Incremental Medians via Online Bidding

In the k -median problem we are given sets of facilities and customers, and distances between them. For a given set F of facilities, the cost of serving a customer u is the minimum distance between u and a facility in F . The goal is to find a set F of k facilities that minimizes the sum, over all c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithmica Ročník 50; číslo 4; s. 455 - 478
Hlavní autori: Chrobak, Marek, Kenyon, Claire, Noga, John, Young, Neal E.
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: New York Springer-Verlag 01.04.2008
Springer
Predmet:
ISSN:0178-4617, 1432-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the k -median problem we are given sets of facilities and customers, and distances between them. For a given set F of facilities, the cost of serving a customer u is the minimum distance between u and a facility in F . The goal is to find a set F of k facilities that minimizes the sum, over all customers, of their service costs. Following the work of Mettu and Plaxton, we study the incremental medians problem, where k is not known in advance. An incremental algorithm produces a nested sequence of facility sets F 1 ⊆ F 2 ⊆ ⋅⋅⋅ ⊆ F n , where | F k |= k for each  k . Such an algorithm is called c -cost-competitive if the cost of each F k is at most c times the optimum k -median cost. We give improved incremental algorithms for the metric version of this problem: an 8-cost-competitive deterministic algorithm, a 2 e ≈5.44-cost-competitive randomized algorithm, a (24+ ε )-cost-competitive, polynomial-time deterministic algorithm, and a 6 e + ε ≈16.31-cost-competitive, polynomial-time randomized algorithm. We also consider the competitive ratio with respect to size . An algorithm is s -size-competitive if the cost of each F k is at most the minimum cost of any set of k facilities, while the size of F k is at most sk . We show that the optimal size-competitive ratios for this problem, in the deterministic and randomized cases, are 4 and e . For polynomial-time algorithms, we present the first polynomial-time O (log  m )-size-approximation algorithm for the offline problem, as well as a polynomial-time O (log  m )-size-competitive algorithm for the incremental problem. Our upper bound proofs reduce the incremental medians problem to the following online bidding problem: faced with some unknown threshold T ∈ℝ + , an algorithm must submit “bids” b ∈ℝ + until it submits a bid b ≥ T , paying the sum of all its bids. We present folklore algorithms for online bidding and prove that they are optimally competitive. We extend some of the above results for incremental medians to approximately metric distance functions and to incremental fractional medians. Finally, we consider a restricted version of the incremental medians problem where k is restricted to one of two given values, for which we give a deterministic algorithm with a nearly optimal cost-competitive ratio.
AbstractList In the k -median problem we are given sets of facilities and customers, and distances between them. For a given set F of facilities, the cost of serving a customer u is the minimum distance between u and a facility in F . The goal is to find a set F of k facilities that minimizes the sum, over all customers, of their service costs. Following the work of Mettu and Plaxton, we study the incremental medians problem, where k is not known in advance. An incremental algorithm produces a nested sequence of facility sets F 1 ⊆ F 2 ⊆ ⋅⋅⋅ ⊆ F n , where | F k |= k for each  k . Such an algorithm is called c -cost-competitive if the cost of each F k is at most c times the optimum k -median cost. We give improved incremental algorithms for the metric version of this problem: an 8-cost-competitive deterministic algorithm, a 2 e ≈5.44-cost-competitive randomized algorithm, a (24+ ε )-cost-competitive, polynomial-time deterministic algorithm, and a 6 e + ε ≈16.31-cost-competitive, polynomial-time randomized algorithm. We also consider the competitive ratio with respect to size . An algorithm is s -size-competitive if the cost of each F k is at most the minimum cost of any set of k facilities, while the size of F k is at most sk . We show that the optimal size-competitive ratios for this problem, in the deterministic and randomized cases, are 4 and e . For polynomial-time algorithms, we present the first polynomial-time O (log  m )-size-approximation algorithm for the offline problem, as well as a polynomial-time O (log  m )-size-competitive algorithm for the incremental problem. Our upper bound proofs reduce the incremental medians problem to the following online bidding problem: faced with some unknown threshold T ∈ℝ + , an algorithm must submit “bids” b ∈ℝ + until it submits a bid b ≥ T , paying the sum of all its bids. We present folklore algorithms for online bidding and prove that they are optimally competitive. We extend some of the above results for incremental medians to approximately metric distance functions and to incremental fractional medians. Finally, we consider a restricted version of the incremental medians problem where k is restricted to one of two given values, for which we give a deterministic algorithm with a nearly optimal cost-competitive ratio.
