Artificial intelligence based medical decision support system for early and accurate breast cancer prediction
•A soft-computing and machine learning based medical decision support system is proposed for breast cancer disease classification.•Two soft-computing algorithms eagle strategy optimization (ESO) algorithm and the gravitational search optimization (GSO) algorithm are employed for the first time for t...
Saved in:
| Published in: | Advances in engineering software (1992) Vol. 175; p. 103338 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.01.2023
|
| Subjects: | |
| ISSN: | 0965-9978 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A soft-computing and machine learning based medical decision support system is proposed for breast cancer disease classification.•Two soft-computing algorithms eagle strategy optimization (ESO) algorithm and the gravitational search optimization (GSO) algorithm are employed for the first time for this problem. A novel intelligent classification approach based on these two algorithms for breast cancer infection is also proposed.•12 experiments have been performed using three soft-computing algorithms(for feature selection) and 6 state-of-the-art machine learning classifier(for classification).WDBC dataset is used for the method evaluation.•We have been able to attain astonishing results with accuracy up to 98.9578%, sensitivity up to 0.9696, specificity up to 1.000, precision 1.000, F1- score up to 0.9696, and an AUC 0.9980(close to maximum i.e., 1.0000).
Feature selection, which picks the optimal subset of characteristics related to the target data by deleting unnecessary data, is one of the most important aspects of the machine learning area. A major part of big data preprocessing is feature selection (reduction). There are 2n alternative feature subsets for every n features, making it difficult to choose the best set of features from a dataset using typical feature selection techniques. Consequently, the present study proposes and suggests a unique feature selection method based on the Eagle Strategy(ESO) Optimization, Gravitational Search Optimization (GSO) algorithm, and their hybrid algorithm. We chose this infection as our subject of investigation since the number of women with breast cancer is increasing rapidly on a global scale. After lung cancer, which affects more women than any other kind of cancer, breast cancer is the second leading cause of cancer mortality. The goal of this study is to categorize breast cancer into two groups using the benchmark feature set (Wisconsin Diagnostic Breast Cancer (WDBC)) and to choose the fewest features (feature selection) to achieve maximum accuracy. This work also provides a hybrid technique for finding important features that combines two algorithms, ESO and the GSO algorithm, while reducing insignificant characteristics (features) and complexity. Soft computing technologies and machine learning algorithms provide a framework for prognostic research by classifying data instances as relevant or irrelevant depending on cancer severity. Thus, this work presented a new approach for classifying breast cancer tumors. In this research, we coupled soft computing methodologies—our implemented algorithms are applied for the first time to this problem—with artificial intelligence-based machine learning strategies to create a prediction model. The efficacy of our suggested technique was evaluated using WDBC breast cancer data sets, and the findings show that our proposed hybrid algorithm performs very well in breast cancer classification. We have been able to attain astonishing results with accuracy up to 98.9578%, sensitivity up to 0.9705, specificity up to 1.000, precision up to 1.000, F1-score up to 0.9696, and an AUC up to 0.9980 (close to maximum, i.e., 1.0000). Our study's goal is to incorporate our findings into a valid clinical prediction system, allowing visual science specialists to make more accurate and effective judgments in the future. Furthermore, our suggested technology might be used to detect a wide range of diseases. |
|---|---|
| AbstractList | •A soft-computing and machine learning based medical decision support system is proposed for breast cancer disease classification.•Two soft-computing algorithms eagle strategy optimization (ESO) algorithm and the gravitational search optimization (GSO) algorithm are employed for the first time for this problem. A novel intelligent classification approach based on these two algorithms for breast cancer infection is also proposed.•12 experiments have been performed using three soft-computing algorithms(for feature selection) and 6 state-of-the-art machine learning classifier(for classification).WDBC dataset is used for the method evaluation.•We have been able to attain astonishing results with accuracy up to 98.9578%, sensitivity up to 0.9696, specificity up to 1.000, precision 1.000, F1- score up to 0.9696, and an AUC 0.9980(close to maximum i.e., 1.0000).
Feature selection, which picks the optimal subset of characteristics related to the target data by deleting unnecessary data, is one of the most important aspects of the machine learning area. A major part of big data preprocessing is feature selection (reduction). There are 2n alternative feature subsets for every n features, making it difficult to choose the best set of features from a dataset using typical feature selection techniques. Consequently, the present study proposes and suggests a unique feature selection method based on the Eagle Strategy(ESO) Optimization, Gravitational Search Optimization (GSO) algorithm, and their hybrid algorithm. We chose this infection as our subject of investigation since the number of women with breast cancer is increasing rapidly on a global scale. After lung cancer, which affects more women than any other kind of cancer, breast cancer is the second leading cause of cancer mortality. The goal of this study is to categorize breast cancer into two groups using the benchmark feature set (Wisconsin Diagnostic Breast Cancer (WDBC)) and to choose the fewest features (feature selection) to achieve maximum accuracy. This work also provides a hybrid technique for finding important features that combines two algorithms, ESO and the GSO algorithm, while reducing insignificant characteristics (features) and complexity. Soft computing technologies and machine learning algorithms provide a framework for prognostic research by classifying data instances as relevant or irrelevant depending on cancer severity. Thus, this work presented a new approach for classifying breast cancer tumors. In this research, we coupled soft computing methodologies—our implemented algorithms are applied for the first time to this problem—with artificial intelligence-based machine learning strategies to create a prediction model. The efficacy of our suggested technique was evaluated using WDBC breast cancer data sets, and the findings show that our proposed hybrid algorithm performs very well in breast cancer classification. We have been able to attain astonishing results with accuracy up to 98.9578%, sensitivity up to 0.9705, specificity up to 1.000, precision up to 1.000, F1-score up to 0.9696, and an AUC up to 0.9980 (close to maximum, i.e., 1.0000). Our study's goal is to incorporate our findings into a valid clinical prediction system, allowing visual science specialists to make more accurate and effective judgments in the future. Furthermore, our suggested technology might be used to detect a wide range of diseases. |
| ArticleNumber | 103338 |
| Author | Singh, Law Kumar Khanna, Munish Singh, Rekha |
| Author_xml | – sequence: 1 givenname: Law Kumar surname: Singh fullname: Singh, Law Kumar email: lawkumarcs@gmail.com organization: Department of Computer Engineering and Applications, GLA University, Mathura, Uttar Pradesh, INDIA – sequence: 2 givenname: Munish surname: Khanna fullname: Khanna, Munish organization: Department of Computer Science and Engineering, Hindustan College of Science and Technology, Mathura, Uttar Pradesh, INDIA – sequence: 3 givenname: Rekha surname: Singh fullname: Singh, Rekha organization: Department of Physics, Uttar Pradesh Rajarshi Tandon Open University, Prayagraj, Uttar Pradesh, INDIA |
