Customer segmentation by web content mining

This article introduces a new dimension, Interpurchase Time (T), into the existing RFM (Recency, Frequency, and Monetary) model to form an expanded RFMT model for parsing consumers' online purchase sequences in a long period to implement customer segmentation. The proposed RFMT model can track...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of retailing and consumer services Ročník 61; s. 102588
Hlavní autoři: Zhou, Jinfeng, Wei, Jinliang, Xu, Bugao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2021
Témata:
ISSN:0969-6989, 1873-1384
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article introduces a new dimension, Interpurchase Time (T), into the existing RFM (Recency, Frequency, and Monetary) model to form an expanded RFMT model for parsing consumers' online purchase sequences in a long period to implement customer segmentation. The proposed RFMT model can track and discern changes in customer purchasing behaviors during their whole shopping cycle. Firstly, a web content retrieving system was developed to fetch publicly available customer data on a retailer's website, including demographic information (gender, age, location, etc.) and product information (name, price, date, etc.) of each purchase in a period from 2008 to 2019. The RFMT values of a customer were then computed from the retrieved data and subsequently analyzed by the hierarchical clustering to derive seven homogeneous clusters with specific customer profiles. Subsequently, demographic features and product preferences were identified for each cluster with business insights that can help the retailer to improve customer relationships and to implement targeted recommendation strategies. •Expanding the traditional RFM model to the RFMT model by introducing a new dimension, interpurchase time, to include information on shopping regularity in a long-term period.•Deriving seven characteristic customer clusters from a large dataset retrieved on a global retailer's website based on the RFMT model.•Profiling customer purchasing behaviors by the cluster analysis.
AbstractList This article introduces a new dimension, Interpurchase Time (T), into the existing RFM (Recency, Frequency, and Monetary) model to form an expanded RFMT model for parsing consumers' online purchase sequences in a long period to implement customer segmentation. The proposed RFMT model can track and discern changes in customer purchasing behaviors during their whole shopping cycle. Firstly, a web content retrieving system was developed to fetch publicly available customer data on a retailer's website, including demographic information (gender, age, location, etc.) and product information (name, price, date, etc.) of each purchase in a period from 2008 to 2019. The RFMT values of a customer were then computed from the retrieved data and subsequently analyzed by the hierarchical clustering to derive seven homogeneous clusters with specific customer profiles. Subsequently, demographic features and product preferences were identified for each cluster with business insights that can help the retailer to improve customer relationships and to implement targeted recommendation strategies. •Expanding the traditional RFM model to the RFMT model by introducing a new dimension, interpurchase time, to include information on shopping regularity in a long-term period.•Deriving seven characteristic customer clusters from a large dataset retrieved on a global retailer's website based on the RFMT model.•Profiling customer purchasing behaviors by the cluster analysis.
ArticleNumber 102588
Author Xu, Bugao
Wei, Jinliang
Zhou, Jinfeng
Author_xml – sequence: 1
  givenname: Jinfeng
  surname: Zhou
  fullname: Zhou, Jinfeng
  email: Jinfengzhou@my.unt.edu
  organization: Department of Merchandising and Digital Retailing, University of North Texas, Denton,410 Ave. C, Chilton Hall 342J, Denton, TX, 76201, United States
– sequence: 2
  givenname: Jinliang
  surname: Wei
  fullname: Wei, Jinliang
  email: jinliangwii@hotmail.com
  organization: Department of Computer Science and Engineering, University of North Texas, Denton, 1504 W. Mulberry St., Science Research Building 275, Denton, TX, 76201, United States
– sequence: 3
  givenname: Bugao
  orcidid: 0000-0001-9221-5110
  surname: Xu
