Continuous Latent Adversarial Autoencoder: A Time-Sensitive Method for Incomplete Time-Series Modeling

Incomplete time-series modeling is an unavoidable topic in real-world time-series analysis because of the frequent occurrence of missing values in practical data. However, integrating data preprocessing and subsequent analysis within a model can amplify the errors from processed values. Moreover, mo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE internet of things journal Ročník 12; číslo 7; s. 8552 - 8569
Hlavní autoři: Chang, Zhuoqing, Liu, Shubo, Cai, Zhaohui, Tu, Guoqing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2327-4662, 2327-4662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Incomplete time-series modeling is an unavoidable topic in real-world time-series analysis because of the frequent occurrence of missing values in practical data. However, integrating data preprocessing and subsequent analysis within a model can amplify the errors from processed values. Moreover, most existing methods that directly model incomplete time series often fail to infer values at any desired time or support multistep prediction. To address these issues, this article introduces a novel generative model called the continuous latent adversarial autoencoder (CLAAE) for directly modeling incomplete time series. CLAAE can effectively impute missing data of any time point and support multistep prediction. Specifically, CLAAE devises a time-aware long short-term memory (LSTM) encoder to extract temporal and sequential characteristics. The decoder is built upon the augmented neural ordinary differential equation (ANODE), allowing it to infer the probability of missing data across an arbitrary continuous-time horizon. To guarantee the meaningfulness of samples generated from any region within the prior space, a fully connected neural network is utilized as a discriminator, encouraging the aggregated posterior learned by the encoder to be indistinguishable from a selected prior distribution. Extensive experimental results across simulations and real-world datasets demonstrate that CLAAE outperforms baseline methods, especially when the amount of missing data is overwhelming. By combining the autoencoder and adversarial training, CLAAE can significantly enhance the quality of the synthetic samples, respecting the original feature distributions and the temporal dynamics.
AbstractList Incomplete time-series modeling is an unavoidable topic in real-world time-series analysis because of the frequent occurrence of missing values in practical data. However, integrating data preprocessing and subsequent analysis within a model can amplify the errors from processed values. Moreover, most existing methods that directly model incomplete time series often fail to infer values at any desired time or support multistep prediction. To address these issues, this article introduces a novel generative model called the continuous latent adversarial autoencoder (CLAAE) for directly modeling incomplete time series. CLAAE can effectively impute missing data of any time point and support multistep prediction. Specifically, CLAAE devises a time-aware long short-term memory (LSTM) encoder to extract temporal and sequential characteristics. The decoder is built upon the augmented neural ordinary differential equation (ANODE), allowing it to infer the probability of missing data across an arbitrary continuous-time horizon. To guarantee the meaningfulness of samples generated from any region within the prior space, a fully connected neural network is utilized as a discriminator, encouraging the aggregated posterior learned by the encoder to be indistinguishable from a selected prior distribution. Extensive experimental results across simulations and real-world datasets demonstrate that CLAAE outperforms baseline methods, especially when the amount of missing data is overwhelming. By combining the autoencoder and adversarial training, CLAAE can significantly enhance the quality of the synthetic samples, respecting the original feature distributions and the temporal dynamics.
