Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at driving limits

Parametric modeling uncertainties and unknown external disturbance are major concerns in the development of advanced lateral motion controller for autonomous vehicle at the limits of driving conditions. Considering that tyre operating at or close to its physical limits of friction exhibits highly no...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Control engineering practice Ročník 76; s. 41 - 53
Hlavní autori: Ji, Xuewu, He, Xiangkun, Lv, Chen, Liu, Yahui, Wu, Jian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.07.2018
Predmet:
ISSN:0967-0661, 1873-6939
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Parametric modeling uncertainties and unknown external disturbance are major concerns in the development of advanced lateral motion controller for autonomous vehicle at the limits of driving conditions. Considering that tyre operating at or close to its physical limits of friction exhibits highly nonlinear force response and that unknown external disturbance can be caused by changing driving conditions, this paper presents a novel lateral motion control method that can maintain the yaw stability of autonomous vehicle while minimizing lateral path tracking error at the limits of driving conditions The proposed control scheme consists of a robust steering controller and an adaptive neural network (ANN) approximator. First, based on reference path model, dynamics model and kinematics model of vehicle, the robust steering controller is developed via backstepping variable structure control (BVSC) to suppress lateral path tracking deviation, to withstand unknown external disturbance and guarantee the yaw stability of autonomous vehicle. Then, by combining adaptive control mechanism based on Lyapunov stability theory and radial basis function neural network (RBFNN), the ANN approximator is designed to estimate uncertainty of tyre cornering stiffness and reduce its adverse effects by learning to approximate arbitrary nonlinear functions, and it ensures the uniform ultimate boundedness of the closed-loop system. Both simulation and experiment results show that the proposed control strategy can robustly track the reference path and at the same time maintains the yaw stability of vehicle at or near the physical limits of tyre friction. •Path tracking capability and yaw stability of autonomous vehicle at driving limits are focused on.•Tyre cornering stiffness uncertainty and unknown external disturbance are considered in the proposed controller.•A novel lateral motion control approach is presented based on the robust steering controller and the adaptive neural network approximator.•Both simulation and experiment results show that the proposed control scheme exhibits superior lateral motion control performance.
AbstractList Parametric modeling uncertainties and unknown external disturbance are major concerns in the development of advanced lateral motion controller for autonomous vehicle at the limits of driving conditions. Considering that tyre operating at or close to its physical limits of friction exhibits highly nonlinear force response and that unknown external disturbance can be caused by changing driving conditions, this paper presents a novel lateral motion control method that can maintain the yaw stability of autonomous vehicle while minimizing lateral path tracking error at the limits of driving conditions The proposed control scheme consists of a robust steering controller and an adaptive neural network (ANN) approximator. First, based on reference path model, dynamics model and kinematics model of vehicle, the robust steering controller is developed via backstepping variable structure control (BVSC) to suppress lateral path tracking deviation, to withstand unknown external disturbance and guarantee the yaw stability of autonomous vehicle. Then, by combining adaptive control mechanism based on Lyapunov stability theory and radial basis function neural network (RBFNN), the ANN approximator is designed to estimate uncertainty of tyre cornering stiffness and reduce its adverse effects by learning to approximate arbitrary nonlinear functions, and it ensures the uniform ultimate boundedness of the closed-loop system. Both simulation and experiment results show that the proposed control strategy can robustly track the reference path and at the same time maintains the yaw stability of vehicle at or near the physical limits of tyre friction. •Path tracking capability and yaw stability of autonomous vehicle at driving limits are focused on.•Tyre cornering stiffness uncertainty and unknown external disturbance are considered in the proposed controller.•A novel lateral motion control approach is presented based on the robust steering controller and the adaptive neural network approximator.•Both simulation and experiment results show that the proposed control scheme exhibits superior lateral motion control performance.
Author Liu, Yahui
He, Xiangkun
Wu, Jian
Ji, Xuewu
Lv, Chen
Author_xml – sequence: 1
  givenname: Xuewu
  surname: Ji
  fullname: Ji, Xuewu
  organization: The State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, People’s Republic of China
– sequence: 2
  givenname: Xiangkun
  surname: He
  fullname: He, Xiangkun
  organization: The State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, People’s Republic of China
– sequence: 3
  givenname: Chen
  surname: Lv
  fullname: Lv, Chen
  organization: Advanced Vehicle Engineering Center, Cranfield University, United Kingdom
– sequence: 4
  givenname: Yahui
  surname: Liu
  fullname: Liu, Yahui
  email: liuyahui@tsinghua.edu.cn
  organization: The State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, People’s Republic of China
