Wave atoms and time upscaling of wave equations

We present a new geometric strategy for the numerical solution of hyperbolic wave equations in smoothly varying, two-dimensional time-independent periodic media. The method consists in representing the time-dependent Green’s function in wave atoms, a tight frame of multiscale, directional wave packe...

Full description

Saved in:
Bibliographic Details
Published in:Numerische Mathematik Vol. 113; no. 1; pp. 1 - 71
Main Authors: Demanet, Laurent, Ying, Lexing
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer-Verlag 01.07.2009
Springer
Subjects:
ISSN:0029-599X, 0945-3245
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a new geometric strategy for the numerical solution of hyperbolic wave equations in smoothly varying, two-dimensional time-independent periodic media. The method consists in representing the time-dependent Green’s function in wave atoms, a tight frame of multiscale, directional wave packets obeying a precise parabolic balance between oscillations and support size, namely wavelength ~(diameter). 2 Wave atoms offer a uniquely structured representation of the Green’s function in the sense that the resulting matrix is universally sparse over the class of C ∞ coefficients, even for “large” times; the matrix has a natural low-rank block-structure after separation of the spatial indices. The parabolic scaling is essential for these properties to hold. As a result, it becomes realistic to accurately build the full matrix exponential in the wave atom frame, using repeated squaring up to some time typically of the form , which is bigger than the standard CFL timestep. Once the “expensive” precomputation of the Green’s function has been carried out, it can be used to perform unusually large, upscaled, “cheap” time steps. The algorithm is relatively simple in that it does not require an underlying geometric optics solver. We prove accuracy and complexity results based on a priori estimates of sparsity and separation ranks. On a N -by- N grid, the “expensive” precomputation takes somewhere between O ( N 3 log N ) and O ( N 4 log N ) steps depending on the separability of the acoustic medium. The complexity of upscaled timestepping, however, beats the O ( N 3 log N ) bottleneck of pseudospectral methods on an N -by- N grid, for a wide range of physically relevant situations. In particular, we show that a naive version of the wave atom algorithm provably runs in O ( N 2+δ ) operations for arbitrarily small δ—but for the final algorithm we had to slightly increase the exponent in order to reduce the large constant. As a result, we get estimates between O ( N 2.5 log N ) and O ( N 3 log N ) for upscaled timestepping. We also show several numerical examples. In practice, the current wave atom solver becomes competitive over a pseudospectral method in regimes where the wave equation should be solved hundreds of times with different initial conditions, as in reflection seismology. In academic examples of accurate propagation of bandlimited wavefronts, if the precomputation step is factored out, then the wave atom solver is indeed faster than a pseudospectral method by a factor of about 3–5 at N  = 512, and a factor 10–20 at N  = 1024, for the same accuracy. Very similar gains are obtained in comparison versus a finite difference method.
AbstractList We present a new geometric strategy for the numerical solution of hyperbolic wave equations in smoothly varying, two-dimensional time-independent periodic media. The method consists in representing the time-dependent Green’s function in wave atoms, a tight frame of multiscale, directional wave packets obeying a precise parabolic balance between oscillations and support size, namely wavelength ~(diameter). 2 Wave atoms offer a uniquely structured representation of the Green’s function in the sense that the resulting matrix is universally sparse over the class of C ∞ coefficients, even for “large” times; the matrix has a natural low-rank block-structure after separation of the spatial indices. The parabolic scaling is essential for these properties to hold. As a result, it becomes realistic to accurately build the full matrix exponential in the wave atom frame, using repeated squaring up to some time typically of the form , which is bigger than the standard CFL timestep. Once the “expensive” precomputation of the Green’s function has been carried out, it can be used to perform unusually large, upscaled, “cheap” time steps. The algorithm is relatively simple in that it does not require an underlying geometric optics solver. We prove accuracy and complexity results based on a priori estimates of sparsity and separation ranks. On a N -by- N grid, the “expensive” precomputation takes somewhere between O ( N 3 log N ) and O ( N 4 log N ) steps depending on the separability of the acoustic medium. The complexity of upscaled timestepping, however, beats the O ( N 3 log N ) bottleneck of pseudospectral methods on an N -by- N grid, for a wide range of physically relevant situations. In particular, we show that a naive version of the wave atom algorithm provably runs in O ( N 2+δ ) operations for arbitrarily small δ—but for the final algorithm we had to slightly increase the exponent in order to reduce the large constant. As a result, we get estimates between O ( N 2.5 log N ) and O ( N 3 log N ) for upscaled timestepping. We also show several numerical examples. In practice, the current wave atom solver becomes competitive over a pseudospectral method in regimes where the wave equation should be solved hundreds of times with different initial conditions, as in reflection seismology. In academic examples of accurate propagation of bandlimited wavefronts, if the precomputation step is factored out, then the wave atom solver is indeed faster than a pseudospectral method by a factor of about 3–5 at N  = 512, and a factor 10–20 at N  = 1024, for the same accuracy. Very similar gains are obtained in comparison versus a finite difference method.