Author Chrobak, Marek
Kenyon, Claire
Young, Neal E.
Noga, John
Author_xml – sequence: 1
  givenname: Marek
  surname: Chrobak
  fullname: Chrobak, Marek
  organization: Department of Computer Science, University of California
– sequence: 2
  givenname: Claire
  surname: Kenyon
  fullname: Kenyon, Claire
  organization: Computer Science Department, Brown University
– sequence: 3
  givenname: John
  surname: Noga
  fullname: Noga, John
  organization: Department of Computer Science, California State University
– sequence: 4
  givenname: Neal E.
  surname: Young
  fullname: Young, Neal E.
  email: algorithmica@neal.young.name
  organization: Department of Computer Science, University of California
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20365167$$DView record in Pascal Francis
BookMark eNp9kD1PwzAURS1UJNrCD2DLApvh2Y7jZISKj0pFXWC2HPulcpU6lR1Q-fekCiwMne4d7rnDmZFJ6AIScs3gjgGo-wSQS0GHSisASQ9nZMpywSnInE3IFJgqaV4wdUFmKW0BGFdVMSW3y2Aj7jD0ps3e0HkTUvblTbYOrQ-YPXrnfNhckvPGtAmvfnNOPp6f3hevdLV-WS4eVtQKVva0kFY20jbATIVcqarOEaUSliOCMyhZ2QjBHTrJlWtqIY1wJaiK2RoUt2JObsbfvUnWtE00wfqk99HvTPzWHEQhWaGGnRp3NnYpRWy09b3pfRf6aHyrGeijFj1q0cd61KIPA8n-kX_npxg-MmnYhg1Gve0-YxhEnIB-AOscdjQ
CitedBy_id crossref_primary_10_1016_j_tcs_2009_09_029
crossref_primary_10_1016_j_ipl_2010_03_016
crossref_primary_10_1016_j_tcs_2015_09_021
crossref_primary_10_1155_2013_313868
crossref_primary_10_1016_j_tcs_2021_02_016
crossref_primary_10_1016_j_ic_2017_12_002
crossref_primary_10_1016_j_ipl_2009_07_006
crossref_primary_10_1007_s00453_019_00625_1
crossref_primary_10_1002_net_21595
crossref_primary_10_1137_110844210
crossref_primary_10_1007_s10878_015_9933_3
crossref_primary_10_1007_s11432_014_5065_0
crossref_primary_10_1016_j_disopt_2016_08_005
crossref_primary_10_1007_s10107_020_01576_0
crossref_primary_10_1137_070698257
crossref_primary_10_1590_0104_6632_20190361s20170379
crossref_primary_10_1016_j_ejor_2015_08_060
Cites_doi 10.1007/11682462_31
10.1007/978-3-540-39658-1_6
10.1007/3-540-61440-0_166
10.1016/j.ipl.2005.09.009
10.1016/0304-3975(94)90151-1
10.1109/FOCS.2006.39
10.1145/347476.347479
10.1006/jagm.2000.1100
10.1006/inco.1996.0092
10.1145/375827.375845
10.1016/0020-0190(92)90208-D
10.1145/950620.950621
10.1137/S0097539701383443
10.1137/S0097539701398594
10.1023/A:1008023416823
10.1137/S0097539702416402
10.1016/j.jcss.2004.10.006
ContentType Journal Article
Conference Proceeding
Copyright Springer Science+Business Media, LLC 2007
2008 INIST-CNRS
Copyright_xml – notice: Springer Science+Business Media, LLC 2007
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1007/s00453-007-9005-x
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1432-0541
EndPage 478
ExternalDocumentID 20365167
10_1007_s00453_007_9005_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
IQODW
ID FETCH-LOGICAL-c318t-65c5f5cf01a9e2779b4ee573c2ee0dae518f332ded527dfb35a3d80791cb072c3
IEDL.DBID RSV
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000253895900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Wed Apr 02 07:18:00 EDT 2025
Sat Nov 29 03:45:23 EST 2025
Tue Nov 18 22:33:02 EST 2025
Fri Feb 21 02:40:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Competitive Ratio
Incremental Algorithm
Facility Location Problem
Deterministic Algorithm
Fractional Median
On line
Bidding
Refinement method
Competitiveness
Median
Graph theory
Polynomial method