– sequence: 5
  givenname: Jian
  surname: Wu
  fullname: Wu, Jian
  organization: The State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, People’s Republic of China
BookMark eNqNkF9LwzAUxYNMcJt-h3yB1qTt2uRFmMN_MPBFn0Oa3MzMthlJWvHbmzFB8EWfDpzLOZfzW6DZ4AZACFOSU0Lr632ukjHsDl6qvCCU5aTKCWnO0JyypsxqXvIZmhNeNxmpa3qBFiHsSYpyTudIr7U8RDtBNsDoZZckfjj_nrUygMbetWOIuJMR0hH3Llo34PQxetdh4zyWY3SD690Y8ARvVnWAZcTa28kOO9zZ3sZwic6N7AJcfesSvd7fvWwes-3zw9Nmvc1USVnMVkY3pa6rmhWF4hIoGNYWTCpZrWhyOedKc85qowswoFhDG01aSLpqlTblErFTr_IuBA9GHLztpf8UlIgjLbEXP7TEkZYglUi0UvTmV1TZKI9ro5e2-0_B7akA0sDJghdBWRgUaOtBRaGd_bvkCzI2k3Q
CitedBy_id crossref_primary_10_1109_TMECH_2024_3360097
crossref_primary_10_1016_j_automatica_2025_112118
crossref_primary_10_1007_s10846_024_02152_w
crossref_primary_10_1177_09596518221103040
crossref_primary_10_1016_j_ifacol_2020_12_1377
crossref_primary_10_3390_s18082544
crossref_primary_10_1016_j_asoc_2024_111802
crossref_primary_10_1177_09544070211020535
crossref_primary_10_1016_j_matpr_2022_04_727
crossref_primary_10_1109_TIV_2022_3154426
crossref_primary_10_3390_electronics12122748
crossref_primary_10_1177_09544070231185803
crossref_primary_10_1016_j_conengprac_2021_105044
crossref_primary_10_3390_appliedmath5020033
crossref_primary_10_1109_TITS_2024_3375885
crossref_primary_10_1177_09544070211026191
crossref_primary_10_1049_itr2_12114
crossref_primary_10_1142_S2591728525500069
crossref_primary_10_1016_j_conengprac_2023_105813
crossref_primary_10_1109_TITS_2020_2979431
crossref_primary_10_3390_en14217438
crossref_primary_10_1016_j_knosys_2023_110485
crossref_primary_10_3390_wevj13030053
crossref_primary_10_1177_0954407019901083
crossref_primary_10_1080_14680629_2022_2146601
crossref_primary_10_1080_23307706_2023_2245466
crossref_primary_10_1007_s12239_025_00340_7
crossref_primary_10_1111_itor_12785
crossref_primary_10_1177_09544070241286581
crossref_primary_10_1109_TVT_2021_3125131
crossref_primary_10_1177_09544070221105729
crossref_primary_10_1177_1687814019892108
crossref_primary_10_1016_j_ifacol_2021_06_007
crossref_primary_10_1155_2022_1457532
crossref_primary_10_1088_1361_6501_ae0066
crossref_primary_10_1007_s00521_024_10768_0
crossref_primary_10_3390_electronics12173635
crossref_primary_10_1002_rnc_6243
crossref_primary_10_1007_s42154_023_00256_x
crossref_primary_10_1155_2020_8935423
crossref_primary_10_1177_0036850420934274
crossref_primary_10_1016_j_ress_2025_111092
crossref_primary_10_3390_s22134676
crossref_primary_10_1007_s42154_024_00302_2
crossref_primary_10_1016_j_mechatronics_2025_103362
crossref_primary_10_1109_ACCESS_2021_3084807
crossref_primary_10_1007_s00500_019_04082_4
crossref_primary_10_1177_09544070241244858
crossref_primary_10_1002_rnc_7640
crossref_primary_10_1016_j_jece_2025_117380
crossref_primary_10_1080_00423114_2020_1864419
crossref_primary_10_1109_TITS_2020_2984210
crossref_primary_10_1016_j_neucom_2025_131222
crossref_primary_10_1016_j_isatra_2023_12_037
crossref_primary_10_1177_09544070221121859
crossref_primary_10_3390_app12020682
crossref_primary_10_1016_j_ymssp_2020_106773
crossref_primary_10_1109_TIV_2022_3173448
crossref_primary_10_1016_j_neucom_2024_128635
crossref_primary_10_1109_TVT_2023_3249832
crossref_primary_10_1007_s40430_025_05384_5
crossref_primary_10_1016_j_neunet_2019_09_028
crossref_primary_10_1155_2021_7448517
crossref_primary_10_1063_1_5141506
crossref_primary_10_1016_j_ymssp_2025_112672
crossref_primary_10_1088_1742_6596_2083_3_032029
crossref_primary_10_1016_j_conengprac_2025_106467
crossref_primary_10_3390_app10217716
crossref_primary_10_1109_TVT_2024_3452408
crossref_primary_10_3390_machines12010031
crossref_primary_10_1016_j_robot_2023_104557
crossref_primary_10_1109_ACCESS_2022_3156275
crossref_primary_10_1177_09544070231185170
crossref_primary_10_3390_act14090464
crossref_primary_10_1016_j_neucom_2023_126986
crossref_primary_10_1049_itr2_12161
crossref_primary_10_1109_TVT_2023_3274672
crossref_primary_10_1177_09544070231214333
crossref_primary_10_1049_cth2_12397
crossref_primary_10_1177_09544070221149278
crossref_primary_10_1109_TETCI_2023_3349183
crossref_primary_10_1016_j_neucom_2020_05_091
crossref_primary_10_1108_AA_08_2019_0148
crossref_primary_10_3390_en18082112
crossref_primary_10_1016_j_conengprac_2022_105164
crossref_primary_10_1016_j_ymssp_2019_04_060
crossref_primary_10_1016_j_engappai_2023_107402
crossref_primary_10_1109_TITS_2022_3182928
crossref_primary_10_1109_ACCESS_2021_3112560
crossref_primary_10_3390_electronics10040510
crossref_primary_10_1016_j_isatra_2023_06_019
crossref_primary_10_1177_09544070251314231
crossref_primary_10_1109_TIV_2022_3165048
crossref_primary_10_1177_03611981241270168
crossref_primary_10_1177_09544070241296584
crossref_primary_10_1109_ACCESS_2024_3451511
crossref_primary_10_1109_TMECH_2021_3063886
crossref_primary_10_1109_TVT_2019_2914027
crossref_primary_10_1109_ACCESS_2024_3440926
crossref_primary_10_1080_10298436_2025_2538055
crossref_primary_10_3390_math12111614
crossref_primary_10_1177_09544070231192728
crossref_primary_10_1016_j_conengprac_2019_01_017
crossref_primary_10_1109_TCE_2023_3342140
crossref_primary_10_1007_s00521_024_09797_6
crossref_primary_10_1016_j_procs_2020_07_064
crossref_primary_10_1109_ACCESS_2021_3110435
crossref_primary_10_1109_TTE_2023_3307671
crossref_primary_10_1007_s11071_025_11632_z
crossref_primary_10_1049_cth2_12211
crossref_primary_10_1007_s00521_024_10680_7
crossref_primary_10_1109_TMECH_2023_3236245
crossref_primary_10_1080_00423114_2024_2393340
crossref_primary_10_3390_machines10020121
crossref_primary_10_1007_s40815_023_01660_5
crossref_primary_10_1049_tje2_12333
crossref_primary_10_1109_TSMC_2023_3320808
crossref_primary_10_1016_j_biosystemseng_2021_07_014
crossref_primary_10_1016_j_ymssp_2020_106616