  fullname: Xu, Bugao
  email: Bugao.Xu@unt.edu, bugao.xu@unt.edu
  organization: Department of Merchandising and Digital Retailing, University of North Texas, Denton,410 Ave. C, Chilton Hall 342J, Denton, TX, 76201, United States
BookMark eNqNj11LwzAYhYNMcJv-h95La5Im6dsbQYdfMPBGr0OavRspaypJVPbvzaggeKNXB87hPPAsyMyPHgkpGK0YZeqqr_qAyY4-Yqg45SzXXAKckDmDpi5ZDWJG5rRVbalaaM_IIsaeUqokiDm5XL3HNA4Yioi7AX0yyY2-6A7FJ3ZFxqbcFYPzzu_OyenW7CNefOeSvN7fvawey_Xzw9PqZl3amkEqJTQNcimMaTuA1mwaZoWQnFOwwHmrpKGdkVsjcqEQjKo5UF4bwfKEtF4SmLg2jDEG3Oq34AYTDppRfZTWvf6R1kdpPUnn6_Wvq3WTUgrG7f8DuJ0AmAU_XF6jdegtblxAm_RmdH9DvgBDuHu2
CitedBy_id crossref_primary_10_1080_10527001_2023_2168585
crossref_primary_10_1057_s41270_022_00158_7
crossref_primary_10_1016_j_eswa_2022_118043
crossref_primary_10_3390_electronics14020325
crossref_primary_10_1109_ACCESS_2024_3420221
crossref_primary_10_3390_fi15110351
crossref_primary_10_1007_s10479_022_04526_5
crossref_primary_10_1016_j_compag_2023_108320
crossref_primary_10_1177_00405175241302487
crossref_primary_10_1016_j_jretconser_2023_103433
crossref_primary_10_1007_s42488_023_00085_x
crossref_primary_10_1007_s10257_023_00640_4
crossref_primary_10_1108_K_01_2022_0049
crossref_primary_10_1080_15332969_2024_2313873
crossref_primary_10_1109_ACCESS_2022_3223361
crossref_primary_10_1057_s41270_023_00235_5
crossref_primary_10_1109_ACCESS_2022_3147447
crossref_primary_10_1111_exsy_13169
crossref_primary_10_1016_j_asoc_2024_111264
crossref_primary_10_12677_aam_2024_1310426
crossref_primary_10_1016_j_eswa_2023_121449
crossref_primary_10_1016_j_jretconser_2024_104138
crossref_primary_10_3390_s23063180
crossref_primary_10_1108_REGE_06_2022_0087
crossref_primary_10_1016_j_jretconser_2024_104078
Cites_doi 10.1186/s12859-017-1965-5
10.1016/j.eswa.2008.07.018
10.1111/jbl.12120
10.1108/10610420210435443
10.17535/crorr.2018.0020
10.1016/j.jclepro.2018.09.189
10.1109/TPAMI.2002.1114856
10.1016/j.future.2017.02.031
10.3758/PBR.15.6.1209
10.1016/j.eswa.2011.11.066
10.1016/j.eswa.2008.08.059
10.1016/S0022-4359(02)00068-4
10.1177/002224376600300309
10.1108/03090560810840925
10.1016/j.eswa.2011.05.034
10.30646/sinus.v18i1.448
10.1504/IJEBR.2017.085549
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jretconser.2021.102588
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1873-1384
ExternalDocumentID 10_1016_j_jretconser_2021_102588
S0969698921001545
GroupedDBID --K
--M
.~1
0R~
13V
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
96U
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABKBG
ABMAC
ABMVD
ABXDB
ABYKQ
ACBMB
ACDAQ
ACGFO
ACGFS
ACHRH
ACNTT
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFAZI
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNSAS
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLX
HVGLF
HZ~
IHE
J1W
KOM
LG8
LXL
LXN
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBM
SDF
SDG
SDP
SES
SEW
SPCBC
SSB
SSL
SSZ
T5K
U5U
UHS
WUQ
XYO
YK3
ZRQ
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-5877e254aa9b889ad71c4452208c822965a0ba5fa408c6e8a6328023a4165ae03
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663533300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0969-6989
IngestDate Sat Nov 29 07:11:09 EST 2025
Tue Nov 18 19:48:09 EST 2025
Fri Feb 23 02:41:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Customer segmentation
Interpurchase time
Hierarchical clustering
Web content mining
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-5877e254aa9b889ad71c4452208c822965a0ba5fa408c6e8a6328023a4165ae03
ORCID 0000-0001-9221-5110
ParticipantIDs crossref_primary_10_1016_j_jretconser_2021_102588
crossref_citationtrail_10_1016_j_jretconser_2021_102588
elsevier_sciencedirect_doi_10_1016_j_jretconser_2021_102588
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Journal of retailing and consumer services
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Morrison (bib29) 1966; 3
Meyer‐Waarden (bib27) 2008; 42
Wei, Lin, Wu (bib41) 2010; 4
Alvandi, Fazli, Abdoli (bib2) 2012; 3
Miglautsch (bib28) 2000; 8
Yeh, Yang, Ting (bib44) 2009; 36
Velotio Technologies (bib38) 2019
Maryani, Riana, Astuti, Ishaq, Pratama (bib24) 2018
Seif (bib34) 2018
Lin, C. F., 2002. Segmenting customer brand preference: demographic or psychographic. J. Prod. Brand. Manag. 11(4), 249-268. https://doi.org/10.1108/10610420210435443.
Vakratsas, Bass (bib37) 2002; 78
Ouellette (bib30) 2020
Scitovski, Sušac, Has (bib33) 2018; 9
Sharma, López, Tsunoda (bib35) 2017; 18
Guo (bib11) 2009; 36
Huseynov, Yıldırım (bib17) 2017; 14
Wei, Lin, Weng, Wu (bib42) 2012; 39
Garbade (bib10) 2018
Chang, Tsai (bib6) 2011; 38
Shihab, Afroge, Mishu (bib36) 2019
Elrod, Stanley, Cudney, Fisher (bib8) 2015; 7
Widyawati, Saptomo, Utami (bib43) 2020; 18
Kim (bib19) 2013
Maryani, Riana (bib23) 2017
Liu, Li, Xiong, Gao, Wu (bib21) 2010
Yoseph, Heikkila (bib45) 2018
Guo, Gao, Liu, Wu (bib1) 2018; 78
Hughes (bib14) 1994
Bushery (bib5) 2020
Christy, Umamakeswari, Priyatharsini, Neyaa (bib7) 2018
Hung, Lien, Ngoc (bib16) 2019
Hui (bib15) 2019
Hood, Clarke, Clarke (bib13) 2016; 26
Kadir, Achyar (bib18) 2019
Haider, Zafar, Khalid, Majid, Abdullah, Sarwar (bib12) 2017
mahmoud Taher, Elzanfaly, Salama (bib22) 2016; 4
Wei (bib40) 2020
Praveen, Rama (bib32) 2018; 9
Massimino (bib25) 2016; 37
An, Kwak, Jung, Salminen, Jansen (bib3) 2018; 8
Anitha, Patil (bib4) 2019
Patlolla (bib31) 2018
Young (bib46) 2020
Maulik, Bandyopadhyay (bib26) 2002; 24
Farrell, Ludwig (bib9) 2008; 15
Wang, Somogyi (bib39) 2019; 206
Elrod (10.1016/j.jretconser.2021.102588_bib8) 2015; 7
Farrell (10.1016/j.jretconser.2021.102588_bib9) 2008; 15
Scitovski (10.1016/j.jretconser.2021.102588_bib33) 2018; 9
Young (10.1016/j.jretconser.2021.102588_bib46) 2020
Maryani (10.1016/j.jretconser.2021.102588_bib23) 2017
Guo (10.1016/j.jretconser.2021.102588_bib11) 2009; 36
Maulik (10.1016/j.jretconser.2021.102588_bib26) 2002; 24
Anitha (10.1016/j.jretconser.2021.102588_bib4) 2019
Kim (10.1016/j.jretconser.2021.102588_bib19) 2013
Yeh (10.1016/j.jretconser.2021.102588_bib44) 2009; 36
10.1016/j.jretconser.2021.102588_bib20
Kadir (10.1016/j.jretconser.2021.102588_bib18) 2019
Garbade (10.1016/j.jretconser.2021.102588_bib10)
Hui (10.1016/j.jretconser.2021.102588_bib15)
mahmoud Taher (10.1016/j.jretconser.2021.102588_bib22) 2016; 4
Patlolla (10.1016/j.jretconser.2021.102588_bib31)
Sharma (10.1016/j.jretconser.2021.102588_bib35) 2017; 18
Widyawati (10.1016/j.jretconser.2021.102588_bib43) 2020; 18
An (10.1016/j.jretconser.2021.102588_bib3) 2018; 8
Huseynov (10.1016/j.jretconser.2021.102588_bib17) 2017; 14
Wang (10.1016/j.jretconser.2021.102588_bib39) 2019; 206
Liu (10.1016/j.jretconser.2021.102588_bib21) 2010
Maryani (10.1016/j.jretconser.2021.102588_bib24) 2018
Velotio Technologies (10.1016/j.jretconser.2021.102588_bib38)
Seif (10.1016/j.jretconser.2021.102588_bib34)
Guo (10.1016/j.jretconser.2021.102588_bib1) 2018; 78
Haider (10.1016/j.jretconser.2021.102588_bib12) 2017
Vakratsas (10.1016/j.jretconser.2021.102588_bib37) 2002; 78
Wei (10.1016/j.jretconser.2021.102588_bib40)
Wei (10.1016/j.jretconser.2021.102588_bib41) 2010; 4
Hung (10.1016/j.jretconser.2021.102588_bib16) 2019
Meyer‐Waarden (10.1016/j.jretconser.2021.102588_bib27) 2008; 42
Morrison (10.1016/j.jretconser.2021.102588_bib29) 1966; 3
Alvandi (10.1016/j.jretconser.2021.102588_bib2) 2012; 3
Bushery (10.1016/j.jretconser.2021.102588_bib5)
Miglautsch (10.1016/j.jretconser.2021.102588_bib28) 2000; 8
Massimino (10.1016/j.jretconser.2021.102588_bib25) 2016; 37
Hood (10.1016/j.jretconser.2021.102588_bib13) 2016; 26
Christy (10.1016/j.jretconser.2021.102588_bib7) 2018
Wei (10.1016/j.jretconser.2021.102588_bib42) 2012; 39
Chang (10.1016/j.jretconser.2021.102588_bib6) 2011; 38
Shihab (10.1016/j.jretconser.2021.102588_bib36) 2019
Ouellette (10.1016/j.jretconser.2021.102588_bib30) 2020
Yoseph (10.1016/j.jretconser.2021.102588_bib45) 2018
Praveen (10.1016/j.jretconser.2021.102588_bib32) 2018; 9
Hughes (10.1016/j.jretconser.2021.102588_bib14) 1994
References_xml – volume: 4
  start-page: 5
  year: 2016
  end-page: 10
  ident: bib22
  article-title: Investigation in customer value segmentation quality under different preprocessing types of RFM attributes
  publication-title: iJES
– year: 2018
  ident: bib7
  article-title: RFM ranking–An effective approach to customer segmentation
  publication-title: J. King Saud Univ., Comp. & Info. Sci.
– volume: 9
  start-page: 255
  year: 2018
  end-page: 268
  ident: bib33
  article-title: Searching for an optimal partition of incomplete data with application in modeling energy efficiency of public buildings
  publication-title: Croat. Oper. Res. Rev.
– year: 2019
  ident: bib18
  article-title: Customer Segmentation on Online Retail Using RFM Analysis: Big Data Case of Bukku. Id
– volume: 39
  start-page: 5529
  year: 2012
  end-page: 5533
  ident: bib42
  article-title: A case study of applying LRFM model in market segmentation of a children's dental clinic
  publication-title: Expert Syst. Appl.
– volume: 15
  start-page: 1209
  year: 2008
  end-page: 1217
  ident: bib9
  article-title: Bayesian and maximum likelihood estimation of hierarchical response time models
  publication-title: Psychon. Bull. Rev.
– volume: 78
  start-page: 451
  year: 2018
  end-page: 461
  ident: bib1
  article-title: Recommend products with consideration of multi-category inter-purchase time and price
  publication-title: Future Generat. Comput. Syst.
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib23
  article-title: Clustering and profiling of customers using RFM for customer relationship management recommendations
  publication-title: 2017 5th International Conference on Cyber and I
– volume: 3
  start-page: 289
  year: 1966
  end-page: 291
  ident: bib29
  article-title: Interpurchase time and brand loyalty
  publication-title: J. Mar. Res.
– volume: 4
  start-page: 4199
  year: 2010
  end-page: 4206
  ident: bib41
  article-title: A review of the application of RFM model
  publication-title: Afr.J.Bus.Manage.
– volume: 36
  start-page: 5866
  year: 2009
  end-page: 5871
  ident: bib44
  article-title: Knowledge discovery on RFM model using Bernoulli sequence
  publication-title: Expert Syst. Appl.
– year: 2020
  ident: bib46
  article-title: U.S. ecommerce sales grow 14.9% in 2019
– volume: 8
  start-page: 1
  year: 2018
  end-page: 19
  ident: bib3
  article-title: Customer segmentation using online platforms: isolating behavioral and demographic segments for persona creation via aggregated user data
  publication-title: Soc. Netw. Anal. Min.
– start-page: 1
  year: 2013
  end-page: 18
  ident: bib19
  article-title: Understanding online consumer's inter-purchase time
  publication-title: INFORMS CIST
– volume: 3
  start-page: 2294
  year: 2012
  end-page: 2302
  ident: bib2
  article-title: K-Mean clustering method for analysis customer lifetime value with LRFM relationship model in banking services
  publication-title: Int. Res. Judgement
– year: 2019
  ident: bib38
  article-title: Web scraping: introduction, best practices & caveats
– year: 2018
  ident: bib10
  article-title: Understanding K-means clustering in machine learning
– volume: 18
  start-page: 546
  year: 2017
  ident: bib35
  article-title: Divisive hierarchical maximum likelihood clustering
  publication-title: BMC Bioinf.
– year: 2018
  ident: bib34
  article-title: The 5 clustering algorithms data scientists need to know. Medium
– volume: 78
  start-page: 119
  year: 2002
  end-page: 129
  ident: bib37
  article-title: The relationship between purchase regularity and propensity to accelerate
  publication-title: J. Retailing
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib24
  article-title: Customer segmentation based on RFM model and clustering techniques with K-means algorithm
  publication-title: 2018 Third International Conference on Informatics and Computing
– year: 2019
  ident: bib15
  article-title: Machine learning-Expectation-Maximization algorithm (E.M.)
– volume: 14
  start-page: 12
  year: 2017
  end-page: 28
  ident: bib17
  article-title: Behavioural segmentation analysis of online consumer audience in Turkey by using real e-commerce transaction data
  publication-title: Int. J. Econ. Bus. Res.
– start-page: 33
  year: 2019
  end-page: 37
  ident: bib16
  article-title: Customer segmentation using hierarchical agglomerative clustering
  publication-title: Proceedings of the 2nd International Conference on Information Science and Systems
– start-page: 108
  year: 2018
  end-page: 116
  ident: bib45
  article-title: Segmenting retail customers with an enhanced RFM and a hybrid regression/clustering method
  publication-title: 2018 International Conference on Machine Learning and Data Engineering (iCMLDE)
– volume: 36
  start-page: 6301
  year: 2009
  end-page: 6308
  ident: bib11
  article-title: A multi-category inter-purchase time model based on hierarchical Bayesian theory
  publication-title: Expert Syst. Appl.
– year: 2020
  ident: bib5
  article-title: Behavioral segmentation examples and insights
– volume: 37
  start-page: 34
  year: 2016
  end-page: 42
  ident: bib25
  article-title: Accessing online data: web‐crawling and information‐scraping techniques to automate the assembly of research data
  publication-title: J. Bus. Logist.
– volume: 18
  start-page: 75
  year: 2020
  end-page: 87
  ident: bib43
  article-title: Penerapan agglomerative hierarchical clustering untuk segmentasi pelanggan
  publication-title: J.ILM.Sinus.
– reference: Lin, C. F., 2002. Segmenting customer brand preference: demographic or psychographic. J. Prod. Brand. Manag. 11(4), 249-268. https://doi.org/10.1108/10610420210435443.
– year: 2018
  ident: bib31
  article-title: Understanding the concepts of Hierarchical clustering technique
– year: 2019
  ident: bib4
  article-title: RFM model for customer purchase behavior using K-Means algorithm
  publication-title: J. King Saud Univ., Comp. & Info. Sci.
– volume: 42
  start-page: 87
  year: 2008
  end-page: 114
  ident: bib27
  article-title: The influence of loyalty programme membership on customer purchase behaviour
  publication-title: Eur.J.Mark.
– volume: 9
  start-page: 324
  year: 2018
  end-page: 327
  ident: bib32
  article-title: Improving efficiency and effectiveness of hierarchical clustering
  publication-title: Int. J.Adv.
– volume: 38
  start-page: 14499
  year: 2011
  end-page: 14513
  ident: bib6
  article-title: Group RFM analysis as a novel framework to discover better customer consumption behavior
  publication-title: Expert Syst. Appl.
– start-page: 911
  year: 2010
  end-page: 916
  ident: bib21
  article-title: Understanding of internal clustering validation measures
  publication-title: 2010 IEEE International Conference on Data Mining
– volume: 7
  start-page: 10756
  year: 2015
  end-page: 10769
  ident: bib8
  article-title: Empirical study utilizing Q.F.D. to develop an international marketing strategy
  publication-title: Sustain. Times
– start-page: 1
  year: 2019
  end-page: 4
  ident: bib36
  article-title: RFM based market segmentation approach using advanced K-means and agglomerative clustering: a comparative study
  publication-title: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE)
– volume: 24
  start-page: 1650
  year: 2002
  end-page: 1654
  ident: bib26
  article-title: Performance evaluation of some clustering algorithms and validity indices
  publication-title: IEEE Trans. Pattern Anal.
– volume: 206
  start-page: 966
  year: 2019
  end-page: 975
  ident: bib39
  article-title: Consumer adoption of sustainable shellfish in China: effects of psychological factors and segmentation
  publication-title: J. Clean. Prod.
– year: 1994
  ident: bib14
  article-title: Strategic Database Marketing
– year: 2020
  ident: bib40
  article-title: How to measure clustering performances when there are no ground truth
– volume: 26
  start-page: 113
  year: 2016
  end-page: 136
  ident: bib13
  article-title: Segmenting the growing U.K. convenience store market for retail location planning
  publication-title: Int. Rev. Retail Distrib. Consum. Res.
– volume: 8
  start-page: 67
  year: 2000
  end-page: 72
  ident: bib28
  article-title: Thoughts on RFM scoring
  publication-title: J. Database Mark. Cust. Strategy Manag.
– year: 2020
  ident: bib30
  article-title: Online shopping statistics you need to know in 2021
– year: 2017
  ident: bib12
  article-title: Marketing Management. Head, B, 22
– volume: 18
  start-page: 546
  issue: 16
  year: 2017
  ident: 10.1016/j.jretconser.2021.102588_bib35
  article-title: Divisive hierarchical maximum likelihood clustering
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-017-1965-5
– volume: 26
  start-page: 113
  issue: 2
  year: 2016
  ident: 10.1016/j.jretconser.2021.102588_bib13
  article-title: Segmenting the growing U.K. convenience store market for retail location planning
  publication-title: Int. Rev. Retail Distrib. Consum. Res.
– start-page: 1
  year: 2019
  ident: 10.1016/j.jretconser.2021.102588_bib36
  article-title: RFM based market segmentation approach using advanced K-means and agglomerative clustering: a comparative study
– volume: 36
  start-page: 5866
  issue: 3
  year: 2009
  ident: 10.1016/j.jretconser.2021.102588_bib44
  article-title: Knowledge discovery on RFM model using Bernoulli sequence
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.07.018
– volume: 37
  start-page: 34
  issue: 1
  year: 2016
  ident: 10.1016/j.jretconser.2021.102588_bib25
  article-title: Accessing online data: web‐crawling and information‐scraping techniques to automate the assembly of research data
  publication-title: J. Bus. Logist.
  doi: 10.1111/jbl.12120
– ident: 10.1016/j.jretconser.2021.102588_bib20
  doi: 10.1108/10610420210435443
– year: 2019
  ident: 10.1016/j.jretconser.2021.102588_bib18
– volume: 9
  start-page: 255
  issue: 2
  year: 2018
  ident: 10.1016/j.jretconser.2021.102588_bib33
  article-title: Searching for an optimal partition of incomplete data with application in modeling energy efficiency of public buildings
  publication-title: Croat. Oper. Res. Rev.
  doi: 10.17535/crorr.2018.0020
– volume: 206
  start-page: 966
  year: 2019
  ident: 10.1016/j.jretconser.2021.102588_bib39
  article-title: Consumer adoption of sustainable shellfish in China: effects of psychological factors and segmentation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.09.189
– start-page: 1
  year: 2017
  ident: 10.1016/j.jretconser.2021.102588_bib23
  article-title: Clustering and profiling of customers using RFM for customer relationship management recommendations
– volume: 9
  start-page: 324
  issue: 2
  year: 2018
  ident: 10.1016/j.jretconser.2021.102588_bib32
  article-title: Improving efficiency and effectiveness of hierarchical clustering
  publication-title: Int. J.Adv.
– start-page: 1
  year: 2018
  ident: 10.1016/j.jretconser.2021.102588_bib24
  article-title: Customer segmentation based on RFM model and clustering techniques with K-means algorithm
– volume: 4
  start-page: 4199
  issue: 19
  year: 2010
  ident: 10.1016/j.jretconser.2021.102588_bib41
  article-title: A review of the application of RFM model
  publication-title: Afr.J.Bus.Manage.
– volume: 24
  start-page: 1650
  issue: 12
  year: 2002
  ident: 10.1016/j.jretconser.2021.102588_bib26
  article-title: Performance evaluation of some clustering algorithms and validity indices
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/TPAMI.2002.1114856
– year: 2020
  ident: 10.1016/j.jretconser.2021.102588_bib30
– volume: 78
  start-page: 451
  year: 2018
  ident: 10.1016/j.jretconser.2021.102588_bib1
  article-title: Recommend products with consideration of multi-category inter-purchase time and price
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2017.02.031
– start-page: 33
  year: 2019
  ident: 10.1016/j.jretconser.2021.102588_bib16
  article-title: Customer segmentation using hierarchical agglomerative clustering
– volume: 15
  start-page: 1209
  issue: 6
  year: 2008
  ident: 10.1016/j.jretconser.2021.102588_bib9
  article-title: Bayesian and maximum likelihood estimation of hierarchical response time models
  publication-title: Psychon. Bull. Rev.
  doi: 10.3758/PBR.15.6.1209
– ident: 10.1016/j.jretconser.2021.102588_bib31
– year: 2018
  ident: 10.1016/j.jretconser.2021.102588_bib7
  article-title: RFM ranking–An effective approach to customer segmentation
  publication-title: J. King Saud Univ., Comp. & Info. Sci.
– year: 2019
  ident: 10.1016/j.jretconser.2021.102588_bib4
  article-title: RFM model for customer purchase behavior using K-Means algorithm
  publication-title: J. King Saud Univ., Comp. & Info. Sci.
– volume: 39
  start-page: 5529
  issue: 5
  year: 2012
  ident: 10.1016/j.jretconser.2021.102588_bib42
  article-title: A case study of applying LRFM model in market segmentation of a children's dental clinic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.11.066
– volume: 36
  start-page: 6301
  issue: 3
  year: 2009
  ident: 10.1016/j.jretconser.2021.102588_bib11
  article-title: A multi-category inter-purchase time model based on hierarchical Bayesian theory
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.08.059
– volume: 78
  start-page: 119
  issue: 2
  year: 2002
  ident: 10.1016/j.jretconser.2021.102588_bib37
  article-title: The relationship between purchase regularity and propensity to accelerate
  publication-title: J. Retailing
  doi: 10.1016/S0022-4359(02)00068-4
– volume: 3
  start-page: 2294
  issue: 11
  year: 2012
  ident: 10.1016/j.jretconser.2021.102588_bib2
  article-title: K-Mean clustering method for analysis customer lifetime value with LRFM relationship model in banking services
  publication-title: Int. Res. Judgement
– volume: 8
  start-page: 67
  issue: 1
  year: 2000
  ident: 10.1016/j.jretconser.2021.102588_bib28
  article-title: Thoughts on RFM scoring
  publication-title: J. Database Mark. Cust. Strategy Manag.
– ident: 10.1016/j.jretconser.2021.102588_bib40
– ident: 10.1016/j.jretconser.2021.102588_bib10
– year: 2017
  ident: 10.1016/j.jretconser.2021.102588_bib12
– start-page: 911
  year: 2010
  ident: 10.1016/j.jretconser.2021.102588_bib21
  article-title: Understanding of internal clustering validation measures
– ident: 10.1016/j.jretconser.2021.102588_bib38
– volume: 7
  start-page: 10756
  issue: 8
  year: 2015
  ident: 10.1016/j.jretconser.2021.102588_bib8
  article-title: Empirical study utilizing Q.F.D. to develop an international marketing strategy
  publication-title: Sustain. Times
– volume: 3
  start-page: 289
  issue: 3
  year: 1966
  ident: 10.1016/j.jretconser.2021.102588_bib29
  article-title: Interpurchase time and brand loyalty
  publication-title: J. Mar. Res.
  doi: 10.1177/002224376600300309
– start-page: 108
  year: 2018
  ident: 10.1016/j.jretconser.2021.102588_bib45
  article-title: Segmenting retail customers with an enhanced RFM and a hybrid regression/clustering method
– volume: 8
  start-page: 1
  issue: 54
  year: 2018
  ident: 10.1016/j.jretconser.2021.102588_bib3
  article-title: Customer segmentation using online platforms: isolating behavioral and demographic segments for persona creation via aggregated user data
  publication-title: Soc. Netw. Anal. Min.
– year: 2020
  ident: 10.1016/j.jretconser.2021.102588_bib46
– ident: 10.1016/j.jretconser.2021.102588_bib15
– volume: 42
  start-page: 87
  issue: 1/2
  year: 2008
  ident: 10.1016/j.jretconser.2021.102588_bib27
  article-title: The influence of loyalty programme membership on customer purchase behaviour
  publication-title: Eur.J.Mark.
  doi: 10.1108/03090560810840925
– ident: 10.1016/j.jretconser.2021.102588_bib34
– volume: 38
  start-page: 14499
  issue: 12
  year: 2011
  ident: 10.1016/j.jretconser.2021.102588_bib6
  article-title: Group RFM analysis as a novel framework to discover better customer consumption behavior
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.05.034
– start-page: 1
  year: 2013
  ident: 10.1016/j.jretconser.2021.102588_bib19
  article-title: Understanding online consumer's inter-purchase time
  publication-title: INFORMS CIST
– volume: 18
  start-page: 75
  issue: 1
  year: 2020
  ident: 10.1016/j.jretconser.2021.102588_bib43
  article-title: Penerapan agglomerative hierarchical clustering untuk segmentasi pelanggan
  publication-title: J.ILM.Sinus.
  doi: 10.30646/sinus.v18i1.448
– volume: 14
  start-page: 12
  issue: 1
  year: 2017
  ident: 10.1016/j.jretconser.2021.102588_bib17
  article-title: Behavioural segmentation analysis of online consumer audience in Turkey by using real e-commerce transaction data
  publication-title: Int. J. Econ. Bus. Res.
  doi: 10.1504/IJEBR.2017.085549
– ident: 10.1016/j.jretconser.2021.102588_bib5
– year: 1994
  ident: 10.1016/j.jretconser.2021.102588_bib14
– volume: 4
  start-page: 5
  issue: 4
  year: 2016
  ident: 10.1016/j.jretconser.2021.102588_bib22
  article-title: Investigation in customer value segmentation quality under different preprocessing types of RFM attributes
  publication-title: iJES
SSID ssj0006584
Score 2.4887598
Snippet This article introduces a new dimension, Interpurchase Time (T), into the existing RFM (Recency, Frequency, and Monetary) model to form an expanded RFMT model...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102588
SubjectTerms Customer segmentation
Hierarchical clustering
Interpurchase time
Web content mining
Title Customer segmentation by web content mining
URI https://dx.doi.org/10.1016/j.jretconser.2021.102588
Volume 61
WOSCitedRecordID wos000663533300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1384
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006584
  issn: 0969-6989
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA66ifgiXnHe6INvo9JblhSf5pioyBCcsreSddnYcN3YRea_95wk7YZOnIgvZYSlbfKF0y8n53yHkAufUdcXLrUd6Qk7CJqOHUoe2sg1BGvFDlO1Dl8eWK3GG43w0ZS5G6tyAixJ-GwWDv8VamgDsDF19hdwZzeFBvgNoMMVYIfrSsBXpsDn-ijSLDt9k1mUIMvErESMTMfT_76qC_ENMx2psNI0ezE2SZrFsTErc1_zYKoWAQZ0mZupM56uaUUPStbcUP-9nnbEYNHT4LlZVKpxf6UpMPN4I-VHLIU2VqHUHxRtRTnzUdwwWDSzWnP9i8XWzoPeZQ_GhgOSKNLquSgpQXXBv0962E_4RHyg52oCuE7yHqMhmLR8-a7auM8-xEiulNSieUMTyKXD-5Y_bzk7WWAc9R2ybQCxyhriXbImkz2ymWYq7JNiirS1iLTVfLcAacsgbWmkD8jzTbVeubVN7Qs7Bis7sSlnTMLmXYiwyXkoWsyNA1S_d3iMGv0lKpymoG0RQENJclHyPdTyE0CwqZCOf0hyySCRR8RCqyxaMFGSB7C_hQ22wJMAR0pHBLTdLhCWjjmKjTA81id5jdIIwF40n60IZyvSs1UgbtZzqMVRVuhzlU5rZEieJm8RrIgfex__qfcJ2Zqv61OSm4ym8oxsxG-T7nh0bpbPB4aoemc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Customer+segmentation+by+web+content+mining&rft.jtitle=Journal+of+retailing+and+consumer+services&rft.au=Zhou%2C+Jinfeng&rft.au=Wei%2C+Jinliang&rft.au=Xu%2C+Bugao&rft.date=2021-07-01&rft.pub=Elsevier+Ltd&rft.issn=0969-6989&rft.eissn=1873-1384&rft.volume=61&rft_id=info:doi/10.1016%2Fj.jretconser.2021.102588&rft.externalDocID=S0969698921001545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-6989&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-6989&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-6989&client=summon