Author Cai, Zhaohui
Liu, Shubo
Tu, Guoqing
Chang, Zhuoqing
Author_xml – sequence: 1
  givenname: Zhuoqing
  orcidid: 0000-0003-2391-7957
  surname: Chang
  fullname: Chang, Zhuoqing
  email: changzhuoqing@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Shubo
  orcidid: 0000-0003-0694-0856
  surname: Liu
  fullname: Liu, Shubo
  email: liu.shubo@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Zhaohui
  orcidid: 0000-0002-3263-1822
  surname: Cai
  fullname: Cai, Zhaohui
  email: zhcai@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Guoqing
  orcidid: 0000-0003-4748-4367
  surname: Tu
  fullname: Tu, Guoqing
  email: tugq2000@163.com
  organization: School of Cyber Science and Engineering, Wuhan University, Wuhan, China
BookMark eNpNkE1LAzEQhoMoWGt_gOAh4HlrPnazu96W4kelpQfreUmTiaa0SU2yBf-9W1qhpxmG550Xnht06bwDhO4oGVNK6sf36WI5ZoTlY14QyktxgQaMszLLhWCXZ_s1GsW4JoT0sYLWYoDMxLtkXee7iGcygUu40XsIUQYrN7jpkgenvIbwhBu8tFvIPsBFm-we8BzSt9fY-ICnPbTdbSDBPxQsRDzvkxvrvm7RlZGbCKPTHKLPl-fl5C2bLV6nk2aWKU6rlJW5llrXXDKjuZGMqXzFVFUJzaUxRbUiqhba1IRwXSnCoZYKZC1FsVIG-usQPRz_7oL_6SCmdu274PrKti-geZlXtegpeqRU8DEGMO0u2K0Mvy0l7cFoezDaHoy2J6N95v6YsQBwxpeFKHLB_wAd13Vz
CODEN IITJAU
Cites_doi 10.1109/TCYB.2019.2923434
10.2307/2335739
10.1007/978-3-031-44192-9_2
10.1609/aaai.v35i10.17086
10.1016/j.patcog.2017.08.016
10.1109/ICCVW.2019.00075
10.1109/CVPRW56347.2022.00218
10.24963/ijcai.2019/607
10.24963/ijcai.2019/429
10.1016/j.patcog.2019.106973
10.1016/j.rse.2007.10.009
10.1109/MSP.2017.2765202
10.1016/j.trc.2016.09.015
10.1109/LSP.2022.3224880
10.1109/TNNLS.2015.2480959
10.1109/TKDE.2022.3167536
10.1016/j.neucom.2016.04.015
10.1016/j.asoc.2016.05.044
10.1145/3097983.3097997
10.1109/JIOT.2024.3358871
10.1016/j.neucom.2019.07.066
10.1146/annurev.psych.58.110405.085530
10.1109/BIBM47256.2019.8982996
10.48550/arXiv.1312.6114
10.1016/j.neucom.2019.06.007
10.1609/aaai.v37i9.26317
10.1016/j.ins.2008.07.024
10.1145/3447548.3467385
10.1007/s10618-022-00903-7
10.1609/aaai.v34i04.6056
10.1016/j.patcog.2020.107501
10.1109/TNNLS.2021.3114203
10.20470/jsi.v5i1.178
10.1126/science.1127647
10.1109/TPAMI.2020.3027975
10.1109/TCYB.2016.2561974
10.1038/s41598-018-24271-9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2024.3501376
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 8569
ExternalDocumentID 10_1109_JIOT_2024_3501376
10756546
Genre orig-research
GrantInformation_xml – fundername: Major Projects of Technical Innovation of Hubei Province
  grantid: 2018AAA046
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c318t-74dadd93a2fd3fa22c4b2c886d3aff58b0c96df9003d8c03e9acea9a65bcfe003
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001453255300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Mon Jun 30 07:48:28 EDT 2025
Sat Nov 29 08:06:35 EST 2025
Wed Aug 27 01:37:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-74dadd93a2fd3fa22c4b2c886d3aff58b0c96df9003d8c03e9acea9a65bcfe003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3263-1822
0000-0003-4748-4367
0000-0003-0694-0856
0000-0003-2391-7957
PQID 3181474896
PQPubID 2040421
PageCount 18
ParticipantIDs proquest_journals_3181474896
crossref_primary_10_1109_JIOT_2024_3501376
ieee_primary_10756546
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref15
ref58
ref53
ref52
ref55
ref10
Cao (ref17); 31
Gupta (ref18) 2020
ref19
Alcaraz (ref59) 2023
Makhzani (ref23) 2015
Huang (ref42); 33
ref51
Silva (ref56)
ref46
ref45
ref48
ref47
ref41
Chen (ref20); 31
ref44
ref43
Hastie (ref12) 2015; 16
Bengio (ref9); 8
ref8
ref7
Box (ref11) 2015
ref4
Dupont (ref40); 32
ref3
ref6
Li (ref13) 2019
ref5
Zhao (ref22)
Pidhorskyi (ref50); 31
Rubanova (ref21); 32
ref35
ref34
Yoon (ref36)
ref31
ref30
ref32
Gondara (ref33) 2017
ref2
ref1
ref38
Galbraith (ref28) 2001
Fortuin (ref39)
ref24
Luo (ref37); 31
ref26
Schreyer (ref49) 2019
ref25
ref27
Choi (ref16)
Lipton (ref14)
ref29
ref60
ref61
Adler (ref54); 31
References_xml – volume: 33
  start-page: 16177
  volume-title: Proc. 34th Conf. Neural Inf. Process. Syst.
  ident: ref42
  article-title: Learning continuous system dynamics from irregularly-sampled partial observations
– volume: 16
  start-page: 3367
  issue: 1
  year: 2015
  ident: ref12
  article-title: Matrix completion and low-rank SVD via fast alternating least squares
  publication-title: J. Mach. Learn. Res.
– ident: ref30
  doi: 10.1109/TCYB.2019.2923434
– ident: ref7
  doi: 10.2307/2335739
– ident: ref57
  doi: 10.1007/978-3-031-44192-9_2
– ident: ref19
  doi: 10.1609/aaai.v35i10.17086
– ident: ref51
  doi: 10.1016/j.patcog.2017.08.016
– ident: ref45
  doi: 10.1109/ICCVW.2019.00075
– ident: ref48
  doi: 10.1109/CVPRW56347.2022.00218
– ident: ref55
  doi: 10.24963/ijcai.2019/607
– ident: ref1
  doi: 10.24963/ijcai.2019/429
– ident: ref52
  doi: 10.1016/j.patcog.2019.106973
– volume-title: Time Series Analysis: Forecasting and Control
  year: 2015
  ident: ref11
– ident: ref10
  doi: 10.1016/j.rse.2007.10.009
– start-page: 1651
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref39
  article-title: GP-VAE: Deep probabilistic time series imputation
– ident: ref46
  doi: 10.1109/MSP.2017.2765202
– ident: ref35
  doi: 10.1016/j.trc.2016.09.015
– year: 2019
  ident: ref49
  article-title: Detection of accounting anomalies in the latent space using adversarial autoencoder neural networks
  publication-title: arXiv:1908.00734
– ident: ref60
  doi: 10.1109/LSP.2022.3224880
– year: 2015
  ident: ref23
  article-title: Adversarial autoencoders
  publication-title: arXiv:1511.05644
– volume: 31
  start-page: 1
  volume-title: Proc. 32nd Conf. Neural Inf. Process. Syst.
  ident: ref54
  article-title: Banach Wasserstein GAN
– ident: ref5
  doi: 10.1109/TNNLS.2015.2480959
– ident: ref41
  doi: 10.1109/TKDE.2022.3167536
– ident: ref27
  doi: 10.1016/j.neucom.2016.04.015
– ident: ref26
  doi: 10.1016/j.asoc.2016.05.044
– year: 2017
  ident: ref33
  article-title: Multiple imputation using deep denoising autoencoders
  publication-title: arXiv:1705.02737
– ident: ref31
  doi: 10.1145/3097983.3097997
– volume: 32
  start-page: 1
  volume-title: Proc. 33rd Conf. Neural Inf. Process. Syst.
  ident: ref40
  article-title: Augmented neural odes
– volume: 31
  start-page: 1
  volume-title: Proc. 32nd Conf. Neural Inf. Process. Syst.