crossref_primary_10_1109_TNNLS_2024_3397393
crossref_primary_10_1109_LRA_2019_2956380
crossref_primary_10_1109_ACCESS_2021_3089615
crossref_primary_10_1016_j_sca_2023_100011
crossref_primary_10_1016_j_iot_2024_101233
crossref_primary_10_1080_00423114_2019_1590607
crossref_primary_10_1109_TTE_2022_3170059
crossref_primary_10_1177_1550147720916988
crossref_primary_10_1049_itr2_12051
crossref_primary_10_1016_j_jestch_2020_12_004
crossref_primary_10_1177_09544070211022904
crossref_primary_10_1007_s12239_021_0113_4
crossref_primary_10_1109_TIV_2024_3351131
crossref_primary_10_1186_s10033_023_00924_3
crossref_primary_10_1007_s12555_021_0117_x
crossref_primary_10_1007_s42452_024_06091_x
crossref_primary_10_1109_TTE_2024_3412955
crossref_primary_10_3390_app13010501
crossref_primary_10_3390_s20216052
crossref_primary_10_1177_1464419319895835
crossref_primary_10_1109_TVT_2021_3091809
crossref_primary_10_1155_2021_5549776
crossref_primary_10_1177_0954407020986289
crossref_primary_10_3390_s20215991
crossref_primary_10_1002_rnc_7727
crossref_primary_10_1109_ACCESS_2021_3083890
crossref_primary_10_1109_TTE_2021_3083679
crossref_primary_10_1016_j_engappai_2022_104717
crossref_primary_10_1177_09544070241272919
crossref_primary_10_1016_j_jterra_2020_12_001
crossref_primary_10_3390_electronics11193119
crossref_primary_10_3390_machines9120304
crossref_primary_10_1016_j_conengprac_2020_104630
crossref_primary_10_1049_iet_its_2018_5523
crossref_primary_10_1177_09544070231169117
crossref_primary_10_1049_iet_its_2020_0050
crossref_primary_10_1088_1742_6596_2608_1_012005
crossref_primary_10_1109_TITS_2022_3176970
crossref_primary_10_3390_s25051288
crossref_primary_10_1049_cth2_12538
crossref_primary_10_1177_09544070221127785
crossref_primary_10_3390_s22052013
crossref_primary_10_1177_10775463231181635
crossref_primary_10_1007_s00521_021_06101_8
crossref_primary_10_1109_TITS_2024_3382680
crossref_primary_10_1177_0954407020912097
crossref_primary_10_1080_00423114_2018_1537494
crossref_primary_10_1109_TAC_2023_3326707
crossref_primary_10_1016_j_jfranklin_2023_03_036
crossref_primary_10_3390_wevj14040084
crossref_primary_10_1177_09544070211033835
crossref_primary_10_1002_rob_22283
crossref_primary_10_1016_j_dt_2020_05_004
crossref_primary_10_3390_wevj15060221
crossref_primary_10_1109_TTE_2022_3204187
crossref_primary_10_1177_09544062241256476
crossref_primary_10_3233_JIFS_200625
crossref_primary_10_1109_TASE_2025_3600553
crossref_primary_10_1177_17298806251314977
crossref_primary_10_3390_s23010412
crossref_primary_10_3390_wevj16060336
crossref_primary_10_3390_en15239112
crossref_primary_10_1007_s11431_021_1995_1
crossref_primary_10_3390_machines11080845
crossref_primary_10_3390_s23156975
crossref_primary_10_1109_TSMC_2022_3166991
crossref_primary_10_3390_machines11030382
crossref_primary_10_1109_TITS_2020_2985124
crossref_primary_10_1109_ACCESS_2021_3065008
crossref_primary_10_1007_s40435_021_00771_x
crossref_primary_10_1051_wujns_2025304379
crossref_primary_10_1177_14644193241277550
crossref_primary_10_1177_09544070221095660
crossref_primary_10_1109_TSMC_2020_2966631
crossref_primary_10_3390_app13042733
crossref_primary_10_1016_j_jfranklin_2023_03_053
crossref_primary_10_1007_s40435_023_01308_0
crossref_primary_10_1108_IR_10_2020_0231
Cites_doi 10.1109/TITS.2015.2498841
10.1002/rnc.3810
10.1007/978-3-642-34816-7
10.1016/j.ymssp.2016.07.024
10.1016/j.conengprac.2016.04.013
10.1109/TITS.2015.2498172
10.1016/j.mechatronics.2017.02.004
10.1016/j.conengprac.2013.10.008
10.1109/ACC.2014.6859253
10.1109/TVT.2012.2201513
10.1109/TIE.2016.2531021
10.1080/00423114.2014.902537
10.1109/TVT.2015.2473115
10.1016/j.ymssp.2016.12.017
10.1109/TVT.2016.2555853
10.1109/TCST.2007.894653
10.1007/s11071-012-0556-2
10.23919/ACC.2017.7963824
10.1109/TASE.2015.2498192
10.1109/TVT.2011.2106811
10.1016/j.ymssp.2015.09.017
10.1016/j.ymssp.2017.07.051
10.1080/00423114.2013.877148
10.1109/TCST.2016.2599783
10.1016/j.conengprac.2017.04.010
10.1109/TVT.2015.2445833
10.1080/00423114.2015.1055279
10.1109/TITS.2015.2513071
10.1109/SMC.2015.439
10.1109/ICMA.2016.7558773
10.1109/TCYB.2015.2411285
10.4271/2017-01-1565
10.1080/00423114.2012.672842
10.1177/0278364916645661
10.4271/2017-01-1584
10.23919/ACC.2017.7963748
10.1016/j.mechatronics.2014.12.008
10.1504/IJVAS.2012.051270
10.1109/TVT.2013.2281199
10.1109/TITS.2014.2303995
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conengprac.2018.04.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
EndPage 53
ExternalDocumentID 10_1016_j_conengprac_2018_04_007
S0967066118300881
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-5fd73d646822c9ae1ef8b28aca451468999cd9986fd2efec8717d0be8715bcdf3
ISICitedReferencesCount 226
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436888100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0967-0661
IngestDate Sat Nov 29 07:09:35 EST 2025
Tue Nov 18 22:23:52 EST 2025
Fri Feb 23 02:35:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adaptive neural network
Path tracking
Vehicle dynamics and control
Autonomous vehicle
Driving limits
Backstepping variable structure control
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-5fd73d646822c9ae1ef8b28aca451468999cd9986fd2efec8717d0be8715bcdf3
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_conengprac_2018_04_007
crossref_citationtrail_10_1016_j_conengprac_2018_04_007
elsevier_sciencedirect_doi_10_1016_j_conengprac_2018_04_007
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationTitle Control engineering practice
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Coban (b3) 2017
Fei, Ding (b6) 2012; 70
Lam, Leung, Chu (b25) 2016; 17
Ostafew, Schoellig, Barfoot (b37) 2016; 35
Xia, Pu, Li, Gao (b45) 2016; 63
Liu, Fan, Lv (b32) 2018; 100
Tan, Chen, Wang, Gao (b41) 2017; 64
(Accessed July 2017).