Author Demanet, Laurent
Ying, Lexing
Author_xml – sequence: 1
  givenname: Laurent
  surname: Demanet
  fullname: Demanet, Laurent
  email: demanet@gmail.com
  organization: Department of Mathematics, Stanford University
– sequence: 2
  givenname: Lexing
  surname: Ying
  fullname: Ying, Lexing
  organization: Department of Mathematics, University of Texas at Austin
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21661004$$DView record in Pascal Francis
BookMark eNp9kD1PwzAQhi1UJNrCD2DLwmh6dmInHlHFl1SJBQSbdXHsKlXrFDsF8e9xCCwMne6G9zm998zIxHfeEnLJ4JoBlIsIwBmjAIoC55LKEzIFVQia80JM0g5cUaHU2xmZxbgBYKUs2JQsXvHDZth3u5ihb7K-3dnssI8Gt61fZ53LPoeAfT9g33Y-npNTh9toL37nnLzc3T4vH-jq6f5xebOiJmdVT0UtOLNglCmlQXR5ZQw3tZAO6kbmqhGGWYQqr6xLRSqsc8GqxsgElMhsPidX4909Dl1cQG_aqPeh3WH40pxJmf4uUq4ccyZ0MQbrtGn7n6p9wHarGejBjx796ORHD360TCT7R_4dP8bwkYkp69c26E13CD6JOAJ9AxJvePs
CODEN NUMMA7
CitedBy_id crossref_primary_10_1016_j_bulsci_2025_103611
crossref_primary_10_1007_s10444_020_09784_0
crossref_primary_10_1137_100808174
crossref_primary_10_1007_s11045_018_0582_4
crossref_primary_10_1137_20M1386116
crossref_primary_10_1155_2011_184817
crossref_primary_10_1134_S1061830919040053
crossref_primary_10_1016_j_jvcir_2016_03_009
crossref_primary_10_1137_080731311
crossref_primary_10_1016_j_jde_2021_11_043
crossref_primary_10_1016_j_bspc_2018_05_040
crossref_primary_10_1080_03605302_2012_727130
crossref_primary_10_1016_j_acha_2012_01_001
crossref_primary_10_1093_imanum_drv021
crossref_primary_10_1007_s10208_011_9085_5
crossref_primary_10_3390_electronics8121462
crossref_primary_10_1137_100787313
Cites_doi 10.1215/S0012-7094-57-02471-7
10.1137/0915048
10.1016/j.wavemoti.2004.05.008
10.1137/S00361445024180
10.2307/2944346
10.1006/acha.1998.0248
10.1002/cpa.3160440202
10.1007/BF02771772
10.1016/S0165-2125(99)00026-8
10.1090/S0025-5718-00-01252-7
10.1137/040604959
10.1002/cpa.20078
10.1080/03605307808820083
10.1137/0729059
10.1023/A:1010469004645
10.1007/s006070050015
10.1002/cpa.10116
10.1016/S1631-073X(03)00095-5
10.1017/CBO9780511791253
10.1137/05064182X
10.1109/MCSE.2006.49
10.1016/j.acha.2007.03.003
10.1051/m2an/1992260707931
10.1016/j.jcp.2006.05.008
10.1016/S1570-579X(03)80030-7
10.1190/1.1845326
10.1007/978-1-4612-1015-3
10.5802/aif.1640
10.1007/BF02921717
ContentType Journal Article
Copyright Springer-Verlag 2009
2009 INIST-CNRS
Copyright_xml – notice: Springer-Verlag 2009
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1007/s00211-009-0226-6
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 0945-3245
EndPage 71
ExternalDocumentID 21661004
10_1007_s00211_009_0226_6
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XJT
YLTOR
YNT
YQT
Z45
Z5O
Z7R
Z7X
Z83
Z86
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
IQODW