Approximation algorithm
Randomized algorithm
Combinatorial optimization
Competitive algorithms
Polynomial time
Optimum
Upper bound
Randomization
Randomized design
User service
Theorem proving
K median problem
Minimal distance
Metric
Deterministic approach
Deterministic algorithms
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MeetingName Latin American Theoretical Informatics Conference (LATIN)
MergedId FETCHMERGED-LOGICAL-c318t-65c5f5cf01a9e2779b4ee573c2ee0dae518f332ded527dfb35a3d80791cb072c3
PageCount 24
ParticipantIDs pascalfrancis_primary_20365167
crossref_citationtrail_10_1007_s00453_007_9005_x
crossref_primary_10_1007_s00453_007_9005_x
springer_journals_10_1007_s00453_007_9005_x
PublicationCentury 2000
PublicationDate 2008-04-01
PublicationDateYYYYMMDD 2008-04-01
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-04-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: New York, NY
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2008
Publisher Springer-Verlag
Springer
Publisher_xml – name: Springer-Verlag
– name: Springer
References ChrobakM.KenyonC.NogaJ.YoungN.Online medians via online biddingProc. 7th Latin American Theoretical Informatics Symp. (LATIN)2006BerlinSpringer311322
GoemansM.KleinbergJ.An improved approximation ratio for the minimum latency problemProc. 7th Symp. on Discrete Algorithms (SODA)1996New YorkACM/SIAM152158
JainK.MahdianM.MarkakisE.SaberiA.VaziraniV.V.Greedy facility location algorithms analyzed using dual fitting with factor-revealing lpJ. ACM20035079582410.1145/950620.9506212146253
CharikarM.ChekuriC.FederT.MotwaniR.Incremental clustering and dynamic information retrievalProc. 29th Symp. Theory of Computing (STOC)1997New YorkACM626635
DasguptaS.LongP.M.Performance guarantees for hierarchical clusteringJ. Comput. Syst. Sci.20057045555691101.6898010.1016/j.jcss.2004.10.0062136964
KoutsoupiasE.Weak adversaries for the k-server problemProc. 40th Symp. Foundations of Computer Science (FOCS)1999New YorkIEEE444449
YoungN.E.K-medians, facility location, and the Chernoff–Wald boundProc. 11th Symp. on Discrete Algorithms (SODA)2000New YorkACM/SIAM8695
LinG.NagarajanC.RajamaranR.WilliamsonD.P.A general approach for incremental approximation and hierarchical clusteringProc. 17th Symp. on Discrete Algorithms (SODA)2006New YorkACM/SIAM
CharikarM.GuhaS.TardosE.ShmoysD.B.A constant-factor approximation algorithm for the k-median problemProc. 31st Symp. Theory of Computing (STOC)1999New YorkACM110
LinJ.-H.VitterJ.S.ε-approximations with minimum packing constraint violation (extended abstract)Proc. 24th Symp. Theory of Computing (STOC)1992New YorkACM771782
LinJ.-H.VitterJ.S.Approximation algorithms for geometric median problemsInf. Process. Lett.1992442452490764.6807910.1016/0020-0190(92)90208-D1202349
CharikarM.GuhaS.Improved combinatorial algorithms for facility location problemsSIAM J. Comput.20053448038241075.6810010.1137/S00975397013985942148859
ChrobakM.KenyonC.YoungN.E.The reverse greedy algorithm for the k-median problemInf. Process. Lett.200697687210.1016/j.ipl.2005.09.0092187051
CharikarM.GuhaS.Improved combinatorial algorithms for the facility location and k-median problemsProc. 40th Symp. Foundations of Computer Science (FOCS)1999New YorkIEEE378388
GoemansM.KleinbergJ.An improved approximation ratio for the minimum latency problemMath. Program.199882111112410.1007/BF015858671627628
ChekuriC.GoelA.KhannaS.KumarA.Multi-processor scheduling to minimize flow time with ε-resource augmentationProc. 36th Symp. Theory of Computing (STOC)2004New YorkACM363372
FaginR.StockmeyerL.Relaxing the triangle inequality in pattern matchingInt. J. Comput. Vis.19983021923110.1023/A:1008023416823
KalyanasundaramB.PruhsK.Speed is as powerful as clairvoyanceJ. ACM20004721422110.1145/347476.3474791866172
AryaV.GargN.KhandekarR.MeyersonA.MunagalaK.PanditV.Local search heuristic for k-median and facility location problemsProc. 33rd Symp. Theory of Computing (STOC)2001New YorkACM2129
MettuR.R.Greg PlaxtonC.The online median problemSIAM J. Comput.2003328168321128.9055010.1137/S00975397013834432001756
AryaV.GargN.KhandekarR.MeyersonA.MunagalaK.PanditV.Local search heuristics for k-median and facility location problemsSIAM J. Comput.20043335445621105.6811810.1137/S00975397024164022066641
KorupoluM.R.Greg PlaxtonC.RajaramanR.Analysis of a local search heuristic for facility location problemsJ. Algorithms2000371461880962.6804410.1006/jagm.2000.11001783252
MettuR.R.Greg PlaxtonC.The online median problemProc. 41st Symp. Foundations of Computer Science (FOCS)2000New YorkIEEE33934810.1109/SFCS.2000.892122
Buchbinder, N., Naor, J.: Improved bounds for online routing and packing via a primal-dual approach. In: Proc. 46th Symp. Foundations of Computer Science (FOCS), pp. 293–304 (2006)
Chakrabarti, S., Phillips, C.A., Schulz, A.S., Shmoys, D.B., Stein, C., Wein, J.: Improved scheduling algorithms for minsum criteria. In: Automata, Languages and Programming, pp. 646–657 (1996)
MotwaniR.PhillipsS.TorngE.Nonclairvoyant schedulingTheor. Comput. Sci.1994130117470820.9005610.1016/0304-3975(94)90151-11287130
JainK.VaziraniV.V.Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxationJ. ACM20014827429610.1145/375827.3758451868717
Archer, A., Rajagopalan, R., Shmoys, D.B.: Lagrangian relaxation for the k-median problem: new insights and continuity properties. In: Proc. 11th European Symp. on Algorithms (ESA), pp. 31–42 (2003)
KaoM.-Y.ReifJ.H.TateS.R.Searching in an unknown environment: An optimal randomized algorithm for the cow-path problemInf. Comput.1996131163800876.6803010.1006/inco.1996.00921425815Preliminary version appeared in the Proceedings of the Symp. on Discrete Algorithms, Austin, TX, January 1993
JainK.MahdianM.SaberiA.A new greedy approach for facility location problemsProc. 34th Symp. Theory of Computing (STOC)2002New YorkACM731740
K. Jain (9005_CR17) 2003; 50
K. Jain (9005_CR19) 2001; 48
M. Chrobak (9005_CR12) 2006; 97
K. Jain (9005_CR18) 2002
B. Kalyanasundaram (9005_CR20) 2000; 47
G. Lin (9005_CR24) 2006
M. Goemans (9005_CR16) 1998; 82
9005_CR5
9005_CR4
M.-Y. Kao (9005_CR21) 1996; 131
R. Fagin (9005_CR14) 1998; 30
M. Charikar (9005_CR8) 2005; 34
R.R. Mettu (9005_CR27) 2000
M.R. Korupolu (9005_CR22) 2000; 37
N.E. Young (9005_CR30) 2000
M. Charikar (9005_CR9) 1999
S. Dasgupta (9005_CR13) 2005; 70
M. Chrobak (9005_CR11) 2006
E. Koutsoupias (9005_CR23) 1999
J.-H. Lin (9005_CR26) 1992
M. Charikar (9005_CR6) 1997
M. Charikar (9005_CR7) 1999
M. Goemans (9005_CR15) 1996
9005_CR1
V. Arya (9005_CR2) 2001
C. Chekuri (9005_CR10) 2004
J.-H. Lin (9005_CR25) 1992; 44
V. Arya (9005_CR3) 2004; 33
R.R. Mettu (9005_CR28) 2003; 32
R. Motwani (9005_CR29) 1994; 130
