Distributed optimization for uncertain Euler–Lagrange Systems with local and relative measurements
This paper considers a multi-agent system modeled as a group of Euler–Lagrange systems, and assumes that each agent only has perception of the real-time position-dependent gradient value of a local objective function and its relative position with other agents. Based on a seamless integration of a m...
Uloženo v:
| Vydáno v: | Automatica (Oxford) Ročník 139; s. 110113 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.05.2022
|
| Témata: | |
| ISSN: | 0005-1098 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper considers a multi-agent system modeled as a group of Euler–Lagrange systems, and assumes that each agent only has perception of the real-time position-dependent gradient value of a local objective function and its relative position with other agents. Based on a seamless integration of a modified distributed optimization algorithm and a Lyapunov-based nonlinear control design, distributed controllers are developed to exponentially steer the position of each agent to the optimal point of the total objective function. A numerical example of coordinated communication relay is employed to verify the proposed design. |
|---|---|
| ISSN: | 0005-1098 |
| DOI: | 10.1016/j.automatica.2021.110113 |