Petrov, Nashashibi (b38) 2014; 15
(pp. 5115–5120).
He, Chen, Yin (b15) 2016; 46
Jin, Yin, Chen (b20) 2015; 30
Liu, J. (2013). Radial Basis Function (RBF) neural network control for mechanical systems: design, analysis and Matlab simulation. Springer.
Funke, Brown, Erlien, Gerdes (b7) 2017; 25
Rosolia, U., Carvalho, A., & Borrelli, F. (2017). Autonomous Racing using Learning Model Predictive Control. In
Kritayakirana, Gerdes (b23) 2012; 50
Ni, Hu (b36) 2017; 90
Li, Chen, Li, Shaw, Nuchter (b29) 2014; 63
Falcone, Borrelli, Asgari, Tseng, Hrovat (b5) 2007; 15
He, X., Yang, K., Ji, X., Liu, Y., & Deng, W. (2017). Research on Vehicle Stability Control Strategy Based on Integrated-Electro-Hydraulic Brake System. WCX™ 17: SAE World Congress Experience, Apr: 2017-01-1565.
Hwang, Yang, Hung (b18) 2017
Hu, Jing, Wang, Yan, Chadli (b17) 2016; 70–71
Lefèvre, Carvalho, Borrelli (b28) 2016; 13
Kritayakirana, Gerdes (b24) 2012; 10
Kim, Son, Chung (b22) 2016; 65
Thomas, Morris, Talbot, Fagerlind (b42) 2013; 57
Piltan, Mansoorzadeh, Zare, Shahryarzadeh, Akbari (b39) 2013; 3
Hang, Chen, Luo, Fang (b13) 2017; 1
Wang, Hu, Yan, Chadli (b43) 2016; 17
Guo, Liu, Cao, Chen, Yu, Lv (b11) 2017
Brown, Funke, Erlien, Gerdes (b1) 2017; 61
(pp. 4913–4918).
Laurense, V. A., Goh, J. Y., & Gerdes, J. C. (2017). Path-tracking for autonomous vehicles at the limit of friction. In
Zhu, Q., Huang, Z., Liu, D., & Dai, B. (2016). An adaptive path tracking method for autonomous land vehicle based on neural dynamic programming. In
Kapania, Gerdes (b21) 2015; 53
Liu, Li, Yang, Ji, Wu (b33) 2017; 88
Zhang, Wang (b47) 2017; 66
Gao, Gray, Tseng, Borrelli (b9) 2014; 52
Gao, Y., Gray, A., Carvalho, A., Tseng, H. E., & Borrelli, F. (2014). Robust nonlinear predictive control for semiautonomous ground vehicles. In
(pp. 5586-5591).
Ma, Liu, Ji, Yang (b35) 2017
Chen, Wang (b2) 2011; 60
Hashemi, Khosravani, Khajepour, Kasaiezadeh, Chen, Litkouhi (b14) 2017; 43
Ma, Liu, Gao, Yang, Ji, Bo (b34) 2016
Lee, Choi, Yi, Shin, Ko (b27) 2014; 23
(pp. 1429–1434).
Guo, Hu, Li, Wang (b12) 2012; 61
World Health Organization, (2015). Top 10 causes of death worldwide. Retrieved from
Yu, R., Guo, H., Sun, Z., & Chen, H. (2015). MPC-based regional path tracking controller design for autonomous ground vehicles. In
Ji, Khajepour, Melek, Huang (b19) 2017; 66
Li, Jia, Ran, Song, Wu (b30) 2014; 52
(pp. 2510–2515).