| BookMark | eNqNkMtqwzAQAHVIoUnbf9APOJVkW7YvhTT0BYFecheb1Soo-BEkJZC_r00KhV7ak2DFDLuzYLN-6IkxLsVSCqkfD0uwZ-r3cXBpqYRS4zjP83rG5qLRZdY0VX3LFjEehJCFUHLOulVI3nn00HLfJ2pbv6ceie8gkuUdWY_jlyX00Q89j6fjcQiJx0tM1HE3BE4Q2guH3nJAPAVIIxwIYuIIoynwY5gsacTv2Y2DNtLD93vHtq8v2_V7tvl8-1ivNhnmsk5Z7SqSsrG6qSpRaaUdCgSotStRkC6ronAaUDbOSVkop0uUalfIsimRlMvvWH3VYhhiDOTMMfgOwsVIYaZS5mB-SpmplLmWGtGnXyj6BNPuKYBv_yN4vgpovO_sKZiIfipqfSBMxg7-b8kXfRiTAg |
| CitedBy_id | crossref_primary_10_3390_app131910755 crossref_primary_10_1016_j_compbiomed_2025_110785 crossref_primary_10_1016_j_bspc_2023_105080 crossref_primary_10_1109_ACCESS_2023_3308446 crossref_primary_10_1016_j_bspc_2023_105269 crossref_primary_10_1109_ACCESS_2023_3312305 crossref_primary_10_3390_info15110725 crossref_primary_10_1208_s12249_025_03193_6 crossref_primary_10_1007_s11042_024_18179_y crossref_primary_10_1007_s13721_025_00512_6 crossref_primary_10_3390_bioengineering11111148 crossref_primary_10_2478_amns_2023_2_01388 crossref_primary_10_1007_s11042_024_19549_2 crossref_primary_10_1016_j_compbiolchem_2024_108110 crossref_primary_10_1016_j_slast_2025_100314 crossref_primary_10_1007_s11042_024_18473_9 crossref_primary_10_26634_jfet_19_4_20913 crossref_primary_10_1109_ACCESS_2024_3424907 crossref_primary_10_1155_2023_9713905 crossref_primary_10_3390_electronics12244923 crossref_primary_10_1007_s00521_023_09358_3 crossref_primary_10_1007_s11042_023_17044_8 crossref_primary_10_1097_MD_0000000000041749 crossref_primary_10_1007_s43621_024_00725_1 crossref_primary_10_1109_ACCESS_2023_3327058 crossref_primary_10_1088_1402_4896_ada18d crossref_primary_10_1016_j_health_2023_100218 crossref_primary_10_1371_journal_pone_0300622 crossref_primary_10_1016_j_measurement_2023_113525 crossref_primary_10_1007_s11042_025_20707_3 crossref_primary_10_1007_s41060_024_00513_0 crossref_primary_10_1016_j_compbiomed_2024_109648 crossref_primary_10_1002_cnr2_70262 crossref_primary_10_1016_j_ijmedinf_2024_105724 crossref_primary_10_1007_s13369_025_10447_9 crossref_primary_10_1016_j_bspc_2024_106268 crossref_primary_10_1016_j_displa_2024_102648 crossref_primary_10_1371_journal_pone_0318219 crossref_primary_10_1080_10255842_2025_2553347 crossref_primary_10_2174_0126662558348090241210063629 crossref_primary_10_1016_j_compbiomed_2023_107356 crossref_primary_10_1155_2024_7221343 crossref_primary_10_3390_diagnostics14242896 crossref_primary_10_3390_life13102093 crossref_primary_10_1016_j_jnlest_2025_100315 |
| Cites_doi | 10.1002/cam4.2811 10.1109/TITB.2009.2039485 10.1016/j.eswa.2013.09.022 10.1007/s12652-018-1031-9 10.1109/ACCESS.2018.2843443 10.1016/j.eswa.2015.01.065 10.1109/LSP.2014.2337313 10.3390/s18092799 10.1016/j.compmedimag.2016.07.004 10.1007/s00500-019-03856-0 10.1016/j.patrec.2018.11.004 10.1016/j.canep.2012.02.007 10.1016/j.eswa.2010.02.126 10.1016/j.advengsoft.2022.103283 10.1007/s10916-019-1397-z 10.1016/j.cmpb.2016.07.020 10.1016/j.jbi.2020.103591 10.1038/s41598-021-03430-5 10.1186/1471-2407-7-222 10.7717/peerj.6201 10.1016/j.bbe.2019.12.004 10.1016/j.eswa.2008.01.009 10.1016/j.eswa.2011.01.120 10.1007/s42979-020-00305-w 10.1016/j.ijsu.2010.05.012 10.1016/j.compbiomed.2020.103974 10.1109/ACCESS.2020.3016715 10.2307/2531595 10.1007/s00521-020-05296-6 10.1016/j.csbj.2014.11.005 10.1016/j.ipm.2018.10.014 10.1007/s00521-015-2103-9 10.1016/j.procs.2016.04.224 10.1080/02533839.2019.1676658 10.3390/healthcare8020111 10.31557/APJCP.2019.20.12.3777 10.1016/j.artmed.2017.02.003 10.1016/j.ejor.2017.12.001 10.1016/j.asoc.2019.105941 10.1016/j.artmed.2015.07.005 10.7717/peerj-cs.344 10.1016/j.ins.2009.03.004 10.1016/j.tele.2017.01.007 10.1007/s13721-013-0045-7 10.1038/s41598-017-16665-y 10.1016/j.jbi.2014.01.010 10.26719/2009.15.3.612 10.1016/j.measurement.2015.04.028 10.1385/MO:22:4:343 10.1016/j.eswa.2019.112824 10.1023/B:JOMG.0000048770.90334.3b 10.1016/j.eswa.2012.02.004 10.1016/j.eswa.2020.114161 10.1007/s00500-019-04218-6 10.1016/j.cmpb.2017.12.012 10.1016/j.asoc.2018.10.036 10.1016/j.eswa.2018.08.040 10.1016/j.eswa.2009.04.067 10.1002/ijc.11237 10.1016/j.bspc.2021.103141 10.1007/BF02785842 10.7717/peerj-cs.427 10.1016/j.ijsu.2006.06.015 10.1007/s42979-020-00296-8 10.1016/S1470-2045(13)70567-9 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.advengsoft.2022.103338 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| ExternalDocumentID | 10_1016_j_advengsoft_2022_103338 S0965997822002393 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c318t-8f7e119d697707626fc0caa86f5c0e65744f6ac19ff1142f65c12b41595ce2f3 |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000895287000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0965-9978 |
| IngestDate | Tue Nov 18 22:02:25 EST 2025 Sat Nov 29 07:04:47 EST 2025 Fri Feb 23 02:40:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Eagle strategy optimization Gravitational search optimization Breast cancer detection Feature selection Hybrid algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c318t-8f7e119d697707626fc0caa86f5c0e65744f6ac19ff1142f65c12b41595ce2f3 |
| ParticipantIDs | crossref_primary_10_1016_j_advengsoft_2022_103338 crossref_citationtrail_10_1016_j_advengsoft_2022_103338 elsevier_sciencedirect_doi_10_1016_j_advengsoft_2022_103338 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 2023-01-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Advances in engineering software (1992) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Al-Betar, Alyasseri, Awadallah, Abu Doush (bib0070) 2021; 33 Jeyasingh, Veluchamy (bib0088) 2017; 18 Rao, Shi, Rodrigue, Feng, Xia, Elhoseny, Gu (bib0043) 2019; 74 Ul Haq, Li, Memon, Khan, Ud Din (bib0053) 2020; 38 Wang, Wang, Wang, Yin, Wang, Jin (bib0083) 2020; 86 Elkum, Dermime, Ajarim, Al-Zahrani, Alsayed, Tulbah, Al Malik, Alshabanah, Ezzat, Al-Tweigeri (bib0014) 2007; 7 Tahmooresi, Afshar, Rad, Nowshath, Bamiah (bib0072) 2018; 10 Ravichandran, Al Zahrani (bib0006) 2009; 15 Thompson, Easton (bib0010) 2004; 9 Peng, Chen, Zhou, Li, Yang, Zhang (bib0030) 2016; 134 Khalid, Hosny, Mirjalili (bib0069) 2022 Sakri, Rashid, Zain (bib0055) 2018; 6 Ramadevi, Rani, Lavanya (bib0064) 2015; 3 Fatima, Liu, Hong, Ahmed (bib0075) 2020; 8 Karabatak (bib0028) 2015; 72 Ronoud, Asadi (bib0035) 2019; 23 Ibrahim, Ewees, Oliva, Abd Elaziz, Lu (bib0047) 2019; 10 Khandezamin, Naderan, Rashti (bib0080) 2020; 111 Raiesdana (bib0051) 2021; 12 Farr, Wuerstlein, Heiduschka, Singer, Harbeck (bib0016) 2013; 6 Krawczyk, Schaefer, Woźniak (bib0034) 2015; 65 Abdar, Zomorodi-Moghadam, Zhou, Gururajan, Tao, Barua, Gururajan (bib0045) 2020; 132 Fei (bib0023) 2010; 37 Agustian, Lubis (bib0062) 2020 Boeri, Chiappa, Galli, De Berardinis, Bardelli, Carcano, Rovera (bib0073) 2020; 9 Jiang, Zhu, Tian (bib0081) 2022 Rahman, chandren Muniyandi, Albashish, Rahman, Usman (bib0056) 2021; 7 Sahebi, Movahedi, Ebrahimi, Pahikkala, Plosila, Tenhunen (bib0059) 2020; 125 Christo, Nehemiah, Brighty, Kannan (bib0041) 2020 Dalwinder, Birmohan, Manpreet (bib0087) 2020; 40 Fayyad, Piatetsky-Shapiro, Smyth (bib0017) 1996; 17 Siegel, Ma, Zou, Jemal (bib0001) 2014; 64 . Seera, Lim (bib0019) 2014; 41 Chen, Yang, Liu, Liu (bib0027) 2011; 38 [Accessed: 01-Jan-2022]. El Saghir, Khalil, Eid, El Kinge, Charafeddine, Geara, Shamseddine (bib0005) 2007; 5 Sizilio, Leite, Guerreiro, Neto (bib0009) 2012; 11 Sahu, Mohanty, Rout (bib0046) 2019; 6 Mambou, Maresova, Krejcar, Selamat, Kuca (bib0050) 2018; 18 Tilwankar, Kirar (bib0068) 2021 El-Kenawy, Eid (bib0048) 2020; 16 Kourou, Exarchos, Exarchos, Karamouzis, Fotiadis (bib0025) 2015; 13 Qiu, Yu, Wang, Yao, Wu, Yin (bib0033) 2017; 7 Ibrahim, Ezzat, Rahal, Raja, Ajarim (bib0013) 2005; 22 Thongkam, Xu, Zhang, Huang (bib0020) 2009; 36 Wang, Dai, Shen, Xuan (bib0058) 2021; 11 Wang, Zheng, Yoon, Ko (bib0082) 2018; 267 Ezzat, Ibrahim, Raja, Al-Sobhi, Rostom, Stuart (bib0012) 1999; 16 Bhardwaj, Tiwari (bib0018) 2015; 42 Liu, Qi, Xu, Gao, Liu (bib0039) 2019; 56 Ak (bib0042) 2020; 8 Gu, Liang, Zhao (bib0032) 2017; 77 Abdel-Basset, El-Shahat, El-henawy, de Albuquerque, Mirjalili (bib0086) 2020; 139 Rajaguru, SR (bib0067) 2019; 20 Yassin, Omran, El Houby, Allam (bib0077) 2018; 156 Sharma, Om (bib0021) 2013; 2 Kadam, Jadhav, Vijayakumar (bib0044) 2019; 43 Fan, Strasserweippl, Li (bib0008) 2014; 15 Nilashi, Ibrahim, Ahmadi, Shahmoradi (bib0052) 2017; 34 Ragab, Sharkas, Marshall, Ren (bib0057) 2019; 7 Murugesan, Bhuvaneswaran, Khanna Nehemiah, Keerthana Sankari, Nancy Jane (bib0065) 2021 Sun, Tseng, Zhang, Qian (bib0031) 2017; 2017 Sun, Xu (bib0091) 2014; 21 Soni, B, Reddy (bib0038) 2020; 6 DeLong, DeLong, Clarke-Pearson (bib0090) 1988 Jen, Wang, Jiang, Chu, Chen (bib0022) 2012; 39 Jemal, Bray, Center, Ferlay, Ward, Forman (bib0003) 2011; 61 Aličković, Subasi (bib0036) 2017; 28 Houssein, Emam, Ali, Suganthan (bib0076) 2021; 167 Youlden, Cramb, Dunn, Muller, Pyke, Baade (bib0004) 2012; 36 Singh, Khanna, Thawkar, Singh (bib0092) 2022; 173 Sheikhpour, Ghassemi, Yaghmaei, Ardekani, Shiryazd (bib0002) 2014; 7 Chaurasia, Pal (bib0037) 2020; 1 Idris, Ismail (bib0066) 2021; 7 Najjar, Easson (bib0015) 2010; 8 Rashedi, Nezamabadi-Pour, Saryazdi (bib0061) 2009; 179 Hamed, Marey, Amin, Tolba (bib0054) 2020 Dheeba, Singh, Selvi (bib0063) 2014; 49 Kumar, Nair (bib0084) 2021; 68 Akay (bib0026) 2009; 36 Islam, Haque, Iqbal, Hasan, Hasan, Kabir (bib0071) 2020; 1 Asri, Mousannif, Al Moatassime, Noel (bib0074) 2016; 83 Lu, Wang, Yoon (bib0049) 2019; 116 Perera, Gui (bib0011) 2003; 106 Mushtaq, Yaqub, Sani, Khalid (bib0040) 2020; 43 Naik, Kuppili, Edla (bib0085) 2020; 24 Barakat, Bradley, Barakat (bib0024) 2010; 14 Yang, Deb (bib0060) 2010 Alshayeji, Ellethy, Gupta (bib0079) 2022; 71 DeLong (10.1016/j.advengsoft.2022.103338_bib0090) 1988 Karabatak (10.1016/j.advengsoft.2022.103338_bib0028) 2015; 72 Hamed (10.1016/j.advengsoft.2022.103338_bib0054) 2020 Rashedi (10.1016/j.advengsoft.2022.103338_bib0061) 2009; 179 Sakri (10.1016/j.advengsoft.2022.103338_bib0055) 2018; 6 Wang (10.1016/j.advengsoft.2022.103338_bib0083) 2020; 86 Barakat (10.1016/j.advengsoft.2022.103338_bib0024) 2010; 14 Kadam (10.1016/j.advengsoft.2022.103338_bib0044) 2019; 43 El-Kenawy (10.1016/j.advengsoft.2022.103338_bib0048) 2020; 16 Yang (10.1016/j.advengsoft.2022.103338_bib0060) 2010 Seera (10.1016/j.advengsoft.2022.103338_bib0019) 2014; 41 Idris (10.1016/j.advengsoft.2022.103338_bib0066) 2021; 7 Sizilio (10.1016/j.advengsoft.2022.103338_bib0009) 2012; 11 10.1016/j.advengsoft.2022.103338_bib0007 Khandezamin (10.1016/j.advengsoft.2022.103338_bib0080) 2020; 111 Rao (10.1016/j.advengsoft.2022.103338_bib0043) 2019; 74 10.1016/j.advengsoft.2022.103338_bib0089 Ibrahim (10.1016/j.advengsoft.2022.103338_bib0047) 2019; 10 Tahmooresi (10.1016/j.advengsoft.2022.103338_bib0072) 2018; 10 Najjar (10.1016/j.advengsoft.2022.103338_bib0015) 2010; 8 Houssein (10.1016/j.advengsoft.2022.103338_bib0076) 2021; 167 Sahu (10.1016/j.advengsoft.2022.103338_bib0046) 2019; 6 Abdel-Basset (10.1016/j.advengsoft.2022.103338_bib0086) 2020; 139 Ezzat (10.1016/j.advengsoft.2022.103338_bib0012) 1999; 16 Ul Haq (10.1016/j.advengsoft.2022.103338_bib0053) 2020; 38 Jemal (10.1016/j.advengsoft.2022.103338_bib0003) 2011; 61 Raiesdana (10.1016/j.advengsoft.2022.103338_bib0051) 2021; 12 Mushtaq (10.1016/j.advengsoft.2022.103338_bib0040) 2020; 43 Jiang (10.1016/j.advengsoft.2022.103338_bib0081) 2022 Islam (10.1016/j.advengsoft.2022.103338_bib0071) 2020; 1 Fatima (10.1016/j.advengsoft.2022.103338_bib0075) 2020; 8 Perera (10.1016/j.advengsoft.2022.103338_bib0011) 2003; 106 Boeri (10.1016/j.advengsoft.2022.103338_bib0073) 2020; 9 Thompson (10.1016/j.advengsoft.2022.103338_bib0010) 2004; 9 Krawczyk (10.1016/j.advengsoft.2022.103338_bib0034) 2015; 65 Soni (10.1016/j.advengsoft.2022.103338_bib0038) 2020; 6 Christo (10.1016/j.advengsoft.2022.103338_bib0041) 2020 Wang (10.1016/j.advengsoft.2022.103338_bib0082) 2018; 267 Chaurasia (10.1016/j.advengsoft.2022.103338_bib0037) 2020; 1 Lu (10.1016/j.advengsoft.2022.103338_bib0049) 2019; 116 Farr (10.1016/j.advengsoft.2022.103338_bib0016) 2013; 6 Chen (10.1016/j.advengsoft.2022.103338_bib0027) 2011; 38 Sahebi (10.1016/j.advengsoft.2022.103338_bib0059) 2020; 125 Nilashi (10.1016/j.advengsoft.2022.103338_bib0052) 2017; 34 Aličković (10.1016/j.advengsoft.2022.103338_bib0036) 2017; 28 Rahman (10.1016/j.advengsoft.2022.103338_bib0056) 2021; 7 Tilwankar (10.1016/j.advengsoft.2022.103338_bib0068) 2021 Yassin (10.1016/j.advengsoft.2022.103338_bib0077) 2018; 156 Elkum (10.1016/j.advengsoft.2022.103338_bib0014) 2007; 7 Sun (10.1016/j.advengsoft.2022.103338_bib0091) 2014; 21 Wang (10.1016/j.advengsoft.2022.103338_bib0058) 2021; 11 Ronoud (10.1016/j.advengsoft.2022.103338_bib0035) 2019; 23 Dheeba (10.1016/j.advengsoft.2022.103338_bib0063) 2014; 49 Kumar (10.1016/j.advengsoft.2022.103338_bib0084) 2021; 68 Rajaguru (10.1016/j.advengsoft.2022.103338_bib0067) 2019; 20 Fan (10.1016/j.advengsoft.2022.103338_bib0008) 2014; 15 Ravichandran (10.1016/j.advengsoft.2022.103338_bib0006) 2009; 15 Mambou (10.1016/j.advengsoft.2022.103338_bib0050) 2018; 18 Qiu (10.1016/j.advengsoft.2022.103338_bib0033) 2017; 7 Sheikhpour (10.1016/j.advengsoft.2022.103338_bib0002) 2014; 7 Ibrahim (10.1016/j.advengsoft.2022.103338_bib0013) 2005; 22 Ak (10.1016/j.advengsoft.2022.103338_bib0042) 2020; 8 Thongkam (10.1016/j.advengsoft.2022.103338_bib0020) 2009; 36 Sharma (10.1016/j.advengsoft.2022.103338_bib0021) 2013; 2 Akay (10.1016/j.advengsoft.2022.103338_bib0026) 2009; 36 Siegel (10.1016/j.advengsoft.2022.103338_bib0001) 2014; 64 Fayyad (10.1016/j.advengsoft.2022.103338_bib0017) 1996; 17 Gu (10.1016/j.advengsoft.2022.103338_bib0032) 2017; 77 Abdar (10.1016/j.advengsoft.2022.103338_bib0045) 2020; 132 Jeyasingh (10.1016/j.advengsoft.2022.103338_bib0088) 2017; 18 Asri (10.1016/j.advengsoft.2022.103338_bib0074) 2016; 83 Murugesan (10.1016/j.advengsoft.2022.103338_bib0065) 2021 Kourou (10.1016/j.advengsoft.2022.103338_bib0025) 2015; 13 Naik (10.1016/j.advengsoft.2022.103338_bib0085) 2020; 24 Dalwinder (10.1016/j.advengsoft.2022.103338_bib0087) 2020; 40 Liu (10.1016/j.advengsoft.2022.103338_bib0039) 2019; 56 Al-Betar (10.1016/j.advengsoft.2022.103338_bib0070) 2021; 33 Singh (10.1016/j.advengsoft.2022.103338_bib0092) 2022; 173 El Saghir (10.1016/j.advengsoft.2022.103338_bib0005) 2007; 5 Youlden (10.1016/j.advengsoft.2022.103338_bib0004) 2012; 36 Peng (10.1016/j.advengsoft.2022.103338_bib0030) 2016; 134 Sun (10.1016/j.advengsoft.2022.103338_bib0031) 2017; 2017 Ramadevi (10.1016/j.advengsoft.2022.103338_bib0064) 2015; 3 Khalid (10.1016/j.advengsoft.2022.103338_bib0069) 2022 Fei (10.1016/j.advengsoft.2022.103338_bib0023) 2010; 37 Alshayeji (10.1016/j.advengsoft.2022.103338_bib0079) 2022; 71 Agustian (10.1016/j.advengsoft.2022.103338_bib0062) 2020 Ragab (10.1016/j.advengsoft.2022.103338_bib0057) 2019; 7 Bhardwaj (10.1016/j.advengsoft.2022.103338_bib0018) 2015; 42 Jen (10.1016/j.advengsoft.2022.103338_bib0022) 2012; 39 |