  ident: ref20
  article-title: Neural ordinary differential equations
– volume: 31
  start-page: 1
  volume-title: Proc. 32nd Conf. Neural Inf. Process. Syst.
  ident: ref50
  article-title: Generative probabilistic novelty detection with adversarial autoencoders
– ident: ref2
  doi: 10.1109/JIOT.2024.3358871
– volume: 8
  start-page: 1
  volume-title: Proc. Neural Inf. Process. Syst.
  ident: ref9
  article-title: Recurrent neural networks for missing or asynchronous data
– volume: 31
  start-page: 1603
  volume-title: Proc. 32nd Int Conf. Neural Inf. Process. Syst.
  ident: ref37
  article-title: Multivariate time series imputation with generative adversarial networks
– year: 2020
  ident: ref18
  article-title: Time-series imputation and prediction with bi-directional generative adversarial networks
  publication-title: arXiv:2009.08900
– ident: ref32
  doi: 10.1016/j.neucom.2019.07.066
– start-page: 301
  volume-title: Proc. Mach. Learn. Healthcare Conf.
  ident: ref16
  article-title: Doctor AI: Predicting clinical events via recurrent neural networks
– year: 2019
  ident: ref13
  article-title: MisGAN: Learning from incomplete data with generative adversarial networks
  publication-title: arXiv:1902.09599
– start-page: 245
  volume-title: Proc. Comput. Cardiol.
  ident: ref56
  article-title: Predicting in-hospital mortality of ICU patients: The PhysioNet/computing in cardiology challenge 2012
– ident: ref24
  doi: 10.1146/annurev.psych.58.110405.085530
– ident: ref34
  doi: 10.1109/BIBM47256.2019.8982996
– volume: 31
  start-page: 6776
  volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst.
  ident: ref17
  article-title: BRITS: Bidirectional recurrent imputation for time series
– ident: ref61
  doi: 10.48550/arXiv.1312.6114
– volume: 32
  start-page: 1
  volume-title: Proc. 33rd Conf. Neural Inf. Process. Syst.
  ident: ref21
  article-title: Latent ODEs for irregularly-sampled time series
– ident: ref53
  doi: 10.1016/j.neucom.2019.06.007
– ident: ref58
  doi: 10.1609/aaai.v37i9.26317
– ident: ref29
  doi: 10.1016/j.ins.2008.07.024
– start-page: 5902
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref22
  article-title: Adversarially regularized autoencoders
– ident: ref43
  doi: 10.1145/3447548.3467385
– ident: ref3
  doi: 10.1007/s10618-022-00903-7
– year: 2023
  ident: ref59
  article-title: Diffusion-based time series imputation and forecasting with structured state space models
  publication-title: Trans. Mach. Learn. Res.
– ident: ref4
  doi: 10.1609/aaai.v34i04.6056
– ident: ref38
  doi: 10.1016/j.patcog.2020.107501
– volume-title: Autoregression-Based Estimators for ARFIMA Models
  year: 2001
  ident: ref28
– ident: ref47
  doi: 10.1109/TNNLS.2021.3114203
– start-page: 5689
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref36
  article-title: Gain: Missing data imputation using generative adversarial nets
– ident: ref25
  doi: 10.20470/jsi.v5i1.178
– start-page: 253
  volume-title: Proc. Mach. Learn. Healthcare Conf.