ID FETCH-LOGICAL-c318t-5b521e0c9c76caaf38cc2cb56f0bd639d5c1ea0838ef7648ab3518dc69c77a1e3
IEDL.DBID RSV
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000267108700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-599X
IngestDate Mon Jul 21 09:14:54 EDT 2025
Sat Nov 29 01:35:56 EST 2025
Tue Nov 18 20:52:11 EST 2025
Fri Feb 21 02:34:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Primary 65M99
Secoundary 42C99
Wave equation
Grid pattern
Initial condition
Numerical linear algebra
Acoustics
Algorithm
Green function
Wavefront
Numerical analysis
Pseudospectral method
Numerical solution
Hyperbolic equation
Oscillation
A priori estimation
Condition number
Two-dimensional calculations
Finite difference method
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-5b521e0c9c76caaf38cc2cb56f0bd639d5c1ea0838ef7648ab3518dc69c77a1e3
PageCount 71
ParticipantIDs pascalfrancis_primary_21661004
crossref_citationtrail_10_1007_s00211_009_0226_6
crossref_primary_10_1007_s00211_009_0226_6
springer_journals_10_1007_s00211_009_0226_6
PublicationCentury 2000
PublicationDate 2009-07-01
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-01
  day: 01
PublicationDecade 2000
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Numerische Mathematik
PublicationTitleAbbrev Numer. Math
PublicationYear 2009
Publisher Springer-Verlag
Springer
Publisher_xml – name: Springer-Verlag
– name: Springer
References de Hoop, le Rousseau, Wu (CR25) 2000; 31
Duistermaat (CR18) 1996
Smith (CR35) 1998; 48
Candès (CR6) 1999; 6
Jaffard (CR27) 1992; 29
Meyer (CR30) 1990
CR17
Hackbusch (CR22) 1999; 62
CR16
Candès, Demanet (CR7) 2003; 336
CR15
CR37
Beylkin, Coifman, Rokhlin (CR3) 1991; 44
Moler, Van Loan (CR32) 2003; 45
Stein (CR36) 1993
CR10
Lax (CR28) 1957; 24
Candès, Donoho (CR11) 2004; 57
Smith (CR34) 1998; 8
Beylkin, Mohlenkamp (CR4) 2005; 26
Seeger, Sogge, Stein (CR33) 1991; 134
Babenko (CR1) 2001; 53
Córdoba, Fefferman (CR14) 1978; 3
Fefferman (CR20) 1973; 15
Hörmander (CR26) 1985
LeVeque (CR29) 2002
Meyer, Coifman (CR31) 1997
Bacry, Mallat, Papanicolaou (CR2) 1992; 26
Ziemer (CR38) 1989
Cohen, Dahmen, DeVore (CR13) 2000; 70
Candès, Demanet (CR8) 2005; 58
CR9
Cohen (CR12) 2003
CR24
CR23
CR21
Beylkin, Sandberg (CR5) 2005; 41
Engquist, Osher, Zhong (CR19) 1994; 15
A. Cohen (226_CR12) 2003
E. Stein (226_CR36) 1993
226_CR10
M.V. Hoop de (226_CR25) 2000; 31
A. Cohen (226_CR13) 2000; 70
226_CR17
E.J. Candès (226_CR7) 2003; 336
226_CR9
226_CR15
226_CR37
226_CR16
G. Beylkin (226_CR3) 1991; 44
B. Engquist (226_CR19) 1994; 15
S. Jaffard (226_CR27) 1992; 29
W. Hackbusch (226_CR22) 1999; 62
Y. Meyer (226_CR30) 1990
H. Smith (226_CR35) 1998; 48
E.J. Candès (226_CR8) 2005; 58
E.J. Candès (226_CR11) 2004; 57
H. Smith (226_CR34) 1998; 8
J. Duistermaat (226_CR18) 1996
P. Lax (226_CR28) 1957; 24
C. Fefferman (226_CR20) 1973; 15
C. Moler (226_CR32) 2003; 45
G. Beylkin (226_CR5) 2005; 41
W. Ziemer (226_CR38) 1989
E.J. Candès (226_CR6) 1999; 6
226_CR21
E. Bacry (226_CR2) 1992; 26
226_CR24
226_CR23
Yu.V. Babenko (226_CR1) 2001; 53
Y. Meyer (226_CR31) 1997
L. Hörmander (226_CR26) 1985
A. Seeger (226_CR33) 1991; 134
R.J. LeVeque (226_CR29) 2002
A. Córdoba (226_CR14) 1978; 3
G. Beylkin (226_CR4) 2005; 26
References_xml – volume: 24
  start-page: 627
  year: 1957
  end-page: 646
  ident: CR28
  article-title: Asymptotic solutions of oscillatory initial value problems
  publication-title: Duke Math J.
  doi: 10.1215/S0012-7094-57-02471-7
– volume: 15
  start-page: 755
  issue: 4
  year: 1994
  end-page: 775
  ident: CR19
  article-title: Fast wavelet based algorithms for linear evolution equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0915048
– volume: 8
  start-page: 629
  year: 1998
  end-page: 653
  ident: CR34
  article-title: A Hardy space for Fourier integral operators
  publication-title: J. Geom. Anal.
– ident: CR16
– ident: CR37
– volume: 41
  start-page: 263
  issue: 3
  year: 2005
  end-page: 291
  ident: CR5
  article-title: Wave propagation using bases for bandlimited functions
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2004.05.008
– year: 1997
  ident: CR31
  publication-title: Wavelets, Calderón-Zygmund and Multilinear Operators
– volume: 48
  start-page: 797
  year: 1998
  end-page: 835
  ident: CR35
  article-title: A parametrix construction for wave equations with coefficients
  publication-title: Ann. Inst. Fourier (Grenoble)
– ident: CR10
– volume: 45
  start-page: 3
  issue: 1
  year: 2003
  end-page: 49
  ident: CR32
  article-title: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later
  publication-title: SIAM Rev.
  doi: 10.1137/S00361445024180
– volume: 134
  start-page: 231
  year: 1991
  end-page: 251
  ident: CR33
  article-title: Regularity properties of Fourier integral operators
  publication-title: Ann. Math.
  doi: 10.2307/2944346
– year: 2002
  ident: CR29
  publication-title: Finite Volume Methods for Hyperbolic Problems
– volume: 6
  start-page: 197
  year: 1999
  end-page: 218
  ident: CR6
  article-title: Harmonic analysis of neural networks
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.1998.0248
– volume: 44
  start-page: 141
  year: 1991
  end-page: 183
  ident: CR3
  article-title: Fast wavelet transforms and numerical algorithms
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160440202
– volume: 26
  start-page: 793
  issue: 7
  year: 1992
  ident: CR2
  article-title: A wavelet based space-time adaptive numerical method for partial differential equations
  publication-title: Math. Model. Num. Anal.
– ident: CR23
– volume: 15
  start-page: 44
  year: 1973
  end-page: 52
  ident: CR20
  article-title: A note on spherical summation multipliers
  publication-title: Israel J. Math.
  doi: 10.1007/BF02771772
– year: 1990
  ident: CR30
  publication-title: Ondelettes et Opérateurs
– year: 2003
  ident: CR12
  publication-title: Numerical Analysis of Wavelet Methods
– ident: CR21
– year: 1993
  ident: CR36
  publication-title: Harmonic Analysis
– volume: 31
  start-page: 43
  issue: 1
  year: 2000
  end-page: 70
  ident: CR25
  article-title: Generlization of the phase-screen approximation for the scattering of acoustic waves
  publication-title: Wave Motion
  doi: 10.1016/S0165-2125(99)00026-8
– volume: 336
  start-page: 395
  year: 2003
  end-page: 398
  ident: CR7
  article-title: Curvelets and Fourier integral operators
  publication-title: C. R. Acad. Sci. Paris Ser. I
– ident: CR15
– volume: 70
  start-page: 27
  issue: 233
  year: 2000
  end-page: 75
  ident: CR13
  article-title: Adaptive wavelet methods for elliptic operator equations— Convergence rates
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-00-01252-7
– ident: CR17
– year: 1985
  ident: CR26
  publication-title: The Analysis of Linear Partial Differential Operators, vol.4
– volume: 26
  start-page: 2133
  issue: 6
  year: 2005
  end-page: 2159
  ident: CR4
  article-title: Algorithms for numerical analysis in high dimensions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040604959
– volume: 58
  start-page: 1472
  issue: 11
  year: 2005
  end-page: 1528
  ident: CR8
  article-title: The curvelet representation of wave propagators is optimally sparse
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.20078
– ident: CR9
– volume: 3
  start-page: 979
  issue: 11
  year: 1978
  end-page: 1005
  ident: CR14
  article-title: Wave packets and Fourier integral operators
  publication-title: Comm. PDE
  doi: 10.1080/03605307808820083
– volume: 29
  start-page: 965
  issue: 4
  year: 1992
  end-page: 986
  ident: CR27
  article-title: Wavelet methods for fast resolution of elliptic problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0729059
– volume: 53
  start-page: 270
  issue: 2
  year: 2001
  end-page: 275
  ident: CR1
  article-title: Pointwise inequalities of Landau-Kolmogorov-type for functions defined on a finite segment
  publication-title: Ukr. Math. J.
  doi: 10.1023/A:1010469004645
– year: 1996
  ident: CR18
  publication-title: Fourier Integral Operators
– volume: 62
  start-page: 89
  year: 1999
  end-page: 108
  ident: CR22
  article-title: A sparse matrix arithmetic based on H-matrices. Part I: introduction to H-matrices
  publication-title: Computing
  doi: 10.1007/s006070050015
– volume: 57
  start-page: 219
  year: 2004
  end-page: 266
  ident: CR11
  article-title: New tight frames of curvelets and optimal representations of objects with piecewise singularities
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.10116
– ident: CR24
– year: 1989
  ident: CR38
  publication-title: Weakly Differentiable Functions
– volume: 3
  start-page: 979
  issue: 11
  year: 1978
  ident: 226_CR14
  publication-title: Comm. PDE
  doi: 10.1080/03605307808820083
– volume: 15
  start-page: 755
  issue: 4
  year: 1994
  ident: 226_CR19
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0915048
– volume: 336
  start-page: 395
  year: 2003
  ident: 226_CR7
  publication-title: C. R. Acad. Sci. Paris Ser. I
  doi: 10.1016/S1631-073X(03)00095-5
– volume-title: Finite Volume Methods for Hyperbolic Problems
  year: 2002
  ident: 226_CR29
  doi: 10.1017/CBO9780511791253
– volume: 45
  start-page: 3
  issue: 1
  year: 2003
  ident: 226_CR32
  publication-title: SIAM Rev.
  doi: 10.1137/S00361445024180
– volume: 57
  start-page: 219
  year: 2004
  ident: 226_CR11
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.10116
– ident: 226_CR24
– volume: 6
  start-page: 197
  year: 1999
  ident: 226_CR6
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.1998.0248
– ident: 226_CR9
  doi: 10.1137/05064182X
– volume: 53
  start-page: 270
  issue: 2
  year: 2001
  ident: 226_CR1
  publication-title: Ukr. Math. J.
  doi: 10.1023/A:1010469004645
– ident: 226_CR23
  doi: 10.1109/MCSE.2006.49
– volume: 41
  start-page: 263
  issue: 3
  year: 2005
  ident: 226_CR5
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2004.05.008
– ident: 226_CR16
  doi: 10.1016/j.acha.2007.03.003
– ident: 226_CR10
– volume-title: Harmonic Analysis
  year: 1993
  ident: 226_CR36
– volume: 134
  start-page: 231
  year: 1991
  ident: 226_CR33
  publication-title: Ann. Math.
  doi: 10.2307/2944346
– volume: 26
  start-page: 793
  issue: 7
  year: 1992
  ident: 226_CR2
  publication-title: Math. Model. Num. Anal.
  doi: 10.1051/m2an/1992260707931
– volume: 26
  start-page: 2133
  issue: 6
  year: 2005
  ident: 226_CR4
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040604959
– volume: 70
  start-page: 27
  issue: 233
  year: 2000
  ident: 226_CR13
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-00-01252-7
– volume: 31
  start-page: 43
  issue: 1
  year: 2000
  ident: 226_CR25
  publication-title: Wave Motion
  doi: 10.1016/S0165-2125(99)00026-8
– volume: 44
  start-page: 141
  year: 1991
  ident: 226_CR3
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160440202
– ident: 226_CR37
  doi: 10.1016/j.jcp.2006.05.008
– volume-title: Fourier Integral Operators
  year: 1996
  ident: 226_CR18
– volume-title: The Analysis of Linear Partial Differential Operators, vol.4
  year: 1985
  ident: 226_CR26
– ident: 226_CR21
  doi: 10.1016/S1570-579X(03)80030-7
– volume: 24
  start-page: 627
  year: 1957
  ident: 226_CR28
  publication-title: Duke Math J.
  doi: 10.1215/S0012-7094-57-02471-7
– volume: 15
  start-page: 44
  year: 1973
  ident: 226_CR20
  publication-title: Israel J. Math.
  doi: 10.1007/BF02771772
– ident: 226_CR17
  doi: 10.1190/1.1845326
– volume-title: Ondelettes et Opérateurs
  year: 1990
  ident: 226_CR30
– volume-title: Wavelets, Calderón-Zygmund and Multilinear Operators
  year: 1997
  ident: 226_CR31
– volume-title: Weakly Differentiable Functions
  year: 1989
  ident: 226_CR38
  doi: 10.1007/978-1-4612-1015-3
– ident: 226_CR15
– volume: 48
  start-page: 797
  year: 1998
  ident: 226_CR35
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.1640
– volume: 58
  start-page: 1472
  issue: 11
  year: 2005
  ident: 226_CR8
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.20078
– volume-title: Numerical Analysis of Wavelet Methods
  year: 2003
  ident: 226_CR12
– volume: 62
  start-page: 89
  year: 1999
  ident: 226_CR22
  publication-title: Computing
  doi: 10.1007/s006070050015
– volume: 29
  start-page: 965
  issue: 4
  year: 1992
  ident: 226_CR27
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0729059
– volume: 8
  start-page: 629
  year: 1998
  ident: 226_CR34
  publication-title: J. Geom. Anal.
  doi: 10.1007/BF02921717
SSID ssj0017641
Score 2.0277379
Snippet We present a new geometric strategy for the numerical solution of hyperbolic wave equations in smoothly varying, two-dimensional time-independent periodic...
SourceID pascalfrancis
crossref
springer
SourceType Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Exact sciences and technology
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical analysis. Scientific computation
Numerical and Computational Physics
Numerical linear algebra
Ordinary differential equations
Partial differential equations
Sciences and techniques of general use
Simulation
Special functions
Theoretical
Title Wave atoms and time upscaling of wave equations
URI https://link.springer.com/article/10.1007/s00211-009-0226-6
Volume 113
WOSCitedRecordID wos000267108700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0945-3245
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017641
  issn: 0029-599X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcAAhBgPEeEw5cAJFtFubpkeEmLgwIZ67VW6aSEjQjXUbfx-nL2niIcHdTiwnru3a8Qdw4tsgAp2YC08a7gXGcETp8ER4MWJoMxDMwSaCwUAOh-Ft-Y47q7rdq5Jk_qWuH7tZd0Spr_2ZTzEDF8uwQt5OWmu8u3-qSweB8Nyqr8MPw2FVyvxuiQVntDHGjPRiCkCLL5XR3OH0m_8SdQs2y_iSXRQXYhuWdNqCZoXdwEpTbsH6TT2vNduB82eca0b591vGME2YRZxns7EVlPZlI8M-LIF-LwaDZ7vw2L96uLzmJZQCV2S0U-7H5Ka1o0IVCIVoelKprop9YZw4oSAl8ZWrkcIxqQ0pUGLc812ZKEEMAbq6tweNdJTqfWBICU6oHB0aDD2FhhK22FMWgshzPSWcNjiVTiNVzhm3cBevUT0hOVdPROqJrHoi0YbTmmVcDNn4jbizcFA1R9elWIOkaMNZdSpRaZDZz8sd_In6ENaKcpLt1z2CxnQy08ewqubTl2zSyS_iJy7Z1jo
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT8MwDLa4JECIGzGOkQeeQBUtS9PmESGmIdiEYMDeKjdNJCQYY93g7-P0kiYOCd7txHLi2q4dfwCHvg0i0I0dwUPj8MAYBzF0nUTwGFHaDAQzsImg0wl7PXlTvONOy273siSZfamrx27WHVHqa3_mU8zgiGmY5eSwbB_f7d1DVToIBPfKvg5fyl5ZyvxuiQlntDTAlPRickCLL5XRzOE0V_4l6iosF_ElO8svxBpM6f46rJTYDaww5XVYbFfzWtMNOHnEd80o_35JGfYTZhHn2XhgBaV92athH5ZAv-WDwdNNuG9edM9bTgGl4Cgy2pHjx-SmtaukCoRCNI1QqVMV-8K4cUJBSuIrTyOFY6E2pMAQ44bvhYkSxBCgpxtbMNN_7ettYEgJjlSulgYlV2goYYu5shBE3ONKuDVwS51GqpgzbuEunqNqQnKmnojUE1n1RKIGRxXLIB-y8RtxfeKgKo5Tj2INkqIGx-WpRIVBpj8vt_Mn6gOYb3Xb19H1ZedqFxby0pLt3d2DmdFwrPdhTr2PntJhPbuUn0KC2R4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iijidCrOj5kHn5SwdkvT9lHUoahj4NfeyjVNQNCurt38903WDxA_QHzPheOXHHeXu9wP4MgxQQRaIeXMU5S5SlFEz6IRZyGibzIQnJFNuP2-Nxz6g4LnNC273cuSZP6nwUxpirN2Eql29fHNuCadBpuHfR0_UD4PC8xwBpl0_e6xKiO4nNllj4fj-8OyrPndFp8c02qCqcZI5eQWX6qkM-fTq_9b7XVYK-JOcppflA2Yk3ED6iWnAylMvAErt9Uc13QT2k84lUTn5a8pwTgihomeTBKjtNaBjBR5NwvkWz4wPN2Ch97F_dklLSgWqNDGnFEn1O5bWsIXLheIqusJ0RGhw5UVRjp4iRxhS9RhmieVBtPDsOvYXiS4FnDRlt1tqMWjWO4AQZ34-MKSvkKfCVQ6kQuZMNREzGaCW02wSnwDUcwfNzQYL0E1OXkGT6DhCQw8AW_CcSWS5MM3flvc-nRolUTH1jGI1qIJJ-UJBYWhpj9vt_un1YewNDjvBTdX_es9WM4rTqaldx9q2XgiD2BRTLPndNya3c8PB6fiAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wave+atoms+and+time+upscaling+of+wave+equations&rft.jtitle=Numerische+Mathematik&rft.au=Demanet%2C+Laurent&rft.au=Ying%2C+Lexing&rft.date=2009-07-01&rft.pub=Springer-Verlag&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=113&rft.issue=1&rft.spage=1&rft.epage=71&rft_id=info:doi/10.1007%2Fs00211-009-0226-6&rft.externalDocID=10_1007_s00211_009_0226_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon