On a regularized Levenberg–Marquardt method for solving nonlinear inverse problems

We consider a regularized Levenberg–Marquardt method for solving nonlinear ill-posed inverse problems. We use the discrepancy principle to terminate the iteration. Under certain conditions, we prove the convergence of the method and obtain the order optimal convergence rates when the exact solution...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerische Mathematik Ročník 115; číslo 2; s. 229 - 259
Hlavní autor: Jin, Qinian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.04.2010
Springer
Témata:
ISSN:0029-599X, 0945-3245
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider a regularized Levenberg–Marquardt method for solving nonlinear ill-posed inverse problems. We use the discrepancy principle to terminate the iteration. Under certain conditions, we prove the convergence of the method and obtain the order optimal convergence rates when the exact solution satisfies suitable source-wise representations.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-009-0275-x