| References_xml | – volume: 10 start-page: 3155 year: 2019 end-page: 3169 ident: bib0047 article-title: Improved salp swarm algorithm based on particle swarm optimization for feature selection publication-title: J Ambient Intell Humaniz Comput – volume: 18 start-page: 2799 year: 2018 ident: bib0050 article-title: Breast cancer detection using infrared thermal imaging and a deep learning model publication-title: Sensors – volume: 15 start-page: e279 year: 2014 end-page: e289 ident: bib0008 article-title: Breast cancer in China publication-title: Lancet Oncol – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: bib0061 article-title: GSA: a gravitational search algorithm publication-title: Inf Sci (Ny) – start-page: 1 year: 2022 end-page: 24 ident: bib0081 article-title: Breast cancer detection based on modified harris hawks optimization and extreme learning machine embedded with feature weighting publication-title: Neural Processing Letters – volume: 3 start-page: 763 year: 2015 ident: bib0064 article-title: Importance of feature extraction for classification of breast cancer datasets, a study publication-title: Int J Sci InnovMath Res – volume: 38 start-page: 9014 year: 2011 end-page: 9022 ident: bib0027 article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis publication-title: Expert Syst Appl – volume: 10 start-page: 21 year: 2018 end-page: 27 ident: bib0072 article-title: Early detection of breast cancer using machine learning techniques publication-title: J Telecommun, Electron Comput Eng (JTEC) – volume: 8 start-page: 150360 year: 2020 end-page: 150376 ident: bib0075 article-title: Prediction of breast cancer, comparative review of machine learning techniques, and their analysis publication-title: IEEE Access – volume: 36 start-page: 3240 year: 2009 end-page: 3247 ident: bib0026 article-title: Support vector machines combined with feature selection for breast cancer diagnosis publication-title: Expert Syst Appl – volume: 20 start-page: 3777 year: 2019 ident: bib0067 article-title: Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer publication-title: Asian Pac J Cancer Prev – volume: 65 start-page: 219 year: 2015 end-page: 227 ident: bib0034 article-title: A hybrid cost-sensitive ensemble for imbalanced breast thermogram classification publication-title: Artif Intell Med – volume: 7 start-page: e427 year: 2021 ident: bib0066 article-title: Breast cancer disease classification using fuzzy-ID3 algorithm with FUZZYDBD method: automatic fuzzy database definition publication-title: PeerJ Computer Science – volume: 7 start-page: e6201 year: 2019 ident: bib0057 article-title: Breast cancer detection using deep convolutional neural networks and support vector machines publication-title: PeerJ – start-page: 80 year: 2021 end-page: 84 ident: bib0068 article-title: Breast cancer detection using principal component analysis and machine learning models publication-title: 2021 First International Conference on Advances in Computing and Future Communication Technologies (ICACFCT) – volume: 33 start-page: 5011 year: 2021 end-page: 5042 ident: bib0070 article-title: Coronavirus herd immunity optimizer (CHIO) publication-title: Neural Comput Appl – volume: 139 year: 2020 ident: bib0086 article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection publication-title: Expert Syst Appl – volume: 49 start-page: 45 year: 2014 end-page: 52 ident: bib0063 article-title: Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach publication-title: J Biomed Inform – volume: 68 year: 2021 ident: bib0084 article-title: An efficient classification framework for breast cancer using hyper parameter tuned Random Decision Forest Classifier and Bayesian Optimization publication-title: Biomed Signal Process Control – volume: 14 start-page: 1114 year: 2010 end-page: 1120 ident: bib0024 article-title: Intelligible support vector machines for diagnosis of diabetes mellitus publication-title: IEEE Trans Inf Technol Biomed – volume: 24 start-page: 4575 year: 2020 end-page: 4587 ident: bib0085 article-title: Efficient feature selection using one-pass generalized classifier neural network and binary bat algorithm with a novel fitness function publication-title: Soft comput – volume: 43 start-page: 1 year: 2019 end-page: 11 ident: bib0044 article-title: Breast cancer diagnosis using feature ensemble learning based on stacked sparse autoencoders and softmax regression publication-title: J Med Syst – volume: 15 start-page: 612 year: 2009 end-page: 621 ident: bib0006 article-title: Association of reproductive factors with the incidence of breast cancer in Gulf Cooperation Council countries publication-title: EMHJ-Eastern Mediterranean Health J – volume: 6 start-page: 165 year: 2013 ident: bib0016 article-title: Modern risk assessment for individualizing treatment concepts in early-stage breast cancer publication-title: Rev Obstetr Gynecol – volume: 72 start-page: 32 year: 2015 end-page: 36 ident: bib0028 article-title: A new classifier for breast cancer detection based on Naïve Bayesian publication-title: Measurement – volume: 7 start-page: 16417 year: 2017 ident: bib0033 article-title: Electronic health record driven prediction for gestational diabetes mellitus in early pregnancy publication-title: Sci Rep – start-page: 322 year: 2020 end-page: 333 ident: bib0054 article-title: Deep learning in breast cancer detection and classification publication-title: The International Conference on Artificial Intelligence and Computer Vision – volume: 8 start-page: 111 year: 2020 ident: bib0042 article-title: A comparative analysis of breast cancer detection and diagnosis using data visualization and machine learning applications publication-title: Healthcare – volume: 22 start-page: 343 year: 2005 end-page: 352 ident: bib0013 article-title: Adjuvant chemotherapy in 780 patients with early breast cancer publication-title: Med Oncol – start-page: 1 year: 2020 end-page: 6 ident: bib0062 article-title: Particle swarm optimization feature selection for breast cancer prediction publication-title: 2020 8th International Conference on Cyber and IT Service Management (CITSM) – volume: 2 start-page: 285 year: 2013 end-page: 295 ident: bib0021 article-title: Data mining models for predicting oral cancer survivability publication-title: Network Model Anal Health Inf Bioinf – volume: 12 start-page: 48 year: 2021 end-page: 68 ident: bib0051 article-title: Breast Cancer Detection Using Optimization-Based Feature Pruning and Classification Algorithms publication-title: Middle East J Cancer – volume: 86 year: 2020 ident: bib0083 article-title: An improved random forest-based rule extraction method for breast cancer diagnosis publication-title: Appl Soft Comput – volume: 116 start-page: 340 year: 2019 end-page: 350 ident: bib0049 article-title: A dynamic gradient boosting machine using genetic optimizer for practical breast cancer prognosis publication-title: Expert Syst Appl – volume: 34 start-page: 133 year: 2017 end-page: 144 ident: bib0052 article-title: A knowledge-based system for breast cancer classification using fuzzy logic method publication-title: Telemat Informatics – volume: 132 start-page: 123 year: 2020 end-page: 131 ident: bib0045 article-title: A new nested ensemble technique for automated diagnosis of breast cancer publication-title: Pattern Recognit Lett – volume: 71 year: 2022 ident: bib0079 article-title: Computer-aided detection of breast cancer on the Wisconsin dataset: an artificial neural networks approach publication-title: Biomed Signal Process Control – volume: 173 year: 2022 ident: bib0092 article-title: Collaboration of features optimization techniques for the effective diagnosis of glaucoma in retinal fundus images publication-title: Adv Eng Software – volume: 41 start-page: 2239 year: 2014 end-page: 2249 ident: bib0019 article-title: A hybrid intelligent system for medical data classification publication-title: Expert Syst Appl – volume: 42 start-page: 4611 year: 2015 end-page: 4620 ident: bib0018 article-title: Breast cancer diagnosis using genetically optimized neural network model publication-title: Expert Syst Appl – volume: 7 start-page: 472 year: 2014 end-page: 479 ident: bib0002 article-title: Immunohistochemical assessment of p53 protein and its correlation with clinicopathological characteristics in breast cancer patients publication-title: Ind J Sci Technol – volume: 74 start-page: 634 year: 2019 end-page: 642 ident: bib0043 article-title: Feature selection based on artificial bee colony and gradient boosting decision tree publication-title: Appl Soft Comput – volume: 7 start-page: 1 year: 2007 end-page: 8 ident: bib0014 article-title: Being 40 or younger is an independent risk factor for relapse in operable breast cancer patients: the Saudi Arabia experience publication-title: BMC Cancer – start-page: 1 year: 2020 end-page: 14 ident: bib0041 article-title: Feature selection and instance selection from clinical datasets using co-operative co-evolution and classification using random forest publication-title: IETE J Res – volume: 106 start-page: 463 year: 2003 end-page: 467 ident: bib0011 article-title: Multi-ethnic differences in breast cancer: current concepts and future directions publication-title: Int J Cancer – volume: 17 start-page: 37 year: 1996 ident: bib0017 article-title: From data mining to knowledge discovery in databases publication-title: AI magazine – volume: 6 year: 2019 ident: bib0046 article-title: A hybrid approach for breast cancer classification and diagnosis publication-title: EAI Endorsed Trans Scalable Information Systems – volume: 125 year: 2020 ident: bib0059 article-title: GeFeS: a generalized wrapper feature selection approach for optimizing classification performance publication-title: Comput Biol Med – volume: 36 start-page: 12200 year: 2009 end-page: 12209 ident: bib0020 article-title: Toward breast cancer survivability prediction models through improving training space publication-title: Expert Syst Appl – volume: 21 start-page: 1389 year: 2014 end-page: 1393 ident: bib0091 article-title: Fast implementation of DeLong's algorithm for comparing the areas under correlated receiver operating characteristic curves publication-title: IEEE Signal Process Lett – volume: 37 start-page: 6748 year: 2010 end-page: 6752 ident: bib0023 article-title: Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine publication-title: Expert Syst Appl – volume: 77 start-page: 31 year: 2017 end-page: 47 ident: bib0032 article-title: A case-based reasoning system based on weighted heterogeneous value distance metric for breast cancer diagnosis publication-title: Artif Intell Med – volume: 16 start-page: 831 year: 2020 end-page: 844 ident: bib0048 article-title: Hybrid gray wolf and particle swarm optimization for feature selection publication-title: Int J Innov Comput Inf Control – volume: 1 start-page: 1 year: 2020 end-page: 11 ident: bib0037 article-title: Applications of machine learning techniques to predict diagnostic breast cancer publication-title: SN Computer Science – volume: 7 start-page: e344 year: 2021 ident: bib0056 article-title: Artificial neural network with Taguchi method for robust classification model to improve classification accuracy of breast cancer publication-title: PeerJ Computer Science – start-page: 2021 year: 2021 ident: bib0065 article-title: Feature selection and classification of clinical datasets using bioinspired algorithms and super learner publication-title: Comput Math Methods Med – volume: 167 year: 2021 ident: bib0076 article-title: Deep and machine learning techniques for medical imaging-based breast cancer: a comprehensive review publication-title: Expert Syst Appl – volume: 8 start-page: 448 year: 2010 end-page: 452 ident: bib0015 article-title: Age at diagnosis of breast cancer in Arab nations publication-title: Int J Surg – start-page: 101 year: 2010 end-page: 111 ident: bib0060 article-title: Eagle strategy using Lévy walk and firefly algorithms for stochastic optimization publication-title: Nature inspired cooperative strategies for optimization (NICSO 2010) – volume: 16 start-page: 95 year: 1999 end-page: 103 ident: bib0012 article-title: Locally advanced breast cancer in Saudi Arabia: high frequency of stage III in a young population publication-title: Med Oncol – volume: 38 start-page: 2383 year: 2020 end-page: 2398 ident: bib0053 article-title: A novel integrated diagnosis method for breast cancer detection publication-title: J Intell Fuzzy Syst – volume: 6 start-page: 29637 year: 2018 end-page: 29647 ident: bib0055 article-title: Particle swarm optimization feature selection for breast cancer recurrence prediction publication-title: IEEE Access – start-page: 837 year: 1988 end-page: 845 ident: bib0090 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics – volume: 2017 start-page: 4 year: 2017 end-page: 9 ident: bib0031 article-title: Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data publication-title: Comput Med Imaging Graph – volume: 43 start-page: 80 year: 2020 end-page: 92 ident: bib0040 article-title: Effective K-nearest neighbor classifications for Wisconsin breast cancer data sets publication-title: J Chin Inst Eng – volume: 56 start-page: 609 year: 2019 end-page: 623 ident: bib0039 article-title: A novel intelligent classification model for breast cancer diagnosis publication-title: Inf Process Manag – volume: 40 start-page: 337 year: 2020 end-page: 351 ident: bib0087 article-title: Simultaneous feature weighting and parameter determination of neural networks using ant lion optimization for the classification of breast cancer publication-title: Biocybernet Biomed Eng – volume: 11 start-page: 1 year: 2021 end-page: 11 ident: bib0058 article-title: Research on expansion and classification of imbalanced data based on SMOTE algorithm publication-title: Sci Rep – volume: 61 start-page: 69 year: 2011 end-page: 90 ident: bib0003 article-title: Global cancer statistics publication-title: CA Cancer J Clin – reference: . – volume: 9 start-page: 221 year: 2004 end-page: 236 ident: bib0010 article-title: The genetic epidemiology of breast cancer genes publication-title: J Mammary Gland Biol Neoplasia – volume: 111 year: 2020 ident: bib0080 article-title: Detection and classification of breast cancer using logistic regression feature selection and GMDH classifier publication-title: J Biomed Inform – reference: . [Accessed: 01-Jan-2022]. – volume: 13 start-page: 8 year: 2015 end-page: 17 ident: bib0025 article-title: "Machine learning applications in cancer prognosis and prediction,'' publication-title: Comput Struct Biotechnol J – volume: 134 start-page: 259 year: 2016 end-page: 265 ident: bib0030 article-title: An immune-inspired semi-supervised algorithm for breast cancer diagnosis publication-title: Comput Methods Programs Biomed – volume: 64 start-page: 9 year: 2014 end-page: 29 ident: bib0001 article-title: Cancer statistics, 2014 publication-title: CA: – volume: 9 start-page: 3234 year: 2020 end-page: 3243 ident: bib0073 article-title: Machine Learning techniques in breast cancer prognosis prediction: a primary evaluation publication-title: Cancer Med – volume: 267 start-page: 687 year: 2018 end-page: 699 ident: bib0082 article-title: A support vector machine-based ensemble algorithm for breast cancer diagnosis publication-title: Eur J Oper Res – volume: 39 start-page: 8852 year: 2012 end-page: 8858 ident: bib0022 article-title: Application of classification techniques on development an early-warning system for chronic illnesses publication-title: Expert Syst Appl – volume: 1 start-page: 1 year: 2020 end-page: 14 ident: bib0071 article-title: Breast cancer prediction: a comparative study using machine learning techniques publication-title: SN Computer Science – start-page: 1 year: 2022 end-page: 28 ident: bib0069 article-title: COVIDOA: a novel evolutionary optimization algorithm based on coronavirus disease replication lifecycle publication-title: Neural Comput Appl – volume: 156 start-page: 25 year: 2018 end-page: 45 ident: bib0077 article-title: Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review publication-title: Comput Methods Programs Biomed – volume: 23 start-page: 13139 year: 2019 end-page: 13159 ident: bib0035 article-title: An evolutionary deep belief network extreme learning-based for breast cancer diagnosis publication-title: Soft comput – volume: 18 start-page: 1257 year: 2017 ident: bib0088 article-title: Modified bat algorithm for feature selection with the wisconsin diagnosis breast cancer (WDBC) dataset publication-title: Asian Pacific J Cancer Prevention – volume: 11 start-page: 83 year: 2012 ident: bib0009 article-title: Fuzzy method for prediagnosis of breast cancer from the fine needle aspirate analysis publication-title: BiomedicalEngineering – volume: 6 start-page: 320 year: 2020 end-page: 324 ident: bib0038 publication-title: Breast cancer detection by leveraging machine learning – volume: 36 start-page: 237 year: 2012 end-page: 248 ident: bib0004 article-title: The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality publication-title: Cancer Epidemiol – volume: 83 start-page: 1064 year: 2016 end-page: 1069 ident: bib0074 article-title: Using machine learning algorithms for breast cancer risk prediction and diagnosis publication-title: Procedia Comput Sci – volume: 5 start-page: 225 year: 2007 end-page: 233 ident: bib0005 article-title: Trends in epidemiology and management of breast cancer in developing Arab countries: a literature and registry analysis publication-title: Int J Surg – volume: 28 start-page: 753 year: 2017 end-page: 763 ident: bib0036 article-title: Breast cancer diagnosis using GA feature selection and Rotation Forest publication-title: Neural Comput Appl – volume: 9 start-page: 3234 issue: 9 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0073 article-title: Machine Learning techniques in breast cancer prognosis prediction: a primary evaluation publication-title: Cancer Med doi: 10.1002/cam4.2811 – volume: 14 start-page: 1114 issue: 4 year: 2010 ident: 10.1016/j.advengsoft.2022.103338_bib0024 article-title: Intelligible support vector machines for diagnosis of diabetes mellitus publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2009.2039485 – volume: 41 start-page: 2239 issue: 5 year: 2014 ident: 10.1016/j.advengsoft.2022.103338_bib0019 article-title: A hybrid intelligent system for medical data classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.09.022 – volume: 10 start-page: 3155 issue: 8 year: 2019 ident: 10.1016/j.advengsoft.2022.103338_bib0047 article-title: Improved salp swarm algorithm based on particle swarm optimization for feature selection publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-018-1031-9 – volume: 6 start-page: 29637 year: 2018 ident: 10.1016/j.advengsoft.2022.103338_bib0055 article-title: Particle swarm optimization feature selection for breast cancer recurrence prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2843443 – volume: 42 start-page: 4611 issue: 10 year: 2015 ident: 10.1016/j.advengsoft.2022.103338_bib0018 article-title: Breast cancer diagnosis using genetically optimized neural network model publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.01.065 – volume: 21 start-page: 1389 issue: 11 year: 2014 ident: 10.1016/j.advengsoft.2022.103338_bib0091 article-title: Fast implementation of DeLong's algorithm for comparing the areas under correlated receiver operating characteristic curves publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2014.2337313 – volume: 18 start-page: 2799 issue: 9 year: 2018 ident: 10.1016/j.advengsoft.2022.103338_bib0050 article-title: Breast cancer detection using infrared thermal imaging and a deep learning model publication-title: Sensors doi: 10.3390/s18092799 – volume: 2017 start-page: 4 issue: 57 year: 2017 ident: 10.1016/j.advengsoft.2022.103338_bib0031 article-title: Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2016.07.004 – volume: 11 start-page: 83 issue: 1 year: 2012 ident: 10.1016/j.advengsoft.2022.103338_bib0009 article-title: Fuzzy method for prediagnosis of breast cancer from the fine needle aspirate analysis publication-title: BiomedicalEngineering – volume: 23 start-page: 13139 issue: 24 year: 2019 ident: 10.1016/j.advengsoft.2022.103338_bib0035 article-title: An evolutionary deep belief network extreme learning-based for breast cancer diagnosis publication-title: Soft comput doi: 10.1007/s00500-019-03856-0 – volume: 132 start-page: 123 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0045 article-title: A new nested ensemble technique for automated diagnosis of breast cancer publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2018.11.004 – volume: 36 start-page: 237 issue: 3 year: 2012 ident: 10.1016/j.advengsoft.2022.103338_bib0004 article-title: The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality publication-title: Cancer Epidemiol doi: 10.1016/j.canep.2012.02.007 – volume: 37 start-page: 6748 issue: 10 year: 2010 ident: 10.1016/j.advengsoft.2022.103338_bib0023 article-title: Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.02.126 – volume: 173 year: 2022 ident: 10.1016/j.advengsoft.2022.103338_bib0092 article-title: Collaboration of features optimization techniques for the effective diagnosis of glaucoma in retinal fundus images publication-title: Adv Eng Software doi: 10.1016/j.advengsoft.2022.103283 – volume: 43 start-page: 1 issue: 8 year: 2019 ident: 10.1016/j.advengsoft.2022.103338_bib0044 article-title: Breast cancer diagnosis using feature ensemble learning based on stacked sparse autoencoders and softmax regression publication-title: J Med Syst doi: 10.1007/s10916-019-1397-z – volume: 134 start-page: 259 year: 2016 ident: 10.1016/j.advengsoft.2022.103338_bib0030 article-title: An immune-inspired semi-supervised algorithm for breast cancer diagnosis publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2016.07.020 – volume: 16 start-page: 831 issue: 3 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0048 article-title: Hybrid gray wolf and particle swarm optimization for feature selection publication-title: Int J Innov Comput Inf Control – volume: 61 start-page: 69 issue: 2 year: 2011 ident: 10.1016/j.advengsoft.2022.103338_bib0003 article-title: Global cancer statistics publication-title: CA Cancer J Clin – start-page: 1 year: 2022 ident: 10.1016/j.advengsoft.2022.103338_bib0069 article-title: COVIDOA: a novel evolutionary optimization algorithm based on coronavirus disease replication lifecycle publication-title: Neural Comput Appl – volume: 111 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0080 article-title: Detection and classification of breast cancer using logistic regression feature selection and GMDH classifier publication-title: J Biomed Inform doi: 10.1016/j.jbi.2020.103591 – start-page: 1 year: 2022 ident: 10.1016/j.advengsoft.2022.103338_bib0081 article-title: Breast cancer detection based on modified harris hawks optimization and extreme learning machine embedded with feature weighting publication-title: Neural Processing Letters – volume: 6 issue: 20 year: 2019 ident: 10.1016/j.advengsoft.2022.103338_bib0046 article-title: A hybrid approach for breast cancer classification and diagnosis publication-title: EAI Endorsed Trans Scalable Information Systems – volume: 12 start-page: 48 issue: 1 year: 2021 ident: 10.1016/j.advengsoft.2022.103338_bib0051 article-title: Breast Cancer Detection Using Optimization-Based Feature Pruning and Classification Algorithms publication-title: Middle East J Cancer – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.advengsoft.2022.103338_bib0058 article-title: Research on expansion and classification of imbalanced data based on SMOTE algorithm publication-title: Sci Rep doi: 10.1038/s41598-021-03430-5 – volume: 7 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.advengsoft.2022.103338_bib0014 article-title: Being 40 or younger is an independent risk factor for relapse in operable breast cancer patients: the Saudi Arabia experience publication-title: BMC Cancer doi: 10.1186/1471-2407-7-222 – volume: 7 start-page: e6201 year: 2019 ident: 10.1016/j.advengsoft.2022.103338_bib0057 article-title: Breast cancer detection using deep convolutional neural networks and support vector machines publication-title: PeerJ doi: 10.7717/peerj.6201 – volume: 40 start-page: 337 issue: 1 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0087 article-title: Simultaneous feature weighting and parameter determination of neural networks using ant lion optimization for the classification of breast cancer publication-title: Biocybernet Biomed Eng doi: 10.1016/j.bbe.2019.12.004 – volume: 36 start-page: 3240 issue: 2 year: 2009 ident: 10.1016/j.advengsoft.2022.103338_bib0026 article-title: Support vector machines combined with feature selection for breast cancer diagnosis publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.01.009 – volume: 64 start-page: 9 issue: 1 year: 2014 ident: 10.1016/j.advengsoft.2022.103338_bib0001 article-title: Cancer statistics, 2014 publication-title: CA: Cancer J Clin – ident: 10.1016/j.advengsoft.2022.103338_bib0089 – volume: 38 start-page: 9014 issue: 7 year: 2011 ident: 10.1016/j.advengsoft.2022.103338_bib0027 article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.01.120 – volume: 1 start-page: 1 issue: 5 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0071 article-title: Breast cancer prediction: a comparative study using machine learning techniques publication-title: SN Computer Science doi: 10.1007/s42979-020-00305-w – volume: 8 start-page: 448 issue: 6 year: 2010 ident: 10.1016/j.advengsoft.2022.103338_bib0015 article-title: Age at diagnosis of breast cancer in Arab nations publication-title: Int J Surg doi: 10.1016/j.ijsu.2010.05.012 – volume: 125 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0059 article-title: GeFeS: a generalized wrapper feature selection approach for optimizing classification performance publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103974 – volume: 8 start-page: 150360 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0075 article-title: Prediction of breast cancer, comparative review of machine learning techniques, and their analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016715 – volume: 7 start-page: 472 issue: 4 year: 2014 ident: 10.1016/j.advengsoft.2022.103338_bib0002 article-title: Immunohistochemical assessment of p53 protein and its correlation with clinicopathological characteristics in breast cancer patients publication-title: Ind J Sci Technol – start-page: 837 year: 1988 ident: 10.1016/j.advengsoft.2022.103338_bib0090 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 17 start-page: 37 issue: 3 year: 1996 ident: 10.1016/j.advengsoft.2022.103338_bib0017 article-title: From data mining to knowledge discovery in databases publication-title: AI magazine – volume: 33 start-page: 5011 issue: 10 year: 2021 ident: 10.1016/j.advengsoft.2022.103338_bib0070 article-title: Coronavirus herd immunity optimizer (CHIO) publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05296-6 – volume: 13 start-page: 8 year: 2015 ident: 10.1016/j.advengsoft.2022.103338_bib0025 article-title: "Machine learning applications in cancer prognosis and prediction,'' publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2014.11.005 – volume: 56 start-page: 609 issue: 3 year: 2019 ident: 10.1016/j.advengsoft.2022.103338_bib0039 article-title: A novel intelligent classification model for breast cancer diagnosis publication-title: Inf Process Manag doi: 10.1016/j.ipm.2018.10.014 – volume: 3 start-page: 763 issue: 2 year: 2015 ident: 10.1016/j.advengsoft.2022.103338_bib0064 article-title: Importance of feature extraction for classification of breast cancer datasets, a study publication-title: Int J Sci InnovMath Res – volume: 28 start-page: 753 issue: 4 year: 2017 ident: 10.1016/j.advengsoft.2022.103338_bib0036 article-title: Breast cancer diagnosis using GA feature selection and Rotation Forest publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2103-9 – volume: 83 start-page: 1064 year: 2016 ident: 10.1016/j.advengsoft.2022.103338_bib0074 article-title: Using machine learning algorithms for breast cancer risk prediction and diagnosis publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.04.224 – volume: 43 start-page: 80 issue: 1 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0040 article-title: Effective K-nearest neighbor classifications for Wisconsin breast cancer data sets publication-title: J Chin Inst Eng doi: 10.1080/02533839.2019.1676658 – volume: 8 start-page: 111 issue: 2 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0042 article-title: A comparative analysis of breast cancer detection and diagnosis using data visualization and machine learning applications publication-title: Healthcare doi: 10.3390/healthcare8020111 – volume: 6 start-page: 165 issue: 3–4 year: 2013 ident: 10.1016/j.advengsoft.2022.103338_bib0016 article-title: Modern risk assessment for individualizing treatment concepts in early-stage breast cancer publication-title: Rev Obstetr Gynecol – volume: 20 start-page: 3777 issue: 12 year: 2019 ident: 10.1016/j.advengsoft.2022.103338_bib0067 article-title: Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer publication-title: Asian Pac J Cancer Prev doi: 10.31557/APJCP.2019.20.12.3777 – volume: 77 start-page: 31 year: 2017 ident: 10.1016/j.advengsoft.2022.103338_bib0032 article-title: A case-based reasoning system based on weighted heterogeneous value distance metric for breast cancer diagnosis publication-title: Artif Intell Med doi: 10.1016/j.artmed.2017.02.003 – volume: 18 start-page: 1257 issue: 5 year: 2017 ident: 10.1016/j.advengsoft.2022.103338_bib0088 article-title: Modified bat algorithm for feature selection with the wisconsin diagnosis breast cancer (WDBC) dataset publication-title: Asian Pacific J Cancer Prevention – volume: 267 start-page: 687 issue: 2 year: 2018 ident: 10.1016/j.advengsoft.2022.103338_bib0082 article-title: A support vector machine-based ensemble algorithm for breast cancer diagnosis publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2017.12.001 – volume: 86 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0083 article-title: An improved random forest-based rule extraction method for breast cancer diagnosis publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105941 – volume: 6 start-page: 320 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0038 – ident: 10.1016/j.advengsoft.2022.103338_bib0007 – volume: 65 start-page: 219 issue: 3 year: 2015 ident: 10.1016/j.advengsoft.2022.103338_bib0034 article-title: A hybrid cost-sensitive ensemble for imbalanced breast thermogram classification publication-title: Artif Intell Med doi: 10.1016/j.artmed.2015.07.005 – volume: 7 start-page: e344 year: 2021 ident: 10.1016/j.advengsoft.2022.103338_bib0056 article-title: Artificial neural network with Taguchi method for robust classification model to improve classification accuracy of breast cancer publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.344 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.advengsoft.2022.103338_bib0061 article-title: GSA: a gravitational search algorithm publication-title: Inf Sci (Ny) doi: 10.1016/j.ins.2009.03.004 – volume: 34 start-page: 133 issue: 4 year: 2017 ident: 10.1016/j.advengsoft.2022.103338_bib0052 article-title: A knowledge-based system for breast cancer classification using fuzzy logic method publication-title: Telemat Informatics doi: 10.1016/j.tele.2017.01.007 – volume: 2 start-page: 285 issue: 4 year: 2013 ident: 10.1016/j.advengsoft.2022.103338_bib0021 article-title: Data mining models for predicting oral cancer survivability publication-title: Network Model Anal Health Inf Bioinf doi: 10.1007/s13721-013-0045-7 – volume: 7 start-page: 16417 issue: 1 year: 2017 ident: 10.1016/j.advengsoft.2022.103338_bib0033 article-title: Electronic health record driven prediction for gestational diabetes mellitus in early pregnancy publication-title: Sci Rep doi: 10.1038/s41598-017-16665-y – volume: 49 start-page: 45 year: 2014 ident: 10.1016/j.advengsoft.2022.103338_bib0063 article-title: Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach publication-title: J Biomed Inform doi: 10.1016/j.jbi.2014.01.010 – start-page: 322 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0054 article-title: Deep learning in breast cancer detection and classification – volume: 15 start-page: 612 issue: 3 year: 2009 ident: 10.1016/j.advengsoft.2022.103338_bib0006 article-title: Association of reproductive factors with the incidence of breast cancer in Gulf Cooperation Council countries publication-title: EMHJ-Eastern Mediterranean Health J doi: 10.26719/2009.15.3.612 – volume: 72 start-page: 32 year: 2015 ident: 10.1016/j.advengsoft.2022.103338_bib0028 article-title: A new classifier for breast cancer detection based on Naïve Bayesian publication-title: Measurement doi: 10.1016/j.measurement.2015.04.028 – volume: 22 start-page: 343 issue: 4 year: 2005 ident: 10.1016/j.advengsoft.2022.103338_bib0013 article-title: Adjuvant chemotherapy in 780 patients with early breast cancer publication-title: Med Oncol doi: 10.1385/MO:22:4:343 – volume: 139 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0086 article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.112824 – volume: 9 start-page: 221 issue: 3 year: 2004 ident: 10.1016/j.advengsoft.2022.103338_bib0010 article-title: The genetic epidemiology of breast cancer genes publication-title: J Mammary Gland Biol Neoplasia doi: 10.1023/B:JOMG.0000048770.90334.3b – volume: 68 year: 2021 ident: 10.1016/j.advengsoft.2022.103338_bib0084 article-title: An efficient classification framework for breast cancer using hyper parameter tuned Random Decision Forest Classifier and Bayesian Optimization publication-title: Biomed Signal Process Control – volume: 39 start-page: 8852 issue: 10 year: 2012 ident: 10.1016/j.advengsoft.2022.103338_bib0022 article-title: Application of classification techniques on development an early-warning system for chronic illnesses publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.02.004 – volume: 167 year: 2021 ident: 10.1016/j.advengsoft.2022.103338_bib0076 article-title: Deep and machine learning techniques for medical imaging-based breast cancer: a comprehensive review publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114161 – volume: 38 start-page: 2383 issue: 2 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0053 article-title: A novel integrated diagnosis method for breast cancer detection publication-title: J Intell Fuzzy Syst – start-page: 2021 year: 2021 ident: 10.1016/j.advengsoft.2022.103338_bib0065 article-title: Feature selection and classification of clinical datasets using bioinspired algorithms and super learner publication-title: Comput Math Methods Med – volume: 24 start-page: 4575 issue: 6 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0085 article-title: Efficient feature selection using one-pass generalized classifier neural network and binary bat algorithm with a novel fitness function publication-title: Soft comput doi: 10.1007/s00500-019-04218-6 – start-page: 80 year: 2021 ident: 10.1016/j.advengsoft.2022.103338_bib0068 article-title: Breast cancer detection using principal component analysis and machine learning models – volume: 156 start-page: 25 year: 2018 ident: 10.1016/j.advengsoft.2022.103338_bib0077 article-title: Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2017.12.012 – volume: 74 start-page: 634 year: 2019 ident: 10.1016/j.advengsoft.2022.103338_bib0043 article-title: Feature selection based on artificial bee colony and gradient boosting decision tree publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.10.036 – volume: 116 start-page: 340 year: 2019 ident: 10.1016/j.advengsoft.2022.103338_bib0049 article-title: A dynamic gradient boosting machine using genetic optimizer for practical breast cancer prognosis publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.08.040 – start-page: 1 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0062 article-title: Particle swarm optimization feature selection for breast cancer prediction – volume: 36 start-page: 12200 issue: 10 year: 2009 ident: 10.1016/j.advengsoft.2022.103338_bib0020 article-title: Toward breast cancer survivability prediction models through improving training space publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.04.067 – volume: 106 start-page: 463 issue: 4 year: 2003 ident: 10.1016/j.advengsoft.2022.103338_bib0011 article-title: Multi-ethnic differences in breast cancer: current concepts and future directions publication-title: Int J Cancer doi: 10.1002/ijc.11237 – volume: 10 start-page: 21 issue: 3–2 year: 2018 ident: 10.1016/j.advengsoft.2022.103338_bib0072 article-title: Early detection of breast cancer using machine learning techniques publication-title: J Telecommun, Electron Comput Eng (JTEC) – volume: 71 year: 2022 ident: 10.1016/j.advengsoft.2022.103338_bib0079 article-title: Computer-aided detection of breast cancer on the Wisconsin dataset: an artificial neural networks approach publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103141 – volume: 16 start-page: 95 issue: 2 year: 1999 ident: 10.1016/j.advengsoft.2022.103338_bib0012 article-title: Locally advanced breast cancer in Saudi Arabia: high frequency of stage III in a young population publication-title: Med Oncol doi: 10.1007/BF02785842 – volume: 7 start-page: e427 year: 2021 ident: 10.1016/j.advengsoft.2022.103338_bib0066 article-title: Breast cancer disease classification using fuzzy-ID3 algorithm with FUZZYDBD method: automatic fuzzy database definition publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.427 – volume: 5 start-page: 225 issue: 4 year: 2007 ident: 10.1016/j.advengsoft.2022.103338_bib0005 article-title: Trends in epidemiology and management of breast cancer in developing Arab countries: a literature and registry analysis publication-title: Int J Surg doi: 10.1016/j.ijsu.2006.06.015 – start-page: 101 year: 2010 ident: 10.1016/j.advengsoft.2022.103338_bib0060 article-title: Eagle strategy using Lévy walk and firefly algorithms for stochastic optimization – volume: 1 start-page: 1 issue: 5 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0037 article-title: Applications of machine learning techniques to predict diagnostic breast cancer publication-title: SN Computer Science doi: 10.1007/s42979-020-00296-8 – volume: 15 start-page: e279 issue: 7 year: 2014 ident: 10.1016/j.advengsoft.2022.103338_bib0008 article-title: Breast cancer in China publication-title: Lancet Oncol doi: 10.1016/S1470-2045(13)70567-9 – start-page: 1 year: 2020 ident: 10.1016/j.advengsoft.2022.103338_bib0041 article-title: Feature selection and instance selection from clinical datasets using co-operative co-evolution and classification using random forest publication-title: IETE J Res |
| SSID | ssj0014021 |
| Score | 2.5628848 |
| Snippet | •A soft-computing and machine learning based medical decision support system is proposed for breast cancer disease classification.•Two soft-computing... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103338 |
| SubjectTerms | Breast cancer detection Eagle strategy optimization Feature selection Gravitational search optimization Hybrid algorithm |
| Title | Artificial intelligence based medical decision support system for early and accurate breast cancer prediction |
| URI | https://dx.doi.org/10.1016/j.advengsoft.2022.103338 |
| Volume | 175 |
| WOSCitedRecordID | wos000895287000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0965-9978 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0014021 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZg4wEeuAwQ4yY_8FYFJU7sxOKpQkOAYEKsQn2LXMemGxCqpmX7-ZzjSxJtkxhCvESVK6dpv68-Fx9_h5AXNhVaNJVIuLEcApQiS1Se50mlwDg3VtvGifp8-VAeHlbzufwUtgs6106gbNvq7Eyu_ivUMAZg49HZv4C7vykMwGsAHa4AO1yvBPx07cp_XDOOsd4m2qvG76XjxkzorTPptit0wYOks1cAd6LHTsVV6y1qSUwWWLu-wRIxbdYoLNAc6x7SKGLrywlcga0ZZA4nHaz0p1hghppQUrJR8uEI3l_649mnE1ft3RuApWr9cbWPuOG-vDDjs_m2VOOcBcvP5Sz6wzRD5ZLLSAqeSOk7-vSLs--rcmGh9zmHk5eqAZvwFb8IxPqMoYZA7uVizsloH-Ht8e6Med2362SXlVzCYr47fXcwf9_vPUFE7fosxscJ9V--KvDyz7vcqRk5KrO75HaIMOjUM-MeuWbaPXInRBs0rOUdDMWGHnFsj9waqVPeJz8GJtExk6hjEg1MopFJNDCJeiZRYBJ1TKLAJBqZRD2TqGcSHZj0gMzeHMxev01Cd45Egx3YJJUtTZbJRkAEkYJJFVanWqlKWK5TI3hZFFYonUlr8by2FVxnbAH-ouTaMJs_JDvtz9Y8ItRilkEBMLmEAEOLiouy4MUizexCVqLZJ2X8dWsdlOuxgcr3OpYontQDLjXiUntc9knWz1x59ZYrzHkVAayDF-q9yxq498fZj_9p9hNyc_i7PCU7m_XWPCM39K_Ncbd-Hoj6G9FStds |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+based+medical+decision+support+system+for+early+and+accurate+breast+cancer+prediction&rft.jtitle=Advances+in+engineering+software+%281992%29&rft.au=Singh%2C+Law+Kumar&rft.au=Khanna%2C+Munish&rft.au=Singh%2C+Rekha&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0965-9978&rft.volume=175&rft_id=info:doi/10.1016%2Fj.advengsoft.2022.103338&rft.externalDocID=S0965997822002393 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-9978&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-9978&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-9978&client=summon |