  ident: ref14
  article-title: Directly modeling missing data in sequences with RNNs: Improved classification of clinical time series
– ident: ref44
  doi: 10.1126/science.1127647
– ident: ref8
  doi: 10.1109/TPAMI.2020.3027975
– ident: ref6
  doi: 10.1109/TCYB.2016.2561974
– ident: ref15
  doi: 10.1038/s41598-018-24271-9
SSID ssj0001105196
Score 2.3364637
Snippet Incomplete time-series modeling is an unavoidable topic in real-world time-series analysis because of the frequent occurrence of missing values in practical...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 8552
SubjectTerms Accuracy
Adversarial autoencoder (AAE)
adversarial training
Analytical models
Automation
Coders
Data models
Decoding
Differential equations
Imputation
incomplete time series
Internet of Things
Long short term memory
Mathematical models
Missing data
Modelling
Neural networks
ordinary differential equation (ODE)
Ordinary differential equations
probabilistic forecasting
Time series
Time series analysis
Training
Title Continuous Latent Adversarial Autoencoder: A Time-Sensitive Method for Incomplete Time-Series Modeling
URI https://ieeexplore.ieee.org/document/10756546
https://www.proquest.com/docview/3181474896
Volume 12
WOSCitedRecordID wos001453255300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7c8MEX54-J0yl58EnobJs0bXwb4lCZU3DK3kqapLCXTrbWv99c2uJAfPCtlATaXO5yl7v7PoCrKJRxYILMo8qGqwh_4iXcKI8rmeTM2EPCAWl_TOPZLFksxGvTrO56YYwxrvjMjPDR5fL1SlV4VWY1PI6w-aYDnTjmdbPWz4VKgN4IbzKXgS9unh5f5jYCDNkIs2cUYUW2zh5HpvLLArtjZdL75wcdwH7jP5JxLfBD2DHFEfRabgbSqOox5Ag7tSwqG9iTqfUni5I47uWNxB1HxlW5QghLbda3ZEywEcR7w1p2tH7k2dFKE-vPEms_sOjcutbtIIytCVKoYSN7H94n9_O7B6_hVPCU1d7Si5m2Fk1QGeaa5jIMFctClSRcU5nnUZL5SnCd4_2mTpRPjZDKSCF5lKnc2Lcn0C1WhTkF4mdUyEAyG5NQZjgTmYy4sO6RpJpmOh7Adbva6WcNnZG6kMMXKYomRdGkjWgG0Mfl3RpYr-wAhq2A0ka7Nqn9k4AhbA4_-2PaOeyFSNTrSmyG0C3XlbmAXfVVLjfrS7dxvgGHs8PZ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50Cvri_DFxOjUPPgmdbdOmjW9DHJt2U3DK3kqapLCXTrbWv99c1uFAfPCtlATaXO5yl7v7PoCb0BeRp73ModKEqwh_4sRMS4dJEeeBNoeEBdL-SKLxOJ5O-WvdrG57YbTWtvhMd_HR5vLVXFZ4VWY0PAqx-WYbdpA6q27X-rlS8dAfYXXu0nP53dPwZWJiQD_oYv6MIrDIxulj6VR-2WB7sPSb__ykQzioPUjSW4n8CLZ0cQzNNTsDqZX1BHIEnpoVlQntSWI8yqIkln15KXDPkV5VzhHEUunFPekRbAVx3rCaHe0fGVliaWI8WmIsCJadG-d6PQija4IkatjK3oL3_uPkYeDUrAqONPpbOlGgjE3jVPi5ornwfRlkvoxjpqjI8zDOXMmZyvGGU8XSpZoLqQUXLMxkrs3bU2gU80KfAXEzyoUnAhOV0ECzgGciZNw4SIIqmqmoDbfr1U4_V-AZqQ06XJ6iaFIUTVqLpg0tXN6NgauVbUNnLaC01q9lav7ECxA4h53_Me0a9gaTUZImw_HzBez7SNtrC2460CgXlb6EXflVzpaLK7uJvgHjtcci
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+Latent+Adversarial+Autoencoder%3A+A+Time-Sensitive+Method+for+Incomplete+Time-Series+Modeling&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Chang%2C+Zhuoqing&rft.au=Liu%2C+Shubo&rft.au=Cai%2C+Zhaohui&rft.au=Tu%2C+Guoqing&rft.date=2025-04-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=12&rft.issue=7&rft.spage=8552&rft.epage=8569&rft_id=info:doi/10.1109%2FJIOT.2024.3501376&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2024_3501376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon