Distributed algorithm for ε-generalized Nash equilibria with uncertain coupled constraints

In this paper, we design a distributed algorithm to seek generalized Nash equilibria with uncertain coupled constraints. It is hard to find the exact equilibria directly, because the parameters in the coupled constraint come from general convex sets, which may not have analytic expressions. To solve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) Jg. 123; S. 109313
Hauptverfasser: Chen, Guanpu, Ming, Yang, Hong, Yiguang, Yi, Peng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2021
Schlagworte:
ISSN:0005-1098, 1873-2836
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we design a distributed algorithm to seek generalized Nash equilibria with uncertain coupled constraints. It is hard to find the exact equilibria directly, because the parameters in the coupled constraint come from general convex sets, which may not have analytic expressions. To solve the problem, we first approximate general convex sets by inscribed polyhedrons and transform the approximate problem into a variational inequality by robust optimization. Then, with help of convex set geometry and metric spaces, we prove that the solution to the variational inequality induces an ε-generalized Nash equilibrium of the original game in the worst case. Furthermore, we propose a distributed algorithm to seek an ε-generalized Nash equilibrium, and show the convergence analysis with Lyapunov functions and variational inequalities. Finally, we illustrate the effectiveness of the distributed algorithm by a numerical example.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2020.109313