References_xml – reference: JainK.MahdianM.SaberiA.A new greedy approach for facility location problemsProc. 34th Symp. Theory of Computing (STOC)2002New YorkACM731740
– reference: YoungN.E.K-medians, facility location, and the Chernoff–Wald boundProc. 11th Symp. on Discrete Algorithms (SODA)2000New YorkACM/SIAM8695
– reference: LinJ.-H.VitterJ.S.Approximation algorithms for geometric median problemsInf. Process. Lett.1992442452490764.6807910.1016/0020-0190(92)90208-D1202349
– reference: ChekuriC.GoelA.KhannaS.KumarA.Multi-processor scheduling to minimize flow time with ε-resource augmentationProc. 36th Symp. Theory of Computing (STOC)2004New YorkACM363372
– reference: FaginR.StockmeyerL.Relaxing the triangle inequality in pattern matchingInt. J. Comput. Vis.19983021923110.1023/A:1008023416823
– reference: CharikarM.GuhaS.TardosE.ShmoysD.B.A constant-factor approximation algorithm for the k-median problemProc. 31st Symp. Theory of Computing (STOC)1999New YorkACM110
– reference: LinJ.-H.VitterJ.S.ε-approximations with minimum packing constraint violation (extended abstract)Proc. 24th Symp. Theory of Computing (STOC)1992New YorkACM771782
– reference: Buchbinder, N., Naor, J.: Improved bounds for online routing and packing via a primal-dual approach. In: Proc. 46th Symp. Foundations of Computer Science (FOCS), pp. 293–304 (2006)
– reference: KorupoluM.R.Greg PlaxtonC.RajaramanR.Analysis of a local search heuristic for facility location problemsJ. Algorithms2000371461880962.6804410.1006/jagm.2000.11001783252
– reference: GoemansM.KleinbergJ.An improved approximation ratio for the minimum latency problemProc. 7th Symp. on Discrete Algorithms (SODA)1996New YorkACM/SIAM152158
– reference: KalyanasundaramB.PruhsK.Speed is as powerful as clairvoyanceJ. ACM20004721422110.1145/347476.3474791866172
– reference: DasguptaS.LongP.M.Performance guarantees for hierarchical clusteringJ. Comput. Syst. Sci.20057045555691101.6898010.1016/j.jcss.2004.10.0062136964
– reference: Chakrabarti, S., Phillips, C.A., Schulz, A.S., Shmoys, D.B., Stein, C., Wein, J.: Improved scheduling algorithms for minsum criteria. In: Automata, Languages and Programming, pp. 646–657 (1996)
– reference: JainK.VaziraniV.V.Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxationJ. ACM20014827429610.1145/375827.3758451868717
– reference: CharikarM.GuhaS.Improved combinatorial algorithms for the facility location and k-median problemsProc. 40th Symp. Foundations of Computer Science (FOCS)1999New YorkIEEE378388
– reference: AryaV.GargN.KhandekarR.MeyersonA.MunagalaK.PanditV.Local search heuristic for k-median and facility location problemsProc. 33rd Symp. Theory of Computing (STOC)2001New YorkACM2129
– reference: MettuR.R.Greg PlaxtonC.The online median problemProc. 41st Symp. Foundations of Computer Science (FOCS)2000New YorkIEEE33934810.1109/SFCS.2000.892122
– reference: CharikarM.GuhaS.Improved combinatorial algorithms for facility location problemsSIAM J. Comput.20053448038241075.6810010.1137/S00975397013985942148859
– reference: CharikarM.ChekuriC.FederT.MotwaniR.Incremental clustering and dynamic information retrievalProc. 29th Symp. Theory of Computing (STOC)1997New YorkACM626635
– reference: AryaV.GargN.KhandekarR.MeyersonA.MunagalaK.PanditV.Local search heuristics for k-median and facility location problemsSIAM J. Comput.20043335445621105.6811810.1137/S00975397024164022066641
– reference: ChrobakM.KenyonC.NogaJ.YoungN.Online medians via online biddingProc. 7th Latin American Theoretical Informatics Symp. (LATIN)2006BerlinSpringer311322
– reference: MettuR.R.Greg PlaxtonC.The online median problemSIAM J. Comput.2003328168321128.9055010.1137/S00975397013834432001756
– reference: Archer, A., Rajagopalan, R., Shmoys, D.B.: Lagrangian relaxation for the k-median problem: new insights and continuity properties. In: Proc. 11th European Symp. on Algorithms (ESA), pp. 31–42 (2003)
– reference: MotwaniR.PhillipsS.TorngE.Nonclairvoyant schedulingTheor. Comput. Sci.1994130117470820.9005610.1016/0304-3975(94)90151-11287130
– reference: KoutsoupiasE.Weak adversaries for the k-server problemProc. 40th Symp. Foundations of Computer Science (FOCS)1999New YorkIEEE444449
– reference: JainK.MahdianM.MarkakisE.SaberiA.VaziraniV.V.Greedy facility location algorithms analyzed using dual fitting with factor-revealing lpJ. ACM20035079582410.1145/950620.9506212146253
– reference: ChrobakM.KenyonC.YoungN.E.The reverse greedy algorithm for the k-median problemInf. Process. Lett.200697687210.1016/j.ipl.2005.09.0092187051
– reference: GoemansM.KleinbergJ.An improved approximation ratio for the minimum latency problemMath. Program.199882111112410.1007/BF015858671627628
– reference: LinG.NagarajanC.RajamaranR.WilliamsonD.P.A general approach for incremental approximation and hierarchical clusteringProc. 17th Symp. on Discrete Algorithms (SODA)2006New YorkACM/SIAM
– reference: KaoM.-Y.ReifJ.H.TateS.R.Searching in an unknown environment: An optimal randomized algorithm for the cow-path problemInf. Comput.1996131163800876.6803010.1006/inco.1996.00921425815Preliminary version appeared in the Proceedings of the Symp. on Discrete Algorithms, Austin, TX, January 1993
– start-page: 444
  volume-title: Proc. 40th Symp. Foundations of Computer Science (FOCS)
  year: 1999
  ident: 9005_CR23
– start-page: 311
  volume-title: Proc. 7th Latin American Theoretical Informatics Symp. (LATIN)
  year: 2006
  ident: 9005_CR11
  doi: 10.1007/11682462_31
– ident: 9005_CR1
  doi: 10.1007/978-3-540-39658-1_6
– ident: 9005_CR5
  doi: 10.1007/3-540-61440-0_166
– start-page: 1
  volume-title: Proc. 31st Symp. Theory of Computing (STOC)
  year: 1999
  ident: 9005_CR9
– start-page: 626
  volume-title: Proc. 29th Symp. Theory of Computing (STOC)
  year: 1997
  ident: 9005_CR6
– volume: 97
  start-page: 68
  year: 2006
  ident: 9005_CR12
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2005.09.009
– volume: 130
  start-page: 17
  issue: 1
  year: 1994
  ident: 9005_CR29
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(94)90151-1
– start-page: 21
  volume-title: Proc. 33rd Symp. Theory of Computing (STOC)
  year: 2001
  ident: 9005_CR2
– ident: 9005_CR4
  doi: 10.1109/FOCS.2006.39
– volume: 47
  start-page: 214
  year: 2000
  ident: 9005_CR20
  publication-title: J. ACM
  doi: 10.1145/347476.347479
– start-page: 339
  volume-title: Proc. 41st Symp. Foundations of Computer Science (FOCS)
  year: 2000
  ident: 9005_CR27
– start-page: 363
  volume-title: Proc. 36th Symp. Theory of Computing (STOC)
  year: 2004
  ident: 9005_CR10
– volume: 37
  start-page: 146
  year: 2000
  ident: 9005_CR22
  publication-title: J. Algorithms
  doi: 10.1006/jagm.2000.1100
– volume: 131
  start-page: 63
  issue: 1
  year: 1996
  ident: 9005_CR21
  publication-title: Inf. Comput.
  doi: 10.1006/inco.1996.0092
– volume: 48
  start-page: 274
  year: 2001
  ident: 9005_CR19
  publication-title: J. ACM
  doi: 10.1145/375827.375845
– volume: 44
  start-page: 245
  year: 1992
  ident: 9005_CR25
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(92)90208-D
– start-page: 152
  volume-title: Proc. 7th Symp. on Discrete Algorithms (SODA)
  year: 1996
  ident: 9005_CR15
– start-page: 86
  volume-title: Proc. 11th Symp. on Discrete Algorithms (SODA)
  year: 2000
  ident: 9005_CR30
– volume: 50
  start-page: 795
  year: 2003
  ident: 9005_CR17
  publication-title: J. ACM
  doi: 10.1145/950620.950621
– volume: 32
  start-page: 816
  year: 2003
  ident: 9005_CR28
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539701383443
– volume-title: Proc. 17th Symp. on Discrete Algorithms (SODA)
  year: 2006
  ident: 9005_CR24
– volume: 34
  start-page: 803
  issue: 4
  year: 2005
  ident: 9005_CR8
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539701398594
– volume: 82
  start-page: 111
  issue: 1
  year: 1998
  ident: 9005_CR16
  publication-title: Math. Program.
– start-page: 378
  volume-title: Proc. 40th Symp. Foundations of Computer Science (FOCS)
  year: 1999
  ident: 9005_CR7
– start-page: 771
  volume-title: Proc. 24th Symp. Theory of Computing (STOC)
  year: 1992
  ident: 9005_CR26
– start-page: 731
  volume-title: Proc. 34th Symp. Theory of Computing (STOC)
  year: 2002
  ident: 9005_CR18
– volume: 30
  start-page: 219
  year: 1998
  ident: 9005_CR14
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1008023416823
– volume: 33
  start-page: 544
  issue: 3
  year: 2004
  ident: 9005_CR3
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539702416402
– volume: 70
  start-page: 555
  issue: 4
  year: 2005
  ident: 9005_CR13
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2004.10.006
SSID ssj0012796
Score 2.0002713
Snippet In the k -median problem we are given sets of facilities and customers, and distances between them. For a given set F of facilities, the cost of serving a...
SourceID pascalfrancis
crossref
springer
SourceType Index Database
Enrichment Source
Publisher
StartPage 455
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Computer Science
Computer science; control theory; systems
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Exact sciences and technology
Logistics
Mathematics of Computing
Operational research and scientific management
Operational research. Management science
Theoretical computing
Theory of Computation
Title Incremental Medians via Online Bidding
URI https://link.springer.com/article/10.1007/s00453-007-9005-x
Volume 50
WOSCitedRecordID wos000253895900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFH5I9SCIdcW6lDmIByWQmTSTmaOKxYMUcSm9DVmhIG3p1OLPN282KC6gtzkkYXiTt0y-l-8DOPfR0PYU5UT46pj4KGmIZNwRzmOlJXfUFjpkwwcxGCSjUfpY3ePO6273GpIsInVz2Q2rD0bwaC1F-kxfOK77bJegXsPT87CBDiJRiHKh7Dzp-fxcQ5nfLbGSjLZmMvd2caWgxRdktEg4_fa_XnUHtqv6MrguN8QurNnJHrRr7YagcuV9uPCBoTwa9KMRrfEpK1iOZVByjwY3Y4NZ7QBe-3cvt_ek0kwg2nvngsRcc8e1o6FMbSREqnrWcsF0ZC010vIwcYxFxhoeCeMU45KZhIo01IqKSLNDaE2mE3sEQeQodTHS8SiFcGFinMX_QR8EqFaad4DWxst0RSiOuhZvWUOFXNghw0e0Q_bRgctmyqxk0_htcHflizQzEDvlYSw6cFWbP6s8L_95ueM_jT6BzbIzBHt0TqG1mL_bM9jQy8U4n3eLHfcJHaPOwA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD6ICgrivOK8zD6ID0ogTZqmfVRxTJxDdI69leYGA5ljncOfb9IbDC-gb31IQjnNuTTfyfcBnNloqAOBGeK2OkY2SiqUUmYQY6GQKTNY5zpkgy7v9aLhMH4s73FnVbd7BUnmkbq-7OaqD4rc0Vrs6DNt4bgS2ITlCPOfngc1dEB4LsrlZOdRYPNzBWV-t8RCMtqYpJm1iykELb4go3nCaTf-9apbsFnWl95VsSG2YUmPd6BRaTd4pSvvwrkNDMXRoB3t0Bqbsrz5KPUK7lHveqRcVtuDl_Zt_6aDSs0EJK13zlDIJDNMGuynsSacxyLQmnEqidZYpZr5kaGUKK0Y4coIylKqIsxjXwrMiaT7sDx-G-sD8IjB2ISOjkcIBxdGymj3P2iDAJZCsibgyniJLAnFna7Fa1JTIed2SNyjs0Py0YSLesqkYNP4bXBr4YvUMxx2yvyQN-GyMn9Sel7283KHfxp9Cmud_kM36d717o9gvegScf06x7A8m77rE1iV89kom7by3fcJ2D_RpA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIoI4rzgvsw_igxKWNk3TPnobimMM1LG30txgIHWsdfjzzekNhhcQ3_qQhHKSnHOS7-T7EDqz3lD7gjDMbXaMrZdUOKHMYMYCIRNmiC50yEZ9PhiE43E0rHROs7ravYYkyzcNwNKU5t2pMt3m4RtkIhTDNVsEVJo2iVzxoY4ejutPowZG8Hgh0AUS9Ni3sbqGNb8bYiEwbUyTzNrIlOIWX1DSIvj0Wv_-7S20WeWdzlW5ULbRkk53UKvWdHCqLb6Lzq3DKK8MbWtAcWwoc-aTxCk5SZ3riYJot4deenfPN_e40lLA0u7aHAdMMsOkIW4SaY_zSPhaM06lpzVRiWZuaCj1lFbM48oIyhKqQsIjVwrCPUn30XL6luoD5HiGEBMATY8QACOGymg4J1rnQKSQrI1IbchYVkTjoHfxGjcUyYUdYvgEO8QfbXTRdJmWLBu_Ne4szE7TAzBV5ga8jS7rqYirHZn9PNzhn1qforXhbS_uPwwej9B6WTwCZTzHaDmfvesTtCrn-SSbdYqF-AnLx9qI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Algorithmica&rft.atitle=Incremental+Medians+via+Online+Bidding&rft.au=CHROBAK%2C+Marek&rft.au=KENYON%2C+Claire&rft.au=NOGA%2C+John&rft.au=YOUNG%2C+Neal+E&rft.date=2008-04-01&rft.pub=Springer&rft.issn=0178-4617&rft.volume=50&rft.issue=4&rft.spage=455&rft.epage=478&rft_id=info:doi/10.1007%2Fs00453-007-9005-x&rft.externalDBID=n%2Fa&rft.externalDocID=20365167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon