d697707626fc0caa86f5c0e65744f6ac19ff1142f65c12b41595ce2f3
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000895287000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0965-9978
IngestDate Tue Nov 18 22:02:25 EST 2025
Sat Nov 29 07:04:47 EST 2025
Fri Feb 23 02:40:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Eagle strategy optimization
Gravitational search optimization
Breast cancer detection
Feature selection
Hybrid algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-8f7e119d697707626fc0caa86f5c0e65744f6ac19ff1142f65c12b41595ce2f3
ParticipantIDs crossref_primary_10_1016_j_advengsoft_2022_103338
crossref_citationtrail_10_1016_j_advengsoft_2022_103338
elsevier_sciencedirect_doi_10_1016_j_advengsoft_2022_103338
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Advances in engineering software (1992)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Al-Betar, Alyasseri, Awadallah, Abu Doush (bib0070) 2021; 33
Jeyasingh, Veluchamy (bib0088) 2017; 18
Rao, Shi, Rodrigue, Feng, Xia, Elhoseny, Gu (bib0043) 2019; 74
Ul Haq, Li, Memon, Khan, Ud Din (bib0053) 2020; 38
Wang, Wang, Wang, Yin, Wang, Jin (bib0083) 2020; 86
Elkum, Dermime, Ajarim, Al-Zahrani, Alsayed, Tulbah, Al Malik, Alshabanah, Ezzat, Al-Tweigeri (bib0014) 2007; 7
Tahmooresi, Afshar, Rad, Nowshath, Bamiah (bib0072) 2018; 10
Ravichandran, Al Zahrani (bib0006) 2009; 15
Thompson, Easton (bib0010) 2004; 9
Peng, Chen, Zhou, Li, Yang, Zhang (bib0030) 2016; 134
Khalid, Hosny, Mirjalili (bib0069) 2022
Sakri, Rashid, Zain (bib0055) 2018; 6
Ramadevi, Rani, Lavanya (bib0064) 2015; 3
Fatima, Liu, Hong, Ahmed (bib0075) 2020; 8
Karabatak (bib0028) 2015; 72
Ronoud, Asadi (bib0035) 2019; 23
Ibrahim, Ewees, Oliva, Abd Elaziz, Lu (bib0047) 2019; 10
Khandezamin, Naderan, Rashti (bib0080) 2020; 111
Raiesdana (bib0051) 2021; 12
Farr, Wuerstlein, Heiduschka, Singer, Harbeck (bib0016) 2013; 6
Krawczyk, Schaefer, Woźniak (bib0034) 2015; 65
Abdar, Zomorodi-Moghadam, Zhou, Gururajan, Tao, Barua, Gururajan (bib0045) 2020; 132
Fei (bib0023) 2010; 37
Agustian, Lubis (bib0062) 2020
Boeri, Chiappa, Galli, De Berardinis, Bardelli, Carcano, Rovera (bib0073) 2020; 9
Jiang, Zhu, Tian (bib0081) 2022
Rahman, chandren Muniyandi, Albashish, Rahman, Usman (bib0056) 2021; 7
Sahebi, Movahedi, Ebrahimi, Pahikkala, Plosila, Tenhunen (bib0059) 2020; 125
Christo, Nehemiah, Brighty, Kannan (bib0041) 2020
Dalwinder, Birmohan, Manpreet (bib0087) 2020; 40
Fayyad, Piatetsky-Shapiro, Smyth (bib0017) 1996; 17
Siegel, Ma, Zou, Jemal (bib0001) 2014; 64
.
Seera, Lim (bib0019) 2014; 41
Chen, Yang, Liu, Liu (bib0027) 2011; 38
[Accessed: 01-Jan-2022].
El Saghir, Khalil, Eid, El Kinge, Charafeddine, Geara, Shamseddine (bib0005) 2007; 5
Sizilio, Leite, Guerreiro, Neto (bib0009) 2012; 11
Sahu, Mohanty, Rout (bib0046) 2019; 6
Mambou, Maresova, Krejcar, Selamat, Kuca (bib0050) 2018; 18
Tilwankar, Kirar (bib0068) 2021
El-Kenawy, Eid (bib0048) 2020; 16
Kourou, Exarchos, Exarchos, Karamouzis, Fotiadis (bib0025) 2015; 13
Qiu, Yu, Wang, Yao, Wu, Yin (bib0033) 2017; 7
Ibrahim, Ezzat, Rahal, Raja, Ajarim (bib0013) 2005; 22
Thongkam, Xu, Zhang, Huang (bib0020) 2009; 36
Wang, Dai, Shen, Xuan (bib0058) 2021; 11
Wang, Zheng, Yoon, Ko (bib0082) 2018; 267
Ezzat, Ibrahim, Raja, Al-Sobhi, Rostom, Stuart (bib0012) 1999; 16
Bhardwaj, Tiwari (bib0018) 2015; 42
Liu, Qi, Xu, Gao, Liu (bib0039) 2019; 56
Ak (bib0042) 2020; 8
Gu, Liang, Zhao (bib0032) 2017; 77
Abdel-Basset, El-Shahat, El-henawy, de Albuquerque, Mirjalili (bib0086) 2020; 139
Rajaguru, SR (bib0067) 2019; 20
Yassin, Omran, El Houby, Allam (bib0077) 2018; 156
Sharma, Om (bib0021) 2013; 2
Kadam, Jadhav, Vijayakumar (bib0044) 2019; 43
Fan, Strasserweippl, Li (bib0008) 2014; 15
Nilashi, Ibrahim, Ahmadi, Shahmoradi (bib0052) 2017; 34
Ragab, Sharkas, Marshall, Ren (bib0057) 2019; 7
Murugesan, Bhuvaneswaran, Khanna Nehemiah, Keerthana Sankari, Nancy Jane (bib0065) 2021
Sun, Tseng, Zhang, Qian (bib0031) 2017; 2017
Sun, Xu (bib0091) 2014; 21
Soni, B, Reddy (bib0038) 2020; 6
DeLong, DeLong, Clarke-Pearson (bib0090) 1988
Jen, Wang, Jiang, Chu, Chen (bib0022) 2012; 39
Jemal, Bray, Center, Ferlay, Ward, Forman (bib0003) 2011; 61
Aličković, Subasi (bib0036) 2017; 28
Houssein, Emam, Ali, Suganthan (bib0076) 2021; 167
Youlden, Cramb, Dunn, Muller, Pyke, Baade (bib0004) 2012; 36
Singh, Khanna, Thawkar, Singh (bib0092) 2022; 173
Sheikhpour, Ghassemi, Yaghmaei, Ardekani, Shiryazd (bib0002) 2014; 7
Chaurasia, Pal (bib0037) 2020; 1
Idris, Ismail (bib0066) 2021; 7
Najjar, Easson (bib0015) 2010; 8
Rashedi, Nezamabadi-Pour, Saryazdi (bib0061) 2009; 179
Hamed, Marey, Amin, Tolba (bib0054) 2020
Dheeba, Singh, Selvi (bib0063) 2014; 49
Kumar, Nair (bib0084) 2021; 68
Akay (bib0026) 2009; 36
Islam, Haque, Iqbal, Hasan, Hasan, Kabir (bib0071) 2020; 1
Asri, Mousannif, Al Moatassime, Noel (bib0074) 2016; 83
Lu, Wang, Yoon (bib0049) 2019; 116
Perera, Gui (bib0011) 2003; 106
Mushtaq, Yaqub, Sani, Khalid (bib0040) 2020; 43
Naik, Kuppili, Edla (bib0085) 2020; 24
Barakat, Bradley, Barakat (bib0024) 2010; 14
Yang, Deb (bib0060) 2010
Alshayeji, Ellethy, Gupta (bib0079) 2022; 71
DeLong (10.1016/j.advengsoft.2022.103338_bib0090) 1988
Karabatak (10.1016/j.advengsoft.2022.103338_bib0028) 2015; 72
Hamed (10.1016/j.advengsoft.2022.103338_bib0054) 2020
Rashedi (10.1016/j.advengsoft.2022.103338_bib0061) 2009; 179
Sakri (10.1016/j.advengsoft.2022.103338_bib0055) 2018; 6
Wang (10.1016/j.advengsoft.2022.103338_bib0083) 2020; 86
Barakat (10.1016/j.advengsoft.2022.103338_bib0024) 2010; 14
Kadam (10.1016/j.advengsoft.2022.103338_bib0044) 2019; 43
El-Kenawy (10.1016/j.advengsoft.2022.103338_bib0048) 2020; 16
Yang (10.1016/j.advengsoft.2022.103338_bib0060) 2010
Seera (10.1016/j.advengsoft.2022.103338_bib0019) 2014; 41
Idris (10.1016/j.advengsoft.2022.103338_bib0066) 2021; 7
Sizilio (10.1016/j.advengsoft.2022.103338_bib0009) 2012; 11
10.1016/j.advengsoft.2022.103338_bib0007
Khandezamin (10.1016/j.advengsoft.2022.103338_bib0080) 2020; 111
Rao (10.1016/j.advengsoft.2022.103338_bib0043) 2019; 74
10.1016/j.advengsoft.2022.103338_bib0089
Ibrahim (10.1016/j.advengsoft.2022.103338_bib0047) 2019; 10
Tahmooresi (10.1016/j.advengsoft.2022.103338_bib0072) 2018; 10
Najjar (10.1016/j.advengsoft.2022.103338_bib0015) 2010; 8
Houssein (10.1016/j.advengsoft.2022.103338_bib0076) 2021; 167
Sahu (10.1016/j.advengsoft.2022.103338_bib0046) 2019; 6
Abdel-Basset (10.1016/j.advengsoft.2022.103338_bib0086) 2020; 139
Ezzat (10.1016/j.advengsoft.2022.103338_bib0012) 1999; 16
Ul Haq (10.1016/j.advengsoft.2022.103338_bib0053) 2020; 38
Jemal (10.1016/j.advengsoft.2022.103338_bib0003) 2011; 61
Raiesdana (10.1016/j.advengsoft.2022.103338_bib0051) 2021; 12
Mushtaq (10.1016/j.advengsoft.2022.103338_bib0040) 2020; 43
Jiang (10.1016/j.advengsoft.2022.103338_bib0081) 2022
Islam (10.1016/j.advengsoft.2022.103338_bib0071) 2020; 1
Fatima (10.1016/j.advengsoft.2022.103338_bib0075) 2020; 8
Perera (10.1016/j.advengsoft.2022.103338_bib0011) 2003; 106
Boeri (10.1016/j.advengsoft.2022.103338_bib0073) 2020; 9
Thompson (10.1016/j.advengsoft.2022.103338_bib0010) 2004; 9
Krawczyk (10.1016/j.advengsoft.2022.103338_bib0034) 2015; 65
Soni (10.1016/j.advengsoft.2022.103338_bib0038) 2020; 6
Christo (10.1016/j.advengsoft.2022.103338_bib0041) 2020
Wang (10.1016/j.advengsoft.2022.103338_bib0082) 2018; 267
Chaurasia (10.1016/j.advengsoft.2022.103338_bib0037) 2020; 1
Lu (10.1016/j.advengsoft.2022.103338_bib0049) 2019; 116
Farr (10.1016/j.advengsoft.2022.103338_bib0016) 2013; 6
Chen (10.1016/j.advengsoft.2022.103338_bib0027) 2011; 38
Sahebi (10.1016/j.advengsoft.2022.103338_bib0059) 2020; 125
Nilashi (10.1016/j.advengsoft.2022.103338_bib0052) 2017; 34
Aličković (10.1016/j.advengsoft.2022.103338_bib0036) 2017; 28
Rahman (10.1016/j.advengsoft.2022.103338_bib0056) 2021; 7
Tilwankar (10.1016/j.advengsoft.2022.103338_bib0068) 2021
Yassin (10.1016/j.advengsoft.2022.103338_bib0077) 2018; 156
Elkum (10.1016/j.advengsoft.2022.103338_bib0014) 2007; 7
Sun (10.1016/j.advengsoft.2022.103338_bib0091) 2014; 21
Wang (10.1016/j.advengsoft.2022.103338_bib0058) 2021; 11
Ronoud (10.1016/j.advengsoft.2022.103338_bib0035) 2019; 23
Dheeba (10.1016/j.advengsoft.2022.103338_bib0063) 2014; 49
Kumar (10.1016/j.advengsoft.2022.103338_bib0084) 2021; 68
Rajaguru (10.1016/j.advengsoft.2022.103338_bib0067) 2019; 20
Fan (10.1016/j.advengsoft.2022.103338_bib0008) 2014; 15
Ravichandran (10.1016/j.advengsoft.2022.103338_bib0006) 2009; 15
Mambou (10.1016/j.advengsoft.2022.103338_bib0050) 2018; 18
Qiu (10.1016/j.advengsoft.2022.103338_bib0033) 2017; 7
Sheikhpour (10.1016/j.advengsoft.2022.103338_bib0002) 2014; 7
Ibrahim (10.1016/j.advengsoft.2022.103338_bib0013) 2005; 22
Ak (10.1016/j.advengsoft.2022.103338_bib0042) 2020; 8
Thongkam (10.1016/j.advengsoft.2022.103338_bib0020) 2009; 36
Sharma (10.1016/j.advengsoft.2022.103338_bib0021) 2013; 2
Akay (10.1016/j.advengsoft.2022.103338_bib0026) 2009; 36
Siegel (10.1016/j.advengsoft.2022.103338_bib0001) 2014; 64
Fayyad (10.1016/j.advengsoft.2022.103338_bib0017) 1996; 17
Gu (10.1016/j.advengsoft.2022.103338_bib0032) 2017; 77
Abdar (10.1016/j.advengsoft.2022.103338_bib0045) 2020; 132
Jeyasingh (10.1016/j.advengsoft.2022.103338_bib0088) 2017; 18
Asri (10.1016/j.advengsoft.2022.103338_bib0074) 2016; 83
Murugesan (10.1016/j.advengsoft.2022.103338_bib0065) 2021
Kourou (10.1016/j.advengsoft.2022.103338_bib0025) 2015; 13
Naik (10.1016/j.advengsoft.2022.103338_bib0085) 2020; 24
Dalwinder (10.1016/j.advengsoft.2022.103338_bib0087) 2020; 40
Liu (10.1016/j.advengsoft.2022.103338_bib0039) 2019; 56
Al-Betar (10.1016/j.advengsoft.2022.103338_bib0070) 2021; 33
Singh (10.1016/j.advengsoft.2022.103338_bib0092) 2022; 173
El Saghir (10.1016/j.advengsoft.2022.103338_bib0005) 2007; 5
Youlden (10.1016/j.advengsoft.2022.103338_bib0004) 2012; 36
Peng (10.1016/j.advengsoft.2022.103338_bib0030) 2016; 134
Sun (10.1016/j.advengsoft.2022.103338_bib0031) 2017; 2017
Ramadevi (10.1016/j.advengsoft.2022.103338_bib0064) 2015; 3
Khalid (10.1016/j.advengsoft.2022.103338_bib0069) 2022
Fei (10.1016/j.advengsoft.2022.103338_bib0023) 2010; 37
Alshayeji (10.1016/j.advengsoft.2022.103338_bib0079) 2022; 71
Agustian (10.1016/j.advengsoft.2022.103338_bib0062) 2020
Ragab (10.1016/j.advengsoft.2022.103338_bib0057) 2019; 7
Bhardwaj (10.1016/j.advengsoft.2022.103338_bib0018) 2015; 42
Jen (10.1016/j.advengsoft.2022.103338_bib0022) 2012; 39
References_xml – volume: 10
  start-page: 3155
  year: 2019
  end-page: 3169
  ident: bib0047
  article-title: Improved salp swarm algorithm based on particle swarm optimization for feature selection
  publication-title: J Ambient Intell Humaniz Comput
– volume: 18
  start-page: 2799
  year: 2018
  ident: bib0050
  article-title: Breast cancer detection using infrared thermal imaging and a deep learning model
  publication-title: Sensors
– volume: 15
  start-page: e279
  year: 2014
  end-page: e289
  ident: bib0008
  article-title: Breast cancer in China
  publication-title: Lancet Oncol
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: bib0061
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf Sci (Ny)
– start-page: 1
  year: 2022
  end-page: 24
  ident: bib0081
  article-title: Breast cancer detection based on modified harris hawks optimization and extreme learning machine embedded with feature weighting
  publication-title: Neural Processing Letters
– volume: 3
  start-page: 763
  year: 2015
  ident: bib0064
  article-title: Importance of feature extraction for classification of breast cancer datasets, a study
  publication-title: Int J Sci InnovMath Res
– volume: 38
  start-page: 9014
  year: 2011
  end-page: 9022
  ident: bib0027
  article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
  publication-title: Expert Syst Appl
– volume: 10
  start-page: 21
  year: 2018
  end-page: 27
  ident: bib0072
  article-title: Early detection of breast cancer using machine learning techniques
  publication-title: J Telecommun, Electron Comput Eng (JTEC)
– volume: 8
  start-page: 150360
  year: 2020
  end-page: 150376
  ident: bib0075
  article-title: Prediction of breast cancer, comparative review of machine learning techniques, and their analysis
  publication-title: IEEE Access
– volume: 36
  start-page: 3240
  year: 2009
  end-page: 3247
  ident: bib0026
  article-title: Support vector machines combined with feature selection for breast cancer diagnosis
  publication-title: Expert Syst Appl
– volume: 20
  start-page: 3777
  year: 2019
  ident: bib0067
  article-title: Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer
  publication-title: Asian Pac J Cancer Prev
– volume: 65
  start-page: 219
  year: 2015
  end-page: 227
  ident: bib0034
  article-title: A hybrid cost-sensitive ensemble for imbalanced breast thermogram classification
  publication-title: Artif Intell Med
– volume: 7
  start-page: e427
  year: 2021
  ident: bib0066
  article-title: Breast cancer disease classification using fuzzy-ID3 algorithm with FUZZYDBD method: automatic fuzzy database definition
  publication-title: PeerJ Computer Science
– volume: 7
  start-page: e6201
  year: 2019
  ident: bib0057
  article-title: Breast cancer detection using deep convolutional neural networks and support vector machines
  publication-title: PeerJ
– start-page: 80
  year: 2021
  end-page: 84
  ident: bib0068
  article-title: Breast cancer detection using principal component analysis and machine learning models
  publication-title: 2021 First International Conference on Advances in Computing and Future Communication Technologies (ICACFCT)
– volume: 33
  start-page: 5011
  year: 2021
  end-page: 5042
  ident: bib0070
  article-title: Coronavirus herd immunity optimizer (CHIO)
  publication-title: Neural Comput Appl
– volume: 139
  year: 2020
  ident: bib0086
  article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection
  publication-title: Expert Syst Appl
– volume: 49
  start-page: 45
  year: 2014
  end-page: 52
  ident: bib0063
  article-title: Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach
  publication-title: J Biomed Inform
– volume: 68
  year: 2021
  ident: bib0084
  article-title: An efficient classification framework for breast cancer using hyper parameter tuned Random Decision Forest Classifier and Bayesian Optimization
  publication-title: Biomed Signal Process Control
– volume: 14
  start-page: 1114
  year: 2010
  end-page: 1120
  ident: bib0024
  article-title: Intelligible support vector machines for diagnosis of diabetes mellitus
  publication-title: IEEE Trans Inf Technol Biomed
– volume: 24
  start-page: 4575
  year: 2020
  end-page: 4587
  ident: bib0085
  article-title: Efficient feature selection using one-pass generalized classifier neural network and binary bat algorithm with a novel fitness function
  publication-title: Soft comput
– volume: 43
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib0044
  article-title: Breast cancer diagnosis using feature ensemble learning based on stacked sparse autoencoders and softmax regression
  publication-title: J Med Syst
– volume: 15
  start-page: 612
  year: 2009
  end-page: 621
  ident: bib0006
  article-title: Association of reproductive factors with the incidence of breast cancer in Gulf Cooperation Council countries
  publication-title: EMHJ-Eastern Mediterranean Health J
– volume: 6
  start-page: 165
  year: 2013
  ident: bib0016
  article-title: Modern risk assessment for individualizing treatment concepts in early-stage breast cancer
  publication-title: Rev Obstetr Gynecol
– volume: 72
  start-page: 32
  year: 2015
  end-page: 36
  ident: bib0028
  article-title: A new classifier for breast cancer detection based on Naïve Bayesian
  publication-title: Measurement
– volume: 7
  start-page: 16417
  year: 2017
  ident: bib0033
  article-title: Electronic health record driven prediction for gestational diabetes mellitus in early pregnancy
  publication-title: Sci Rep
– start-page: 322
  year: 2020
  end-page: 333
  ident: bib0054
  article-title: Deep learning in breast cancer detection and classification
  publication-title: The International Conference on Artificial Intelligence and Computer Vision
– volume: 8
  start-page: 111
  year: 2020
  ident: bib0042
  article-title: A comparative analysis of breast cancer detection and diagnosis using data visualization and machine learning applications
  publication-title: Healthcare
– volume: 22
  start-page: 343
  year: 2005
  end-page: 352
  ident: bib0013
  article-title: Adjuvant chemotherapy in 780 patients with early breast cancer
  publication-title: Med Oncol
– start-page: 1
  year: 2020
  end-page: 6
  ident: bib0062
  article-title: Particle swarm optimization feature selection for breast cancer prediction
  publication-title: 2020 8th International Conference on Cyber and IT Service Management (CITSM)
– volume: 2
  start-page: 285
  year: 2013
  end-page: 295
  ident: bib0021
  article-title: Data mining models for predicting oral cancer survivability
  publication-title: Network Model Anal Health Inf Bioinf
– volume: 12
  start-page: 48
  year: 2021
  end-page: 68
  ident: bib0051
  article-title: Breast Cancer Detection Using Optimization-Based Feature Pruning and Classification Algorithms
  publication-title: Middle East J Cancer
– volume: 86
  year: 2020
  ident: bib0083
  article-title: An improved random forest-based rule extraction method for breast cancer diagnosis
  publication-title: Appl Soft Comput
– volume: 116
  start-page: 340
  year: 2019
  end-page: 350
  ident: bib0049
  article-title: A dynamic gradient boosting machine using genetic optimizer for practical breast cancer prognosis
  publication-title: Expert Syst Appl
– volume: 34
  start-page: 133
  year: 2017
  end-page: 144
  ident: bib0052
  article-title: A knowledge-based system for breast cancer classification using fuzzy logic method
  publication-title: Telemat Informatics
– volume: 132
  start-page: 123
  year: 2020
  end-page: 131
  ident: bib0045
  article-title: A new nested ensemble technique for automated diagnosis of breast cancer
  publication-title: Pattern Recognit Lett
– volume: 71
  year: 2022
  ident: bib0079
  article-title: Computer-aided detection of breast cancer on the Wisconsin dataset: an artificial neural networks approach
  publication-title: Biomed Signal Process Control
– volume: 173
  year: 2022
  ident: bib0092
  article-title: Collaboration of features optimization techniques for the effective diagnosis of glaucoma in retinal fundus images
  publication-title: Adv Eng Software
– volume: 41
  start-page: 2239
  year: 2014
  end-page: 2249
  ident: bib0019
  article-title: A hybrid intelligent system for medical data classification
  publication-title: Expert Syst Appl
– volume: 42
  start-page: 4611
  year: 2015
  end-page: 4620
  ident: bib0018
  article-title: Breast cancer diagnosis using genetically optimized neural network model
  publication-title: Expert Syst Appl
– volume: 7
  start-page: 472
  year: 2014
  end-page: 479
  ident: bib0002
  article-title: Immunohistochemical assessment of p53 protein and its correlation with clinicopathological characteristics in breast cancer patients
  publication-title: Ind J Sci Technol
– volume: 74
  start-page: 634
  year: 2019
  end-page: 642
  ident: bib0043
  article-title: Feature selection based on artificial bee colony and gradient boosting decision tree
  publication-title: Appl Soft Comput
– volume: 7
  start-page: 1
  year: 2007
  end-page: 8
  ident: bib0014
  article-title: Being 40 or younger is an independent risk factor for relapse in operable breast cancer patients: the Saudi Arabia experience
  publication-title: BMC Cancer
– start-page: 1
  year: 2020
  end-page: 14
  ident: bib0041
  article-title: Feature selection and instance selection from clinical datasets using co-operative co-evolution and classification using random forest
  publication-title: IETE J Res
– volume: 106
  start-page: 463
  year: 2003
  end-page: 467
  ident: bib0011
  article-title: Multi-ethnic differences in breast cancer: current concepts and future directions
  publication-title: Int J Cancer
– volume: 17
  start-page: 37
  year: 1996
  ident: bib0017
  article-title: From data mining to knowledge discovery in databases
  publication-title: AI magazine
– volume: 6
  year: 2019
  ident: bib0046
  article-title: A hybrid approach for breast cancer classification and diagnosis
  publication-title: EAI Endorsed Trans Scalable Information Systems
– volume: 125
  year: 2020
  ident: bib0059
  article-title: GeFeS: a generalized wrapper feature selection approach for optimizing classification performance
  publication-title: Comput Biol Med
– volume: 36
  start-page: 12200
  year: 2009
  end-page: 12209
  ident: bib0020
  article-title: Toward breast cancer survivability prediction models through improving training space
  publication-title: Expert Syst Appl
– volume: 21
  start-page: 1389
  year: 2014
  end-page: 1393
  ident: bib0091
  article-title: Fast implementation of DeLong's algorithm for comparing the areas under correlated receiver operating characteristic curves
  publication-title: IEEE Signal Process Lett
– volume: 37
  start-page: 6748
  year: 2010
  end-page: 6752
  ident: bib0023
  article-title: Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine
  publication-title: Expert Syst Appl
– volume: 77
  start-page: 31
  year: 2017
  end-page: 47
  ident: bib0032
  article-title: A case-based reasoning system based on weighted heterogeneous value distance metric for breast cancer diagnosis
  publication-title: Artif Intell Med
– volume: 16
  start-page: 831
  year: 2020
  end-page: 844
  ident: bib0048
  article-title: Hybrid gray wolf and particle swarm optimization for feature selection
  publication-title: Int J Innov Comput Inf Control
– volume: 1
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib0037
  article-title: Applications of machine learning techniques to predict diagnostic breast cancer
  publication-title: SN Computer Science
– volume: 7
  start-page: e344
  year: 2021
  ident: bib0056
  article-title: Artificial neural network with Taguchi method for robust classification model to improve classification accuracy of breast cancer
  publication-title: PeerJ Computer Science
– start-page: 2021
  year: 2021
  ident: bib0065
  article-title: Feature selection and classification of clinical datasets using bioinspired algorithms and super learner
  publication-title: Comput Math Methods Med
– volume: 167
  year: 2021
  ident: bib0076
  article-title: Deep and machine learning techniques for medical imaging-based breast cancer: a comprehensive review
  publication-title: Expert Syst Appl
– volume: 8
  start-page: 448
  year: 2010
  end-page: 452
  ident: bib0015
  article-title: Age at diagnosis of breast cancer in Arab nations
  publication-title: Int J Surg
– start-page: 101
  year: 2010
  end-page: 111
  ident: bib0060
  article-title: Eagle strategy using Lévy walk and firefly algorithms for stochastic optimization
  publication-title: Nature inspired cooperative strategies for optimization (NICSO 2010)
– volume: 16
  start-page: 95
  year: 1999
  end-page: 103
  ident: bib0012
  article-title: Locally advanced breast cancer in Saudi Arabia: high frequency of stage III in a young population
  publication-title: Med Oncol
– volume: 38
  start-page: 2383
  year: 2020
  end-page: 2398
  ident: bib0053
  article-title: A novel integrated diagnosis method for breast cancer detection
  publication-title: J Intell Fuzzy Syst
– volume: 6
  start-page: 29637
  year: 2018
  end-page: 29647
  ident: bib0055
  article-title: Particle swarm optimization feature selection for breast cancer recurrence prediction
  publication-title: IEEE Access
– start-page: 837
  year: 1988
  end-page: 845
  ident: bib0090
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
– volume: 2017
  start-page: 4
  year: 2017
  end-page: 9
  ident: bib0031
  article-title: Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data
  publication-title: Comput Med Imaging Graph
– volume: 43
  start-page: 80
  year: 2020
  end-page: 92
  ident: bib0040
  article-title: Effective K-nearest neighbor classifications for Wisconsin breast cancer data sets
  publication-title: J Chin Inst Eng
– volume: 56
  start-page: 609
  year: 2019
  end-page: 623
  ident: bib0039
  article-title: A novel intelligent classification model for breast cancer diagnosis
  publication-title: Inf Process Manag
– volume: 40
  start-page: 337
  year: 2020
  end-page: 351
  ident: bib0087
  article-title: Simultaneous feature weighting and parameter determination of neural networks using ant lion optimization for the classification of breast cancer
  publication-title: Biocybernet Biomed Eng
– volume: 11
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib0058
  article-title: Research on expansion and classification of imbalanced data based on SMOTE algorithm
  publication-title: Sci Rep
– volume: 61
  start-page: 69
  year: 2011
  end-page: 90
  ident: bib0003
  article-title: Global cancer statistics
  publication-title: CA Cancer J Clin
– reference: .
– volume: 9
  start-page: 221
  year: 2004
  end-page: 236
  ident: bib0010
  article-title: The genetic epidemiology of breast cancer genes
  publication-title: J Mammary Gland Biol Neoplasia
– volume: 111
  year: 2020
  ident: bib0080
  article-title: Detection and classification of breast cancer using logistic regression feature selection and GMDH classifier
  publication-title: J Biomed Inform
– reference: . [Accessed: 01-Jan-2022].
– volume: 13
  start-page: 8
  year: 2015
  end-page: 17
  ident: bib0025
  article-title: "Machine learning applications in cancer prognosis and prediction,''
  publication-title: Comput Struct Biotechnol J
– volume: 134
  start-page: 259
  year: 2016
  end-page: 265
  ident: bib0030
  article-title: An immune-inspired semi-supervised algorithm for breast cancer diagnosis
  publication-title: Comput Methods Programs Biomed
– volume: 64
  start-page: 9
  year: 2014
  end-page: 29
  ident: bib0001
  article-title: Cancer statistics, 2014
  publication-title: CA:
– volume: 9
  start-page: 3234
  year: 2020
  end-page: 3243
  ident: bib0073
  article-title: Machine Learning techniques in breast cancer prognosis prediction: a primary evaluation
  publication-title: Cancer Med
– volume: 267
  start-page: 687
  year: 2018
  end-page: 699
  ident: bib0082
  article-title: A support vector machine-based ensemble algorithm for breast cancer diagnosis
  publication-title: Eur J Oper Res
– volume: 39
  start-page: 8852
  year: 2012
  end-page: 8858
  ident: bib0022
  article-title: Application of classification techniques on development an early-warning system for chronic illnesses
  publication-title: Expert Syst Appl
– volume: 1
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib0071
  article-title: Breast cancer prediction: a comparative study using machine learning techniques
  publication-title: SN Computer Science
– start-page: 1
  year: 2022
  end-page: 28
  ident: bib0069
  article-title: COVIDOA: a novel evolutionary optimization algorithm based on coronavirus disease replication lifecycle
  publication-title: Neural Comput Appl
– volume: 156
  start-page: 25
  year: 2018
  end-page: 45
  ident: bib0077
  article-title: Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review
  publication-title: Comput Methods Programs Biomed
– volume: 23
  start-page: 13139
  year: 2019
  end-page: 13159
  ident: bib0035
  article-title: An evolutionary deep belief network extreme learning-based for breast cancer diagnosis
  publication-title: Soft comput
– volume: 18
  start-page: 1257
  year: 2017
  ident: bib0088
  article-title: Modified bat algorithm for feature selection with the wisconsin diagnosis breast cancer (WDBC) dataset
  publication-title: Asian Pacific J Cancer Prevention
– volume: 11
  start-page: 83
  year: 2012
  ident: bib0009
  article-title: Fuzzy method for prediagnosis of breast cancer from the fine needle aspirate analysis
  publication-title: BiomedicalEngineering
– volume: 6
  start-page: 320
  year: 2020
  end-page: 324
  ident: bib0038
  publication-title: Breast cancer detection by leveraging machine learning
– volume: 36
  start-page: 237
  year: 2012
  end-page: 248
  ident: bib0004
  article-title: The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality
  publication-title: Cancer Epidemiol
– volume: 83
  start-page: 1064
  year: 2016
  end-page: 1069
  ident: bib0074
  article-title: Using machine learning algorithms for breast cancer risk prediction and diagnosis
  publication-title: Procedia Comput Sci
– volume: 5
  start-page: 225
  year: 2007
  end-page: 233
  ident: bib0005
  article-title: Trends in epidemiology and management of breast cancer in developing Arab countries: a literature and registry analysis
  publication-title: Int J Surg
– volume: 28
  start-page: 753
  year: 2017
  end-page: 763
  ident: bib0036
  article-title: Breast cancer diagnosis using GA feature selection and Rotation Forest
  publication-title: Neural Comput Appl
– volume: 9
  start-page: 3234
  issue: 9
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0073
  article-title: Machine Learning techniques in breast cancer prognosis prediction: a primary evaluation
  publication-title: Cancer Med
  doi: 10.1002/cam4.2811
– volume: 14
  start-page: 1114
  issue: 4
  year: 2010
  ident: 10.1016/j.advengsoft.2022.103338_bib0024
  article-title: Intelligible support vector machines for diagnosis of diabetes mellitus
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2009.2039485
– volume: 41
  start-page: 2239
  issue: 5
  year: 2014
  ident: 10.1016/j.advengsoft.2022.103338_bib0019
  article-title: A hybrid intelligent system for medical data classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.09.022
– volume: 10
  start-page: 3155
  issue: 8
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103338_bib0047
  article-title: Improved salp swarm algorithm based on particle swarm optimization for feature selection
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-018-1031-9
– volume: 6
  start-page: 29637
  year: 2018
  ident: 10.1016/j.advengsoft.2022.103338_bib0055
  article-title: Particle swarm optimization feature selection for breast cancer recurrence prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2843443
– volume: 42
  start-page: 4611
  issue: 10
  year: 2015
  ident: 10.1016/j.advengsoft.2022.103338_bib0018
  article-title: Breast cancer diagnosis using genetically optimized neural network model
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.01.065
– volume: 21
  start-page: 1389
  issue: 11
  year: 2014
  ident: 10.1016/j.advengsoft.2022.103338_bib0091
  article-title: Fast implementation of DeLong's algorithm for comparing the areas under correlated receiver operating characteristic curves
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2014.2337313
– volume: 18
  start-page: 2799
  issue: 9
  year: 2018
  ident: 10.1016/j.advengsoft.2022.103338_bib0050
  article-title: Breast cancer detection using infrared thermal imaging and a deep learning model
  publication-title: Sensors
  doi: 10.3390/s18092799
– volume: 2017
  start-page: 4
  issue: 57
  year: 2017
  ident: 10.1016/j.advengsoft.2022.103338_bib0031
  article-title: Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2016.07.004
– volume: 11
  start-page: 83
  issue: 1
  year: 2012
  ident: 10.1016/j.advengsoft.2022.103338_bib0009
  article-title: Fuzzy method for prediagnosis of breast cancer from the fine needle aspirate analysis
  publication-title: BiomedicalEngineering
– volume: 23
  start-page: 13139
  issue: 24
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103338_bib0035
  article-title: An evolutionary deep belief network extreme learning-based for breast cancer diagnosis
  publication-title: Soft comput
  doi: 10.1007/s00500-019-03856-0
– volume: 132
  start-page: 123
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0045
  article-title: A new nested ensemble technique for automated diagnosis of breast cancer
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2018.11.004
– volume: 36
  start-page: 237
  issue: 3
  year: 2012
  ident: 10.1016/j.advengsoft.2022.103338_bib0004
  article-title: The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality
  publication-title: Cancer Epidemiol
  doi: 10.1016/j.canep.2012.02.007
– volume: 37
  start-page: 6748
  issue: 10
  year: 2010
  ident: 10.1016/j.advengsoft.2022.103338_bib0023
  article-title: Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.02.126
– volume: 173
  year: 2022
  ident: 10.1016/j.advengsoft.2022.103338_bib0092
  article-title: Collaboration of features optimization techniques for the effective diagnosis of glaucoma in retinal fundus images
  publication-title: Adv Eng Software
  doi: 10.1016/j.advengsoft.2022.103283
– volume: 43
  start-page: 1
  issue: 8
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103338_bib0044
  article-title: Breast cancer diagnosis using feature ensemble learning based on stacked sparse autoencoders and softmax regression
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1397-z
– volume: 134
  start-page: 259
  year: 2016
  ident: 10.1016/j.advengsoft.2022.103338_bib0030
  article-title: An immune-inspired semi-supervised algorithm for breast cancer diagnosis
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2016.07.020
– volume: 16
  start-page: 831
  issue: 3
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0048
  article-title: Hybrid gray wolf and particle swarm optimization for feature selection
  publication-title: Int J Innov Comput Inf Control
– volume: 61
  start-page: 69
  issue: 2
  year: 2011
  ident: 10.1016/j.advengsoft.2022.103338_bib0003
  article-title: Global cancer statistics
  publication-title: CA Cancer J Clin
– start-page: 1
  year: 2022
  ident: 10.1016/j.advengsoft.2022.103338_bib0069
  article-title: COVIDOA: a novel evolutionary optimization algorithm based on coronavirus disease replication lifecycle
  publication-title: Neural Comput Appl
– volume: 111
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0080
  article-title: Detection and classification of breast cancer using logistic regression feature selection and GMDH classifier
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2020.103591
– start-page: 1
  year: 2022
  ident: 10.1016/j.advengsoft.2022.103338_bib0081
  article-title: Breast cancer detection based on modified harris hawks optimization and extreme learning machine embedded with feature weighting
  publication-title: Neural Processing Letters
– volume: 6
  issue: 20
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103338_bib0046
  article-title: A hybrid approach for breast cancer classification and diagnosis
  publication-title: EAI Endorsed Trans Scalable Information Systems
– volume: 12
  start-page: 48
  issue: 1
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103338_bib0051
  article-title: Breast Cancer Detection Using Optimization-Based Feature Pruning and Classification Algorithms
  publication-title: Middle East J Cancer
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103338_bib0058
  article-title: Research on expansion and classification of imbalanced data based on SMOTE algorithm
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-03430-5
– volume: 7
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.advengsoft.2022.103338_bib0014
  article-title: Being 40 or younger is an independent risk factor for relapse in operable breast cancer patients: the Saudi Arabia experience
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-7-222
– volume: 7
  start-page: e6201
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103338_bib0057
  article-title: Breast cancer detection using deep convolutional neural networks and support vector machines
  publication-title: PeerJ
  doi: 10.7717/peerj.6201
– volume: 40
  start-page: 337
  issue: 1
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0087
  article-title: Simultaneous feature weighting and parameter determination of neural networks using ant lion optimization for the classification of breast cancer
  publication-title: Biocybernet Biomed Eng
  doi: 10.1016/j.bbe.2019.12.004
– volume: 36
  start-page: 3240
  issue: 2
  year: 2009
  ident: 10.1016/j.advengsoft.2022.103338_bib0026
  article-title: Support vector machines combined with feature selection for breast cancer diagnosis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.01.009
– volume: 64
  start-page: 9
  issue: 1
  year: 2014
  ident: 10.1016/j.advengsoft.2022.103338_bib0001
  article-title: Cancer statistics, 2014
  publication-title: CA: Cancer J Clin
– ident: 10.1016/j.advengsoft.2022.103338_bib0089
– volume: 38
  start-page: 9014
  issue: 7
  year: 2011
  ident: 10.1016/j.advengsoft.2022.103338_bib0027
  article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.01.120
– volume: 1
  start-page: 1
  issue: 5
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0071
  article-title: Breast cancer prediction: a comparative study using machine learning techniques
  publication-title: SN Computer Science
  doi: 10.1007/s42979-020-00305-w
– volume: 8
  start-page: 448
  issue: 6
  year: 2010
  ident: 10.1016/j.advengsoft.2022.103338_bib0015
  article-title: Age at diagnosis of breast cancer in Arab nations
  publication-title: Int J Surg
  doi: 10.1016/j.ijsu.2010.05.012
– volume: 125
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0059
  article-title: GeFeS: a generalized wrapper feature selection approach for optimizing classification performance
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103974
– volume: 8
  start-page: 150360
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0075
  article-title: Prediction of breast cancer, comparative review of machine learning techniques, and their analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016715
– volume: 7
  start-page: 472
  issue: 4
  year: 2014
  ident: 10.1016/j.advengsoft.2022.103338_bib0002
  article-title: Immunohistochemical assessment of p53 protein and its correlation with clinicopathological characteristics in breast cancer patients
  publication-title: Ind J Sci Technol
– start-page: 837
  year: 1988
  ident: 10.1016/j.advengsoft.2022.103338_bib0090
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 17
  start-page: 37
  issue: 3
  year: 1996
  ident: 10.1016/j.advengsoft.2022.103338_bib0017
  article-title: From data mining to knowledge discovery in databases
  publication-title: AI magazine
– volume: 33
  start-page: 5011
  issue: 10
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103338_bib0070
  article-title: Coronavirus herd immunity optimizer (CHIO)
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05296-6
– volume: 13
  start-page: 8
  year: 2015
  ident: 10.1016/j.advengsoft.2022.103338_bib0025
  article-title: "Machine learning applications in cancer prognosis and prediction,''
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2014.11.005
– volume: 56
  start-page: 609
  issue: 3
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103338_bib0039
  article-title: A novel intelligent classification model for breast cancer diagnosis
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2018.10.014
– volume: 3
  start-page: 763
  issue: 2
  year: 2015
  ident: 10.1016/j.advengsoft.2022.103338_bib0064
  article-title: Importance of feature extraction for classification of breast cancer datasets, a study
  publication-title: Int J Sci InnovMath Res
– volume: 28
  start-page: 753
  issue: 4
  year: 2017
  ident: 10.1016/j.advengsoft.2022.103338_bib0036
  article-title: Breast cancer diagnosis using GA feature selection and Rotation Forest
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2103-9
– volume: 83
  start-page: 1064
  year: 2016
  ident: 10.1016/j.advengsoft.2022.103338_bib0074
  article-title: Using machine learning algorithms for breast cancer risk prediction and diagnosis
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.04.224
– volume: 43
  start-page: 80
  issue: 1
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0040
  article-title: Effective K-nearest neighbor classifications for Wisconsin breast cancer data sets
  publication-title: J Chin Inst Eng
  doi: 10.1080/02533839.2019.1676658
– volume: 8
  start-page: 111
  issue: 2
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0042
  article-title: A comparative analysis of breast cancer detection and diagnosis using data visualization and machine learning applications
  publication-title: Healthcare
  doi: 10.3390/healthcare8020111
– volume: 6
  start-page: 165
  issue: 3–4
  year: 2013
  ident: 10.1016/j.advengsoft.2022.103338_bib0016
  article-title: Modern risk assessment for individualizing treatment concepts in early-stage breast cancer
  publication-title: Rev Obstetr Gynecol
– volume: 20
  start-page: 3777
  issue: 12
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103338_bib0067
  article-title: Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer
  publication-title: Asian Pac J Cancer Prev
  doi: 10.31557/APJCP.2019.20.12.3777
– volume: 77
  start-page: 31
  year: 2017
  ident: 10.1016/j.advengsoft.2022.103338_bib0032
  article-title: A case-based reasoning system based on weighted heterogeneous value distance metric for breast cancer diagnosis
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2017.02.003
– volume: 18
  start-page: 1257
  issue: 5
  year: 2017
  ident: 10.1016/j.advengsoft.2022.103338_bib0088
  article-title: Modified bat algorithm for feature selection with the wisconsin diagnosis breast cancer (WDBC) dataset
  publication-title: Asian Pacific J Cancer Prevention
– volume: 267
  start-page: 687
  issue: 2
  year: 2018
  ident: 10.1016/j.advengsoft.2022.103338_bib0082
  article-title: A support vector machine-based ensemble algorithm for breast cancer diagnosis
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2017.12.001
– volume: 86
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0083
  article-title: An improved random forest-based rule extraction method for breast cancer diagnosis
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105941
– volume: 6
  start-page: 320
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0038
– ident: 10.1016/j.advengsoft.2022.103338_bib0007
– volume: 65
  start-page: 219
  issue: 3
  year: 2015
  ident: 10.1016/j.advengsoft.2022.103338_bib0034
  article-title: A hybrid cost-sensitive ensemble for imbalanced breast thermogram classification
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2015.07.005
– volume: 7
  start-page: e344
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103338_bib0056
  article-title: Artificial neural network with Taguchi method for robust classification model to improve classification accuracy of breast cancer
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.344
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.advengsoft.2022.103338_bib0061
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2009.03.004
– volume: 34
  start-page: 133
  issue: 4
  year: 2017
  ident: 10.1016/j.advengsoft.2022.103338_bib0052
  article-title: A knowledge-based system for breast cancer classification using fuzzy logic method
  publication-title: Telemat Informatics
  doi: 10.1016/j.tele.2017.01.007
– volume: 2
  start-page: 285
  issue: 4
  year: 2013
  ident: 10.1016/j.advengsoft.2022.103338_bib0021
  article-title: Data mining models for predicting oral cancer survivability
  publication-title: Network Model Anal Health Inf Bioinf
  doi: 10.1007/s13721-013-0045-7
– volume: 7
  start-page: 16417
  issue: 1
  year: 2017
  ident: 10.1016/j.advengsoft.2022.103338_bib0033
  article-title: Electronic health record driven prediction for gestational diabetes mellitus in early pregnancy
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-16665-y
– volume: 49
  start-page: 45
  year: 2014
  ident: 10.1016/j.advengsoft.2022.103338_bib0063
  article-title: Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2014.01.010
– start-page: 322
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0054
  article-title: Deep learning in breast cancer detection and classification
– volume: 15
  start-page: 612
  issue: 3
  year: 2009
  ident: 10.1016/j.advengsoft.2022.103338_bib0006
  article-title: Association of reproductive factors with the incidence of breast cancer in Gulf Cooperation Council countries
  publication-title: EMHJ-Eastern Mediterranean Health J
  doi: 10.26719/2009.15.3.612
– volume: 72
  start-page: 32
  year: 2015
  ident: 10.1016/j.advengsoft.2022.103338_bib0028
  article-title: A new classifier for breast cancer detection based on Naïve Bayesian
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.04.028
– volume: 22
  start-page: 343
  issue: 4
  year: 2005
  ident: 10.1016/j.advengsoft.2022.103338_bib0013
  article-title: Adjuvant chemotherapy in 780 patients with early breast cancer
  publication-title: Med Oncol
  doi: 10.1385/MO:22:4:343
– volume: 139
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0086
  article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.112824
– volume: 9
  start-page: 221
  issue: 3
  year: 2004
  ident: 10.1016/j.advengsoft.2022.103338_bib0010
  article-title: The genetic epidemiology of breast cancer genes
  publication-title: J Mammary Gland Biol Neoplasia
  doi: 10.1023/B:JOMG.0000048770.90334.3b
– volume: 68
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103338_bib0084
  article-title: An efficient classification framework for breast cancer using hyper parameter tuned Random Decision Forest Classifier and Bayesian Optimization
  publication-title: Biomed Signal Process Control
– volume: 39
  start-page: 8852
  issue: 10
  year: 2012
  ident: 10.1016/j.advengsoft.2022.103338_bib0022
  article-title: Application of classification techniques on development an early-warning system for chronic illnesses
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.02.004
– volume: 167
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103338_bib0076
  article-title: Deep and machine learning techniques for medical imaging-based breast cancer: a comprehensive review
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114161
– volume: 38
  start-page: 2383
  issue: 2
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0053
  article-title: A novel integrated diagnosis method for breast cancer detection
  publication-title: J Intell Fuzzy Syst
– start-page: 2021
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103338_bib0065
  article-title: Feature selection and classification of clinical datasets using bioinspired algorithms and super learner
  publication-title: Comput Math Methods Med
– volume: 24
  start-page: 4575
  issue: 6
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0085
  article-title: Efficient feature selection using one-pass generalized classifier neural network and binary bat algorithm with a novel fitness function
  publication-title: Soft comput
  doi: 10.1007/s00500-019-04218-6
– start-page: 80
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103338_bib0068
  article-title: Breast cancer detection using principal component analysis and machine learning models
– volume: 156
  start-page: 25
  year: 2018
  ident: 10.1016/j.advengsoft.2022.103338_bib0077
  article-title: Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.12.012
– volume: 74
  start-page: 634
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103338_bib0043
  article-title: Feature selection based on artificial bee colony and gradient boosting decision tree
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.10.036
– volume: 116
  start-page: 340
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103338_bib0049
  article-title: A dynamic gradient boosting machine using genetic optimizer for practical breast cancer prognosis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.08.040
– start-page: 1
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0062
  article-title: Particle swarm optimization feature selection for breast cancer prediction
– volume: 36
  start-page: 12200
  issue: 10
  year: 2009
  ident: 10.1016/j.advengsoft.2022.103338_bib0020
  article-title: Toward breast cancer survivability prediction models through improving training space
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.04.067
– volume: 106
  start-page: 463
  issue: 4
  year: 2003
  ident: 10.1016/j.advengsoft.2022.103338_bib0011
  article-title: Multi-ethnic differences in breast cancer: current concepts and future directions
  publication-title: Int J Cancer
  doi: 10.1002/ijc.11237
– volume: 10
  start-page: 21
  issue: 3–2
  year: 2018
  ident: 10.1016/j.advengsoft.2022.103338_bib0072
  article-title: Early detection of breast cancer using machine learning techniques
  publication-title: J Telecommun, Electron Comput Eng (JTEC)
– volume: 71
  year: 2022
  ident: 10.1016/j.advengsoft.2022.103338_bib0079
  article-title: Computer-aided detection of breast cancer on the Wisconsin dataset: an artificial neural networks approach
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103141
– volume: 16
  start-page: 95
  issue: 2
  year: 1999
  ident: 10.1016/j.advengsoft.2022.103338_bib0012
  article-title: Locally advanced breast cancer in Saudi Arabia: high frequency of stage III in a young population
  publication-title: Med Oncol
  doi: 10.1007/BF02785842
– volume: 7
  start-page: e427
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103338_bib0066
  article-title: Breast cancer disease classification using fuzzy-ID3 algorithm with FUZZYDBD method: automatic fuzzy database definition
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.427
– volume: 5
  start-page: 225
  issue: 4
  year: 2007
  ident: 10.1016/j.advengsoft.2022.103338_bib0005
  article-title: Trends in epidemiology and management of breast cancer in developing Arab countries: a literature and registry analysis
  publication-title: Int J Surg
  doi: 10.1016/j.ijsu.2006.06.015
– start-page: 101
  year: 2010
  ident: 10.1016/j.advengsoft.2022.103338_bib0060
  article-title: Eagle strategy using Lévy walk and firefly algorithms for stochastic optimization
– volume: 1
  start-page: 1
  issue: 5
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0037
  article-title: Applications of machine learning techniques to predict diagnostic breast cancer
  publication-title: SN Computer Science
  doi: 10.1007/s42979-020-00296-8
– volume: 15
  start-page: e279
  issue: 7
  year: 2014
  ident: 10.1016/j.advengsoft.2022.103338_bib0008
  article-title: Breast cancer in China
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(13)70567-9
– start-page: 1
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103338_bib0041
  article-title: Feature selection and instance selection from clinical datasets using co-operative co-evolution and classification using random forest
  publication-title: IETE J Res
SSID ssj0014021
Score 2.5628214
Snippet •A soft-computing and machine learning based medical decision support system is proposed for breast cancer disease classification.•Two soft-computing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103338
SubjectTerms Breast cancer detection
Eagle strategy optimization
Feature selection
Gravitational search optimization
Hybrid algorithm
Title Artificial intelligence based medical decision support system for early and accurate breast cancer prediction
URI https://dx.doi.org/10.1016/j.advengsoft.2022.103338
Volume 175
WOSCitedRecordID wos000895287000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0965-9978
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0014021
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgM9sBQQZZMP3EapEid2YnEaoSJAokIwh7lFjhemC2E0S9sf0h_M85YEWqkFiUs08oydybxv3nu2P38PoTep4VQJlieKKJMURuaJoJVJ8rQReWW0zEjjik2Uh4fVbMa_jEaX8SzM2WnZttXFBV_8V1NDGxjbHp39C3N3g0IDvAajwxXMDtdbGX6ydPQfV4xjqLdp45Xye-l2YybU1hmvNgubggdJZ68A7kSPnYqrlBurJTFuLHd9bSliUi-tsIA6kp1Jo4itpxM4gq3uZQ7HK_D055ZgZjWhOCeDxYdv8P7cH88-Hzu2dxcA5qL1x9U-2w33-ZUeX_XJXAzXLEg-WLMIi4-MJpz74j2dHy7pwJNmaZ573ZcrTt6vNxzvCwXx4Lt9CJjnE7Lfd_ldV_uPeNexECPB7bjuR6rtSLUf6Q7aJiXl4O63Jx8PZp-63SmYc7tKjPEpAkPM8wav_1bXpz2DVGb6EN0PcxA88dh5hEa63UUPwnwEB2-_gqZY8iO27aKdgX7lY_SjxxoeYg07rOGANRyxhgPWsMcaBqxhhzUMWMMRa9hjDXus4R5rT9D0_cH03Yck1O9IJESKdVKZUmcZVwzmGCkEXWZkKoWomKEy1YyWRWGYkBk3xp7oNoxazwAZJadSE5M_RVvtz1Y_Q5jCR1KVNUZzXTAmG1ZBYGJEZZBqFI3cQ2X8dWsZtO1tiZXT-iYb76Gs67nw-i636PM2GrAOearPP2tA6I29n__DHV-ge_3f6CXaWi83-hW6K8_WR6vl6wDPX_iSvzE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+based+medical+decision+support+system+for+early+and+accurate+breast+cancer+prediction&rft.jtitle=Advances+in+engineering+software+%281992%29&rft.au=Singh%2C+Law+Kumar&rft.au=Khanna%2C+Munish&rft.au=Singh%2C+Rekha&rft.date=2023-01-01&rft.issn=0965-9978&rft.volume=175&rft.spage=103338&rft_id=info:doi/10.1016%2Fj.advengsoft.2022.103338&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_advengsoft_2022_103338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-9978&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-9978&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-9978&client=summon