González, Pérez, Milanés, Nashashibi (b10) 2016; 17
Eskandarian (b4) 2012
Kritayakirana (10.1016/j.conengprac.2018.04.007_b24) 2012; 10
10.1016/j.conengprac.2018.04.007_b40
Tan (10.1016/j.conengprac.2018.04.007_b41) 2017; 64
Guo (10.1016/j.conengprac.2018.04.007_b12) 2012; 61
Hwang (10.1016/j.conengprac.2018.04.007_b18) 2017
10.1016/j.conengprac.2018.04.007_b46
Chen (10.1016/j.conengprac.2018.04.007_b2) 2011; 60
10.1016/j.conengprac.2018.04.007_b26
Ni (10.1016/j.conengprac.2018.04.007_b36) 2017; 90
10.1016/j.conengprac.2018.04.007_b48
Xia (10.1016/j.conengprac.2018.04.007_b45) 2016; 63
Falcone (10.1016/j.conengprac.2018.04.007_b5) 2007; 15
10.1016/j.conengprac.2018.04.007_b44
Zhang (10.1016/j.conengprac.2018.04.007_b47) 2017; 66
Brown (10.1016/j.conengprac.2018.04.007_b1) 2017; 61
Ji (10.1016/j.conengprac.2018.04.007_b19) 2017; 66
Liu (10.1016/j.conengprac.2018.04.007_b32) 2018; 100
Eskandarian (10.1016/j.conengprac.2018.04.007_b4) 2012
Lee (10.1016/j.conengprac.2018.04.007_b27) 2014; 23
Li (10.1016/j.conengprac.2018.04.007_b29) 2014; 63
Thomas (10.1016/j.conengprac.2018.04.007_b42) 2013; 57
Wang (10.1016/j.conengprac.2018.04.007_b43) 2016; 17
Ma (10.1016/j.conengprac.2018.04.007_b35) 2017
Hang (10.1016/j.conengprac.2018.04.007_b13) 2017; 1
Hu (10.1016/j.conengprac.2018.04.007_b17) 2016; 70–71
Gao (10.1016/j.conengprac.2018.04.007_b9) 2014; 52
Jin (10.1016/j.conengprac.2018.04.007_b20) 2015; 30
Kim (10.1016/j.conengprac.2018.04.007_b22) 2016; 65
Kritayakirana (10.1016/j.conengprac.2018.04.007_b23) 2012; 50
Coban (10.1016/j.conengprac.2018.04.007_b3) 2017
Fei (10.1016/j.conengprac.2018.04.007_b6) 2012; 70
10.1016/j.conengprac.2018.04.007_b8
Petrov (10.1016/j.conengprac.2018.04.007_b38) 2014; 15
Piltan (10.1016/j.conengprac.2018.04.007_b39) 2013; 3
Ostafew (10.1016/j.conengprac.2018.04.007_b37) 2016; 35
Hashemi (10.1016/j.conengprac.2018.04.007_b14) 2017; 43
Li (10.1016/j.conengprac.2018.04.007_b30) 2014; 52
10.1016/j.conengprac.2018.04.007_b31
Kapania (10.1016/j.conengprac.2018.04.007_b21) 2015; 53
Liu (10.1016/j.conengprac.2018.04.007_b33) 2017; 88
Guo (10.1016/j.conengprac.2018.04.007_b11) 2017
10.1016/j.conengprac.2018.04.007_b16
He (10.1016/j.conengprac.2018.04.007_b15) 2016; 46
González (10.1016/j.conengprac.2018.04.007_b10) 2016; 17
Lam (10.1016/j.conengprac.2018.04.007_b25) 2016; 17
Funke (10.1016/j.conengprac.2018.04.007_b7) 2017; 25
Ma (10.1016/j.conengprac.2018.04.007_b34) 2016
Lefèvre (10.1016/j.conengprac.2018.04.007_b28) 2016; 13
References_xml – reference: (pp. 2510–2515).
– reference: (pp. 5586-5591).
– reference: Rosolia, U., Carvalho, A., & Borrelli, F. (2017). Autonomous Racing using Learning Model Predictive Control. In
– reference: Zhu, Q., Huang, Z., Liu, D., & Dai, B. (2016). An adaptive path tracking method for autonomous land vehicle based on neural dynamic programming. In
– start-page: 1
  year: 2016
  end-page: 9
  ident: b34
  article-title: Estimation of vehicle sideslip angle based on steering torque
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 30
  start-page: 286
  year: 2015
  end-page: 296
  ident: b20
  article-title: Gain-scheduled robust control for lateral stability of four-wheel-independent-drive electric vehicles via linear parameter-varying technique
  publication-title: Mechatronics
– volume: 50
  start-page: 33
  year: 2012
  end-page: 51
  ident: b23
  article-title: Using the centre of percussion to design a steering controller for an autonomous race car
  publication-title: Vehicle System Dynamics
– volume: 17
  start-page: 1210
  year: 2016
  end-page: 1226
  ident: b25
  article-title: Autonomous-vehicle public transportation system: scheduling and admission control
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2017
  ident: b18
  article-title: Path tracking of an automatic ground vehicle with different payloads by hierarchical improved fuzzy dynamic sliding-mode control
  publication-title: IEEE Transactions on Fuzzy Systems
– reference: . (Accessed July 2017).
– volume: 10
  start-page: 271
  year: 2012
  end-page: 296
  ident: b24
  article-title: Autonomous vehicle control at the limits of handling
  publication-title: International Journal of Vehicle Autonomous Systems
– volume: 88
  start-page: 25
  year: 2017
  end-page: 35
  ident: b33
  article-title: Estimation of tyre-road friction coefficient based on combined APF-IEKF and iteration algorithm
  publication-title: Mechanical Systems and Signal Processing
– reference: Laurense, V. A., Goh, J. Y., & Gerdes, J. C. (2017). Path-tracking for autonomous vehicles at the limit of friction. In
– volume: 3
  start-page: 171
  year: 2013
  end-page: 185
  ident: b39
  article-title: Artificial tune of fuel ratio: Design a novel siso fuzzy backstepping adaptive variable structure control
  publication-title: International Journal of Electrical and Computer Engineering
– reference: Gao, Y., Gray, A., Carvalho, A., Tseng, H. E., & Borrelli, F. (2014). Robust nonlinear predictive control for semiautonomous ground vehicles. In
– volume: 61
  start-page: 2913
  year: 2012
  end-page: 2924
  ident: b12
  article-title: Design of automatic steering controller for trajectory tracking of unmanned vehicles using genetic algorithms
  publication-title: IEEE Transactions on Vehicular Technology
– reference: World Health Organization, (2015). Top 10 causes of death worldwide. Retrieved from
– volume: 35
  start-page: 1547
  year: 2016
  end-page: 1563
  ident: b37
  article-title: Robust Constrained Learning-based NMPC enabling reliable mobile robot path tracking
  publication-title: International Journal of Robotics Research
– volume: 63
  start-page: 3091
  year: 2016
  end-page: 3099
  ident: b45
  article-title: Lateral path tracking control of autonomous land vehicle based on ADRC and differential flatness
  publication-title: IEEE Transactions on Industrial Electronics
– year: 2017
  ident: b35
  article-title: Investigation of a steering defect and its compensation using a steering-torque control strategy in an extreme driving situation
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
– volume: 63
  start-page: 540
  year: 2014
  end-page: 555
  ident: b29
  article-title: A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 64
  start-page: 15
  year: 2017
  end-page: 26
  ident: b41
  article-title: Shared control for lane departure prevention based on the safe envelope of steering wheel angle
  publication-title: Control Engineering Practice
– volume: 61
  start-page: 307
  year: 2017
  end-page: 316
  ident: b1
  article-title: Safe driving envelopes for path tracking in autonomous vehicles
  publication-title: Control Engineering Practice
– volume: 60
  start-page: 839
  year: 2011
  end-page: 848
  ident: b2
  article-title: Adaptive vehicle speed control with input injections for longitudinal motion independent road frictional condition estimation
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 15
  start-page: 566
  year: 2007
  end-page: 580
  ident: b5
  article-title: Predictive active steering control for autonomous vehicle systems
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 17
  start-page: 1135
  year: 2016
  end-page: 1145
  ident: b10
  article-title: A review of motion planning techniques for automated vehicles
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: (pp. 5115–5120).
– volume: 65
  start-page: 4379
  year: 2016
  end-page: 4392
  ident: b22
  article-title: Torque-overlay-based robust steering wheel angle control of electrical power steering for a lane-keeping system of automated vehicles
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 23
  start-page: 1
  year: 2014
  end-page: 13
  ident: b27
  article-title: Lane-keeping assistance control algorithm using differential braking to prevent unintended lane departures
  publication-title: Control Engineering Practice
– volume: 70
  start-page: 1563
  year: 2012
  end-page: 1573
  ident: b6
  article-title: Adaptive sliding mode control of dynamic system using rbf neural network
  publication-title: Nonlinear Dynamics
– volume: 17
  start-page: 2063
  year: 2016
  end-page: 2074
  ident: b43
  article-title: Composite nonlinear feedback control for path following of four-wheel independently actuated autonomous ground vehicles
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: He, X., Yang, K., Ji, X., Liu, Y., & Deng, W. (2017). Research on Vehicle Stability Control Strategy Based on Integrated-Electro-Hydraulic Brake System. WCX™ 17: SAE World Congress Experience, Apr: 2017-01-1565.
– reference: Liu, J. (2013). Radial Basis Function (RBF) neural network control for mechanical systems: design, analysis and Matlab simulation. Springer.
– reference: Yu, R., Guo, H., Sun, Z., & Chen, H. (2015). MPC-based regional path tracking controller design for autonomous ground vehicles. In
– volume: 90
  start-page: 154
  year: 2017
  end-page: 174
  ident: b36
  article-title: Dynamics control of autonomous vehicle at driving limits and experiment on an autonomous formula racing car
  publication-title: Mechanical Systems and Signal Processing
– volume: 43
  start-page: 28
  year: 2017
  end-page: 39
  ident: b14
  article-title: Longitudinal vehicle state estimation using nonlinear and parameter-varying observers
  publication-title: Mechatronics
– volume: 66
  start-page: 3685
  year: 2017
  end-page: 3702
  ident: b47
  article-title: Active steering actuator fault detection for an automatically-steered electric ground vehicle
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 57
  start-page: 13
  year: 2013
  end-page: 22
  ident: b42
  article-title: Identifying the causes of road crashes in Europe
  publication-title: Annals of Advances in Automotive Medicine
– volume: 52
  start-page: 802
  year: 2014
  end-page: 823
  ident: b9
  article-title: A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles
  publication-title: Vehicle System Dynamics
– volume: 25
  start-page: 1204
  year: 2017
  end-page: 1216
  ident: b7
  article-title: Collision avoidance and stabilization for autonomous vehicles in emergency scenarios
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 1
  year: 2017
  ident: b13
  article-title: Robust control of a four-wheel-independent-steering electric vehicle for path tracking
  publication-title: SAE International Journal of Vehicle Dynamics, Stability, and NVH
– volume: 15
  start-page: 1643
  year: 2014
  end-page: 1656
  ident: b38
  article-title: Modeling and nonlinear adaptive control for autonomous vehicle overtaking
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 13
  start-page: 32
  year: 2016
  end-page: 42
  ident: b28
  article-title: A learning-based framework for velocity control in autonomous driving
  publication-title: IEEE Transactions on Automation Science and Engineering
– start-page: 1
  year: 2017
  end-page: 12
  ident: b11
  article-title: Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles
  publication-title: Mechatronics
– volume: 70–71
  start-page: 414
  year: 2016
  end-page: 427
  ident: b17
  article-title: Robust
  publication-title: Mechanical Systems and Signal Processing
– year: 2017
  ident: b3
  article-title: Dynamical adaptive integral backstepping variable structure controller design for uncertain systems and experimental application
  publication-title: International Journal of Robust and Nonlinear Control
– volume: 53
  start-page: 1687
  year: 2015
  end-page: 1704
  ident: b21
  article-title: Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling
  publication-title: Vehicle System Dynamics
– reference: (pp. 1429–1434).
– volume: 66
  start-page: 952
  year: 2017
  end-page: 964
  ident: b19
  article-title: Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 46
  start-page: 620
  year: 2016
  end-page: 629
  ident: b15
  article-title: Adaptive neural network control of an uncertain robot with full-state constraints
  publication-title: IEEE Transactions on Cybernetics
– volume: 52
  start-page: 280
  year: 2014
  end-page: 308
  ident: b30
  article-title: A variable structure extended kalman filter for vehicle sideslip angle estimation on a low friction road
  publication-title: Vehicle System Dynamics
– year: 2012
  ident: b4
  article-title: Handbook of intelligent vehicles
– reference: (pp. 4913–4918).
– volume: 100
  start-page: 605
  year: 2018
  end-page: 616
  ident: b32
  article-title: An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles
  publication-title: Mechanical Systems and Signal Processing
– volume: 17
  start-page: 1135
  issue: 4
  year: 2016
  ident: 10.1016/j.conengprac.2018.04.007_b10
  article-title: A review of motion planning techniques for automated vehicles
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2015.2498841
– year: 2017
  ident: 10.1016/j.conengprac.2018.04.007_b3
  article-title: Dynamical adaptive integral backstepping variable structure controller design for uncertain systems and experimental application
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.3810
– ident: 10.1016/j.conengprac.2018.04.007_b31
  doi: 10.1007/978-3-642-34816-7
– year: 2017
  ident: 10.1016/j.conengprac.2018.04.007_b18
  article-title: Path tracking of an automatic ground vehicle with different payloads by hierarchical improved fuzzy dynamic sliding-mode control
  publication-title: IEEE Transactions on Fuzzy Systems
– start-page: 1
  year: 2016
  ident: 10.1016/j.conengprac.2018.04.007_b34
  article-title: Estimation of vehicle sideslip angle based on steering torque
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 88
  start-page: 25
  year: 2017
  ident: 10.1016/j.conengprac.2018.04.007_b33
  article-title: Estimation of tyre-road friction coefficient based on combined APF-IEKF and iteration algorithm
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2016.07.024
– volume: 61
  start-page: 307
  year: 2017
  ident: 10.1016/j.conengprac.2018.04.007_b1
  article-title: Safe driving envelopes for path tracking in autonomous vehicles
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2016.04.013
– volume: 17
  start-page: 2063
  issue: 7
  year: 2016
  ident: 10.1016/j.conengprac.2018.04.007_b43
  article-title: Composite nonlinear feedback control for path following of four-wheel independently actuated autonomous ground vehicles
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2015.2498172
– volume: 43
  start-page: 28
  year: 2017
  ident: 10.1016/j.conengprac.2018.04.007_b14
  article-title: Longitudinal vehicle state estimation using nonlinear and parameter-varying observers
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2017.02.004
– volume: 23
  start-page: 1
  year: 2014
  ident: 10.1016/j.conengprac.2018.04.007_b27
  article-title: Lane-keeping assistance control algorithm using differential braking to prevent unintended lane departures
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2013.10.008
– ident: 10.1016/j.conengprac.2018.04.007_b8
  doi: 10.1109/ACC.2014.6859253
– volume: 61
  start-page: 2913
  issue: 7
  year: 2012
  ident: 10.1016/j.conengprac.2018.04.007_b12
  article-title: Design of automatic steering controller for trajectory tracking of unmanned vehicles using genetic algorithms
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2012.2201513
– year: 2017
  ident: 10.1016/j.conengprac.2018.04.007_b35
  article-title: Investigation of a steering defect and its compensation using a steering-torque control strategy in an extreme driving situation
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
– volume: 63
  start-page: 3091
  issue: 5
  year: 2016
  ident: 10.1016/j.conengprac.2018.04.007_b45
  article-title: Lateral path tracking control of autonomous land vehicle based on ADRC and differential flatness
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2016.2531021
– volume: 52
  start-page: 802
  issue: 6
  year: 2014
  ident: 10.1016/j.conengprac.2018.04.007_b9
  article-title: A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423114.2014.902537
– volume: 65
  start-page: 4379
  issue: 6
  year: 2016
  ident: 10.1016/j.conengprac.2018.04.007_b22
  article-title: Torque-overlay-based robust steering wheel angle control of electrical power steering for a lane-keeping system of automated vehicles
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2015.2473115
– volume: 90
  start-page: 154
  year: 2017
  ident: 10.1016/j.conengprac.2018.04.007_b36
  article-title: Dynamics control of autonomous vehicle at driving limits and experiment on an autonomous formula racing car
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2016.12.017
– volume: 66
  start-page: 952
  issue: 2
  year: 2017
  ident: 10.1016/j.conengprac.2018.04.007_b19
  article-title: Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2016.2555853
– volume: 15
  start-page: 566
  issue: 3
  year: 2007
  ident: 10.1016/j.conengprac.2018.04.007_b5
  article-title: Predictive active steering control for autonomous vehicle systems
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2007.894653
– volume: 70
  start-page: 1563
  issue: 2
  year: 2012
  ident: 10.1016/j.conengprac.2018.04.007_b6
  article-title: Adaptive sliding mode control of dynamic system using rbf neural network
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-012-0556-2
– ident: 10.1016/j.conengprac.2018.04.007_b26
  doi: 10.23919/ACC.2017.7963824
– volume: 13
  start-page: 32
  issue: 1
  year: 2016
  ident: 10.1016/j.conengprac.2018.04.007_b28
  article-title: A learning-based framework for velocity control in autonomous driving
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2015.2498192
– volume: 60
  start-page: 839
  issue: 3
  year: 2011
  ident: 10.1016/j.conengprac.2018.04.007_b2
  article-title: Adaptive vehicle speed control with input injections for longitudinal motion independent road frictional condition estimation
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2011.2106811
– volume: 70–71
  start-page: 414
  year: 2016
  ident: 10.1016/j.conengprac.2018.04.007_b17
  article-title: Robust H∞ output-feedback control for path following of autonomous ground vehicles
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2015.09.017
– volume: 57
  start-page: 13
  year: 2013
  ident: 10.1016/j.conengprac.2018.04.007_b42
  article-title: Identifying the causes of road crashes in Europe
  publication-title: Annals of Advances in Automotive Medicine
– volume: 100
  start-page: 605
  year: 2018
  ident: 10.1016/j.conengprac.2018.04.007_b32
  article-title: An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.07.051
– volume: 52
  start-page: 280
  issue: 2
  year: 2014
  ident: 10.1016/j.conengprac.2018.04.007_b30
  article-title: A variable structure extended kalman filter for vehicle sideslip angle estimation on a low friction road
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423114.2013.877148
– year: 2012
  ident: 10.1016/j.conengprac.2018.04.007_b4
– volume: 25
  start-page: 1204
  issue: 4
  year: 2017
  ident: 10.1016/j.conengprac.2018.04.007_b7
  article-title: Collision avoidance and stabilization for autonomous vehicles in emergency scenarios
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2016.2599783
– volume: 64
  start-page: 15
  year: 2017
  ident: 10.1016/j.conengprac.2018.04.007_b41
  article-title: Shared control for lane departure prevention based on the safe envelope of steering wheel angle
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2017.04.010
– volume: 3
  start-page: 171
  issue: 2
  year: 2013
  ident: 10.1016/j.conengprac.2018.04.007_b39
  article-title: Artificial tune of fuel ratio: Design a novel siso fuzzy backstepping adaptive variable structure control
  publication-title: International Journal of Electrical and Computer Engineering
– volume: 66
  start-page: 3685
  issue: 5
  year: 2017
  ident: 10.1016/j.conengprac.2018.04.007_b47
  article-title: Active steering actuator fault detection for an automatically-steered electric ground vehicle
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2015.2445833
– volume: 53
  start-page: 1687
  issue: 12
  year: 2015
  ident: 10.1016/j.conengprac.2018.04.007_b21
  article-title: Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423114.2015.1055279
– volume: 17
  start-page: 1210
  issue: 5
  year: 2016
  ident: 10.1016/j.conengprac.2018.04.007_b25
  article-title: Autonomous-vehicle public transportation system: scheduling and admission control
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2015.2513071
– ident: 10.1016/j.conengprac.2018.04.007_b46
  doi: 10.1109/SMC.2015.439
– ident: 10.1016/j.conengprac.2018.04.007_b48
  doi: 10.1109/ICMA.2016.7558773
– volume: 46
  start-page: 620
  issue: 3
  year: 2016
  ident: 10.1016/j.conengprac.2018.04.007_b15
  article-title: Adaptive neural network control of an uncertain robot with full-state constraints
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2411285
– ident: 10.1016/j.conengprac.2018.04.007_b16
  doi: 10.4271/2017-01-1565
– volume: 50
  start-page: 33
  issue: Suppl. 1
  year: 2012
  ident: 10.1016/j.conengprac.2018.04.007_b23
  article-title: Using the centre of percussion to design a steering controller for an autonomous race car
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423114.2012.672842
– volume: 35
  start-page: 1547
  issue: 13
  year: 2016
  ident: 10.1016/j.conengprac.2018.04.007_b37
  article-title: Robust Constrained Learning-based NMPC enabling reliable mobile robot path tracking
  publication-title: International Journal of Robotics Research
  doi: 10.1177/0278364916645661
– volume: 1
  year: 2017
  ident: 10.1016/j.conengprac.2018.04.007_b13
  article-title: Robust control of a four-wheel-independent-steering electric vehicle for path tracking
  publication-title: SAE International Journal of Vehicle Dynamics, Stability, and NVH
  doi: 10.4271/2017-01-1584
– ident: 10.1016/j.conengprac.2018.04.007_b40
  doi: 10.23919/ACC.2017.7963748
– ident: 10.1016/j.conengprac.2018.04.007_b44
– volume: 30
  start-page: 286
  year: 2015
  ident: 10.1016/j.conengprac.2018.04.007_b20
  article-title: Gain-scheduled robust control for lateral stability of four-wheel-independent-drive electric vehicles via linear parameter-varying technique
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2014.12.008
– volume: 10
  start-page: 271
  issue: 4
  year: 2012
  ident: 10.1016/j.conengprac.2018.04.007_b24
  article-title: Autonomous vehicle control at the limits of handling
  publication-title: International Journal of Vehicle Autonomous Systems
  doi: 10.1504/IJVAS.2012.051270
– volume: 63
  start-page: 540
  issue: 2
  year: 2014
  ident: 10.1016/j.conengprac.2018.04.007_b29
  article-title: A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2013.2281199
– start-page: 1
  year: 2017
  ident: 10.1016/j.conengprac.2018.04.007_b11
  article-title: Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles
  publication-title: Mechatronics
– volume: 15
  start-page: 1643
  issue: 4
  year: 2014
  ident: 10.1016/j.conengprac.2018.04.007_b38
  article-title: Modeling and nonlinear adaptive control for autonomous vehicle overtaking
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2014.2303995
SSID ssj0016991
Score 2.6147768
Snippet Parametric modeling uncertainties and unknown external disturbance are major concerns in the development of advanced lateral motion controller for autonomous...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Adaptive neural network
Autonomous vehicle
Backstepping variable structure control
Driving limits
Path tracking
Vehicle dynamics and control
Title Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at driving limits
URI https://dx.doi.org/10.1016/j.conengprac.2018.04.007
Volume 76
WOSCitedRecordID wos000436888100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELailgMcEFAQ4SUfuEWukuzDtjhFVRGgquJQpNxWftKU1TZKdtP-h_5pxmuvdwUVLUhcdiNLduKdL-Px7DefEXpvDFMzlQiiwabESboRSVVGrOFmmmieUtnqzJ7Q01O2XPKvo9FNVwuzK2lVsetrvv6vpoY2MLYrnf0Lc8dBoQE-g9HhCmaH670Mv9Bi7XwYcVKVooRbS_Qmbr3Sk82lbLb1pBSu8ric-EN8ImG9pVQ2tSt0cNTYnTl3o7uCR71ZtamH0hVEbYch7VHoa3plw1h7Ffk5LWdg2Zirpk--tk2Azu8_mp4XtPMcgL5A7WTVtMuEOG9WwxTFjEU6a8w15o5j51XXO7dLh37Ti1-FFdirB__m232a4QJMU8GM3EQcM48dev3zfj3r3uH_ssxF8mHHa7so-pEKN1IxTYtWmWB_TjMOLnJ_8fl4-SW-lMq5P4Cxm00ghnm64O2_6vZoZxDBnD1Bj8PWAy88ZJ6ikameoUcDQcoDpP8IHuzBgwN4sAcPDuDBAB7cgwcH8GBR4wAe7MHzHH37eHx29ImEcziIAo9fk8xqmug8zSGYVFyYmbFMzplQIs1c5R7sMZSGbXtu9dxYo2APTvVUGrhnUmmbvEB7FTyelwhTo3KZcpWkzKYq19JMGZdCJFZyasV8jGj3vAoVROrdWSllcZfVxmgWe669UMs9-nzoTFKEgNMHkgVg7s7er_7hG1-jh_0f5A3aqzeNeYseqF292m7eBcD9BJCHr_E
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive-neural-network-based+robust+lateral+motion+control+for+autonomous+vehicle+at+driving+limits&rft.jtitle=Control+engineering+practice&rft.au=Ji%2C+Xuewu&rft.au=He%2C+Xiangkun&rft.au=Lv%2C+Chen&rft.au=Liu%2C+Yahui&rft.date=2018-07-01&rft.issn=0967-0661&rft.volume=76&rft.spage=41&rft.epage=53&rft_id=info:doi/10.1016%2Fj.conengprac.2018.04.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2018_04_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon