MDR-LOD2 Model: Forgery Detection using Modified Depth ResNet features and Layer Optimized Dunnock Deep Model from Videos

Digital forgery detection implies the identification of any modifications or manipulation of the digital content, typically image, video, or document, to confirm their authenticity. Consequently, this contribution seeks to address the challenges experienced by existing techniques by introducing the...

Full description

Saved in:
Bibliographic Details
Published in:Computers & electrical engineering Vol. 125; p. 110423
Main Authors: Ugale, Meena, Midhunchakkaravarthy, J.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.07.2025
Subjects:
ISSN:0045-7906
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Digital forgery detection implies the identification of any modifications or manipulation of the digital content, typically image, video, or document, to confirm their authenticity. Consequently, this contribution seeks to address the challenges experienced by existing techniques by introducing the Modified DepthResNet descriptor and Layer Optimized Dunnock Deep model (MDR-LOD2) model. MDR descriptor is proficient at generating features in ResNet architecture and hence it helps in the fusion of a DepthNet to detect depth-related cues which plays a crucial role in spotting forgery. More specifically, the MDR descriptor captures the subtle details via the spatial connections and depth perception, resulting in boosting the detection performance. The hybrid optimizer strategy combines meticulous exploration and dynamic adaptation together increasing the model's ability to detect splicing forgery. The proposed approach exploits the LOD2 architecture well suited for capturing the temporal aspects and effectively analyzes the intricate patterns of video data. Additionally, the LOD2 model is enabled with the Dunnock Hunt Optimization (DHO) algorithm for layer optimization facilitating optimal performance of every layer in LSTM. Moreover, the integration of LOD2 and MDR descriptor in conjunction with the DHO algorithm in the proposed approach assist in identifying the forged regions in the video frames. The experimental results demonstrate that the proposed approach attains an accuracy of 98.54 %, sensitivity of 98.54 %, specificity of 98.53 %, and F1-score of 98.54 % for DSO-1. For DSI-1 DTS, the proposed approach achieves remarkable results with high accuracy of 98.47 %, sensitivity of 98.41 %, specificity of 98.52 %, and F1-score of 98.47 %. Finally, the proposed model obtained the remarkable results for the Face Forensics database achieving high accuracy of 97.83 %, sensitivity of 97.76 %, specificity of 97.89 %, and F1-score of 97.83 % outperforming other existing techniques.
AbstractList Digital forgery detection implies the identification of any modifications or manipulation of the digital content, typically image, video, or document, to confirm their authenticity. Consequently, this contribution seeks to address the challenges experienced by existing techniques by introducing the Modified DepthResNet descriptor and Layer Optimized Dunnock Deep model (MDR-LOD2) model. MDR descriptor is proficient at generating features in ResNet architecture and hence it helps in the fusion of a DepthNet to detect depth-related cues which plays a crucial role in spotting forgery. More specifically, the MDR descriptor captures the subtle details via the spatial connections and depth perception, resulting in boosting the detection performance. The hybrid optimizer strategy combines meticulous exploration and dynamic adaptation together increasing the model's ability to detect splicing forgery. The proposed approach exploits the LOD2 architecture well suited for capturing the temporal aspects and effectively analyzes the intricate patterns of video data. Additionally, the LOD2 model is enabled with the Dunnock Hunt Optimization (DHO) algorithm for layer optimization facilitating optimal performance of every layer in LSTM. Moreover, the integration of LOD2 and MDR descriptor in conjunction with the DHO algorithm in the proposed approach assist in identifying the forged regions in the video frames. The experimental results demonstrate that the proposed approach attains an accuracy of 98.54 %, sensitivity of 98.54 %, specificity of 98.53 %, and F1-score of 98.54 % for DSO-1. For DSI-1 DTS, the proposed approach achieves remarkable results with high accuracy of 98.47 %, sensitivity of 98.41 %, specificity of 98.52 %, and F1-score of 98.47 %. Finally, the proposed model obtained the remarkable results for the Face Forensics database achieving high accuracy of 97.83 %, sensitivity of 97.76 %, specificity of 97.89 %, and F1-score of 97.83 % outperforming other existing techniques.
ArticleNumber 110423
Author Midhunchakkaravarthy, J.
Ugale, Meena
Author_xml – sequence: 1
  givenname: Meena
  surname: Ugale
  fullname: Ugale, Meena
  email: meenaugale@gmail.com
  organization: Department of Computer Science and Multimedia, Lincoln University College, Kuala Lumpur 47301, Malaysia
– sequence: 2
  givenname: J.
  surname: Midhunchakkaravarthy
  fullname: Midhunchakkaravarthy, J.
  email: midhun@lincoln.edu.my
  organization: Faculty of Computer Science and Multimedia, Lincoln University College, Kuala Lumpur 47301, Malaysia
BookMark eNqNkMtOwzAQRb0oEm3hH8wHJNhxHi471FJAaqlUAVsrsSfFpbEjO0UKX4-jsGDJajS6D12dGZoYawChG0piSmh-e4ylbVo4gQRziBOSZDGlJE3YBE0JSbOoWJD8Es28P5Lw55RPUb9d7aPNbpXgrVVwusNr6w7geryCDmSnrcFnr81hkHWtQQWh7T7wHvwLdLiGsjs78Lg0Cm_KHhzetZ1u9PfgPBtj5WdIQDvW49rZBr9rBdZfoYu6PHm4_r1z9LZ-eF0-hTWPz8v7TSQZ5V2U5SlQnlWFUmlaJQvOGamAEwpFWSpJGE8ACsYLJnktgVPCapKSqlJlGpyczdFi7JXOeu-gFq3TTel6QYkYuImj-MNNDNzEyC1kl2MWwsAvDU54qcFIUNoFOkJZ_Y-WHypSgLQ
Cites_doi 10.1007/s11277-020-07126-3
10.1155/2023/8378073
10.1016/j.image.2020.116066
10.1016/j.diin.2019.03.006
10.1007/s11042-019-08236-2
10.1016/j.jhydrol.2023.129977
10.1109/TCSVT.2020.2993004
10.1109/ACCESS.2022.3215963
10.32604/iasc.2021.018854
10.1007/s11042-021-10989-8
10.1109/TCSVT.2023.3281475
10.1007/s11277-020-07102-x
10.1109/ACCESS.2024.3357395
10.3390/s24165341
10.1049/bme2.12031
10.1016/j.cose.2018.04.013
10.1111/1556-4029.13658
10.1186/s13673-017-0101-x
10.3390/electronics13091662
10.1016/j.diin.2016.08.002
10.1007/s13735-018-0159-x
10.1007/s00371-020-01992-5
10.1504/IJESDF.2017.085196
10.1007/s11042-023-15561-0
10.1007/s11042-021-11126-1
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compeleceng.2025.110423
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compeleceng_2025_110423
S0045790625003660
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
9DU
AAYXX
ACLOT
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c318t-564e185b7dd44b298830be801e7aadc0382ee73873c8fce8103f040bbda430b83
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502000400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7906
IngestDate Sat Nov 29 07:51:58 EST 2025
Sat Jul 05 17:12:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Image manipulation
Dunnock hunt optimization
Digital forensics
Video forgery detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-564e185b7dd44b298830be801e7aadc0382ee73873c8fce8103f040bbda430b83
OpenAccessLink https://doi.org/10.1016/j.compeleceng.2025.110423
ParticipantIDs crossref_primary_10_1016_j_compeleceng_2025_110423
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2025_110423
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Computers & electrical engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yao, Wang, Wang, Wu, Chen (bib0024) 2023; 625
El-Shafai, Fouda, El-Rabaie, El-Salam (bib0004) 2024
Johnston, Elyan (bib0008) 2019; 29
DSO-1 and DSI-1 datasets
Kaur, Jindal (bib0010) 2020; 112
Munawar, Noreen (bib0040) 2021; 29
Atchaya, Somasundaram (bib0045) 2023; 2
Bao, Wang, Hua, Dong, Lee (bib0038) 2024; 24
Fadl, Han, Li (bib0013) 2018; 63
Jeyalakshmi, Chitra (bib0021) 2018
Wang, Peng, Liu, Wang, Gao (bib0028) 2023; 33
Mizher, Ang, Mazhar, Mizher (bib0007) 2017; 9
Huh (bib0018) 2017; 7
Tuerxun, Xu, Guo, Guo, Zeng, Gao (bib0023) 2022; 15
Arini, Bahaweres, Al Haq (bib0037) 2022
Hosler, Mayer, Bayar, Zhao, Chen, Shackleford, Stamm (bib0014) 2019
Vinolin, Sucharitha (bib0003) 2021; 37
Hsu, Hung, Lin, Hsu (bib0016) 2008
Fadl, Han, Li (bib0002) 2021; 90
Ugale, Midhunchakkaravarthy (bib0047) 2025; 12
Jin, Xu, Xu, Hyun, Lee, Ryu, Lee, Lee (bib0019) 2013
Shelke, Kasana (bib0031) 2024; 83
Hsu, Chang (bib0015) 2007
Sharma, Kanwal, Batth (bib0009) 2019
Gan, Yang, Zhong (bib0030) 2023; 2023
Manivannan, Sathiamoorthy (bib0022) 2023; 45
Shelke, Kasana (bib0032) 2022; 81
Jin, He, Wang, Yu, Xu (bib0027) 2022; 81
Face Forensics Database is taken from
Mazhar, Jameel, Nadeem, Khan, Alkhateeb, Bibi, Seerat (bib0033) 2024; 12
Dileep, Navaneeth, Abhishek (bib0044) 2021
Fayyaz, Anjum, Ziauddin, Khan, Sarfaraz (bib0026) 2020; 79
Kaur, Jindal (bib0042) 2020; 112
Ugale, Midhunchakkaravarthy (bib0046) 2024; 51
Mohammed, Badr, Ali (bib0043) 2021; 1818
Huang, Zhang, Huang, Lin, Su (bib0017) 2018; 77
Aloraini, Sharifzadeh, Agarwal, Schonfeld (bib0005) 2019; 31
Kaur, Jindal (bib0025) 2020; 112
.
Chao, Jiang, Sun (bib0012) 2012
Wary, Neelima (bib0011) 2019; 8
Al-Dulaimi, Kurnaz (bib0029) 2024; 13
James, Witten, Hastie, Tibshirani, Taylor (bib0041) 2023
Pandey, Singh, Shukla (bib0006) 2016; 19
Aloraini, Sharifzadeh, Schonfeld (bib0001) 2020; 31
Luo, Chen (bib0020) 2022; 10
Yu, Xia, Fei, Lu (bib0039) 2021; 10
Accessed on May 2023.
Johnston (10.1016/j.compeleceng.2025.110423_bib0008) 2019; 29
Kaur (10.1016/j.compeleceng.2025.110423_bib0025) 2020; 112
Munawar (10.1016/j.compeleceng.2025.110423_bib0040) 2021; 29
Luo (10.1016/j.compeleceng.2025.110423_bib0020) 2022; 10
Yao (10.1016/j.compeleceng.2025.110423_bib0024) 2023; 625
10.1016/j.compeleceng.2025.110423_bib0035
Atchaya (10.1016/j.compeleceng.2025.110423_bib0045) 2023; 2
Ugale (10.1016/j.compeleceng.2025.110423_bib0047) 2025; 12
Vinolin (10.1016/j.compeleceng.2025.110423_bib0003) 2021; 37
Aloraini (10.1016/j.compeleceng.2025.110423_bib0005) 2019; 31
Al-Dulaimi (10.1016/j.compeleceng.2025.110423_bib0029) 2024; 13
Ugale (10.1016/j.compeleceng.2025.110423_bib0046) 2024; 51
10.1016/j.compeleceng.2025.110423_bib0034
Mohammed (10.1016/j.compeleceng.2025.110423_bib0043) 2021; 1818
Hsu (10.1016/j.compeleceng.2025.110423_bib0016) 2008
Kaur (10.1016/j.compeleceng.2025.110423_bib0042) 2020; 112
Shelke (10.1016/j.compeleceng.2025.110423_bib0031) 2024; 83
Dileep (10.1016/j.compeleceng.2025.110423_bib0044) 2021
Fadl (10.1016/j.compeleceng.2025.110423_bib0002) 2021; 90
Tuerxun (10.1016/j.compeleceng.2025.110423_bib0023) 2022; 15
Bao (10.1016/j.compeleceng.2025.110423_bib0038) 2024; 24
Shelke (10.1016/j.compeleceng.2025.110423_bib0032) 2022; 81
Wang (10.1016/j.compeleceng.2025.110423_bib0028) 2023; 33
Jin (10.1016/j.compeleceng.2025.110423_bib0027) 2022; 81
Pandey (10.1016/j.compeleceng.2025.110423_bib0006) 2016; 19
Manivannan (10.1016/j.compeleceng.2025.110423_bib0022) 2023; 45
Chao (10.1016/j.compeleceng.2025.110423_bib0012) 2012
Kaur (10.1016/j.compeleceng.2025.110423_bib0010) 2020; 112
Gan (10.1016/j.compeleceng.2025.110423_bib0030) 2023; 2023
Mazhar (10.1016/j.compeleceng.2025.110423_bib0033) 2024; 12
Sharma (10.1016/j.compeleceng.2025.110423_bib0009) 2019
Aloraini (10.1016/j.compeleceng.2025.110423_bib0001) 2020; 31
Yu (10.1016/j.compeleceng.2025.110423_bib0039) 2021; 10
Fadl (10.1016/j.compeleceng.2025.110423_bib0013) 2018; 63
Hsu (10.1016/j.compeleceng.2025.110423_bib0015) 2007
Jin (10.1016/j.compeleceng.2025.110423_bib0019) 2013
James (10.1016/j.compeleceng.2025.110423_bib0041) 2023
Hosler (10.1016/j.compeleceng.2025.110423_bib0014) 2019
Mizher (10.1016/j.compeleceng.2025.110423_bib0007) 2017; 9
Fayyaz (10.1016/j.compeleceng.2025.110423_bib0026) 2020; 79
Wary (10.1016/j.compeleceng.2025.110423_bib0011) 2019; 8
El-Shafai (10.1016/j.compeleceng.2025.110423_bib0004) 2024
Jeyalakshmi (10.1016/j.compeleceng.2025.110423_bib0021) 2018
Huang (10.1016/j.compeleceng.2025.110423_bib0017) 2018; 77
Huh (10.1016/j.compeleceng.2025.110423_bib0018) 2017; 7
Arini (10.1016/j.compeleceng.2025.110423_bib0037) 2022
References_xml – reference: Face Forensics Database is taken from
– volume: 10
  start-page: 607
  year: 2021
  end-page: 624
  ident: bib0039
  article-title: A survey on deepfake video detection
  publication-title: Iet Biom
– start-page: 69
  year: 2023
  end-page: 134
  ident: bib0041
  article-title: Linear regression
  publication-title: In an introduction to statistical learning: with applications in python
– volume: 112
  start-page: 1763
  year: 2020
  end-page: 1781
  ident: bib0042
  article-title: Deep convolutional neural network for graphics forgery detection in video
  publication-title: Wirel Pers Commun
– volume: 63
  start-page: 1099
  year: 2018
  end-page: 1109
  ident: bib0013
  article-title: Authentication of surveillance videos: detecting frame duplication based on residual frame
  publication-title: J Forensic Sci
– volume: 81
  start-page: 35733
  year: 2022
  end-page: 35749
  ident: bib0027
  article-title: Towards general object-based video forgery detection via dual-stream networks and depth information embedding
  publication-title: Multimed Tools Appl
– volume: 83
  start-page: 5415
  year: 2024
  end-page: 5435
  ident: bib0031
  article-title: Multiple forgery detection in digital video with VGG-16-based deep neural network and KPCA
  publication-title: Multimed Tools Appl
– reference: , Accessed on May 2023.
– start-page: 1407
  year: 2018
  end-page: 1414
  ident: bib0021
  article-title: Comparative study of feature extraction using several wavelet transforms for source camera identification
  publication-title: 2018 2nd Int Conf Inventive Syst Control
– volume: 31
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib0005
  article-title: Statistical sequential analysis for object-based video forgery detection
  publication-title: IS T Int Symp Electron Imaging Sci Technol
– volume: 112
  start-page: 1281
  year: 2020
  end-page: 1302
  ident: bib0010
  article-title: Image and video forensics: a critical survey
  publication-title: Wirel Pers Commun
– start-page: 485
  year: 2019
  end-page: 491
  ident: bib0009
  article-title: An ontology of digital video forensics: classification, research gaps & datasets
  publication-title: 2019 Int Conf Comput Intell Knowl Econ
– volume: 19
  start-page: 1
  year: 2016
  end-page: 28
  ident: bib0006
  article-title: Passive forensics in image and video using noise features: a review
  publication-title: Digit Investig
– start-page: 267
  year: 2012
  end-page: 281
  ident: bib0012
  article-title: A novel video inter-frame forgery model detection scheme based on optical flow consistency
  publication-title: The Int Workshop Digit Forensics Watermarking
– volume: 33
  start-page: 7943
  year: 2023
  end-page: 7956
  ident: bib0028
  article-title: Spatial-temporal frequency forgery clue for video forgery detection in VIS and NIR scenario
  publication-title: IEEE Trans Circuits Syst Video Technol
– volume: 12
  year: 2025
  ident: bib0047
  article-title: An efficient video forgery detection using two-layer hybridized deep CNN classifier
  publication-title: EAI Endorsed Trans Scalable Inf Syst
– volume: 10
  start-page: 110754
  year: 2022
  end-page: 110760
  ident: bib0020
  article-title: Dual attention network approaches to face forgery video detection
  publication-title: IEEE Access
– start-page: 170
  year: 2008
  end-page: 174
  ident: bib0016
  article-title: Video forgery detection using correlation of noise residue
  publication-title: 2008 IEEE 10th Workshop Multimedia Signal Process
– start-page: 254
  year: 2022
  end-page: 259
  ident: bib0037
  article-title: Quick classification of xception and resnet-50 models on deepfake video using local binary pattern
  publication-title: 2021 Int Semin Mach Learn Optim Data Sci
– volume: 37
  start-page: 2369
  year: 2021
  end-page: 2390
  ident: bib0003
  article-title: Dual adaptive deep convolutional neural network for video forgery detection in 3D lighting environment
  publication-title: Visual Comput
– volume: 625
  year: 2023
  ident: bib0024
  article-title: An ensemble CNN-LSTM and GRU adaptive weighting model based improved sparrow search algorithm for predicting runoff using historical meteorological and runoff data as input
  publication-title: J Hydrol
– start-page: 1025
  year: 2021
  end-page: 1028
  ident: bib0044
  article-title: A novel approach for credit card fraud detection using decision tree and random forest algorithms
  publication-title: 2021 Third Int Conf Intell Commun Technol Virtual Mobile Network
– volume: 8
  start-page: 61
  year: 2019
  end-page: 78
  ident: bib0011
  article-title: A review on robust video copy detection
  publication-title: Int J Multimed Inf Retr
– volume: 12
  start-page: 21156
  year: 2024
  end-page: 21164
  ident: bib0033
  article-title: Deep convolutional neural network for robust detection of object-based forgeries in advanced video
  publication-title: IEEE Access
– start-page: 1
  year: 2024
  end-page: 67
  ident: bib0004
  article-title: A comprehensive taxonomy on multimedia video forgery detection techniques: challenges and novel trends
  publication-title: Multimed Tools Appl
– start-page: 8271
  year: 2019
  end-page: 8275
  ident: bib0014
  article-title: A video camera model identification system using deep learning and fusion
  publication-title: ICASSP 2019-2019 IEEE Int Conf. Acoust speech Signal Process
– volume: 45
  start-page: 10335
  year: 2023
  end-page: 10347
  ident: bib0022
  article-title: Automated tuberculosis classification using Egret Swarm optimization with deep learning based fusion model on chest X-ray images
  publication-title: J Intell Fuzzy Syst
– volume: 13
  start-page: 1662
  year: 2024
  ident: bib0029
  article-title: A hybrid CNN-LSTM approach for precision deepfake image detection based on transfer learning
  publication-title: Electronic
– volume: 7
  start-page: 1
  year: 2017
  end-page: 19
  ident: bib0018
  article-title: PLC-based design of monitoring system for ICT-integrated vertical fish farm
  publication-title: Hum Centric Comput Inf Sci
– volume: 31
  start-page: 917
  year: 2020
  end-page: 930
  ident: bib0001
  article-title: Sequential and patch analyses for object removal video forgery detection and localization
  publication-title: IEEE Trans Circuits Syst Video Technol
– volume: 15
  start-page: 2031
  year: 2022
  ident: bib0023
  article-title: A wind power forecasting model using LSTM optimized by the modified bald eagle search algorithm
  publication-title: Energy
– volume: 2023
  year: 2023
  ident: bib0030
  article-title: Video surveillance object forgery detection using PDCL Network with residual-based steganalysis feature
  publication-title: Int J Intell Syst
– volume: 112
  start-page: 1763
  year: 2020
  end-page: 1781
  ident: bib0025
  article-title: Deep convolutional neural network for graphics forgery detection in video
  publication-title: Wirel Pers Commun
– volume: 29
  year: 2021
  ident: bib0040
  article-title: Duplicate frame video forgery detection using Siamese-based RNN
  publication-title: Intell Autom Soft Comput
– volume: 90
  year: 2021
  ident: bib0002
  article-title: CNN spatiotemporal features and fusion for surveillance video forgery detection
  publication-title: Signal Process Image Commun
– reference: .
– volume: 77
  start-page: 412
  year: 2018
  end-page: 426
  ident: bib0017
  article-title: A multi-channel approach through fusion of audio for detecting video inter-frame forgery
  publication-title: Comput Secur
– volume: 79
  start-page: 5767
  year: 2020
  end-page: 5788
  ident: bib0026
  article-title: An improved surveillance video forgery detection technique using sensor pattern noise and correlation of noise residues
  publication-title: Multimed Tools Appl
– volume: 29
  start-page: 67
  year: 2019
  end-page: 81
  ident: bib0008
  article-title: A review of digital video tampering: from simple editing to full synthesis
  publication-title: Digital Invest
– start-page: 28
  year: 2007
  end-page: 31
  ident: bib0015
  article-title: Image splicing detection using camera response function consistency and automatic segmentation
  publication-title: 2007 IEEE Int Conf Multimedia Expo
– volume: 24
  start-page: 5341
  year: 2024
  ident: bib0038
  article-title: An anti-forensics video forgery detection method based on noise transfer matrix analysis
  publication-title: Sensor
– volume: 81
  start-page: 22731
  year: 2022
  end-page: 22759
  ident: bib0032
  article-title: Multiple forgery detection and localization technique for digital video using PCT and NBAP
  publication-title: Multimed Tools Appl
– reference: DSO-1 and DSI-1 datasets,
– volume: 51
  year: 2024
  ident: bib0046
  article-title: Image splicing forgery detection model using hybrid boosting machine
  publication-title: IAENG Int J Comput Sci
– start-page: 25
  year: 2013
  end-page: 36
  ident: bib0019
  article-title: Forgery detection for surveillance video
  publication-title: The Era Interact Media
– volume: 2
  start-page: 2172
  year: 2023
  end-page: 2181
  ident: bib0045
  article-title: Novel logistic regression over naive Bayes improves accuracy in credit card fraud detection
  publication-title: J Surv Fish Sci
– volume: 9
  start-page: 191
  year: 2017
  end-page: 208
  ident: bib0007
  article-title: A review of video falsifying techniques and video forgery detection techniques
  publication-title: Int J Electron Secur Digit Forensic
– volume: 1818
  year: 2021
  ident: bib0043
  article-title: Detection of image forgery using information standard method with SVM
  publication-title: Int Phys Conf Ser.
– start-page: 254
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110423_bib0037
  article-title: Quick classification of xception and resnet-50 models on deepfake video using local binary pattern
– volume: 112
  start-page: 1763
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110423_bib0025
  article-title: Deep convolutional neural network for graphics forgery detection in video
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-020-07126-3
– volume: 2023
  issue: 1
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110423_bib0030
  article-title: Video surveillance object forgery detection using PDCL Network with residual-based steganalysis feature
  publication-title: Int J Intell Syst
  doi: 10.1155/2023/8378073
– start-page: 8271
  year: 2019
  ident: 10.1016/j.compeleceng.2025.110423_bib0014
  article-title: A video camera model identification system using deep learning and fusion
– volume: 31
  start-page: 1
  year: 2019
  ident: 10.1016/j.compeleceng.2025.110423_bib0005
  article-title: Statistical sequential analysis for object-based video forgery detection
  publication-title: IS T Int Symp Electron Imaging Sci Technol
– volume: 15
  start-page: 2031
  issue: 6
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110423_bib0023
  article-title: A wind power forecasting model using LSTM optimized by the modified bald eagle search algorithm
  publication-title: Energy
– volume: 90
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110423_bib0002
  article-title: CNN spatiotemporal features and fusion for surveillance video forgery detection
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2020.116066
– volume: 29
  start-page: 67
  year: 2019
  ident: 10.1016/j.compeleceng.2025.110423_bib0008
  article-title: A review of digital video tampering: from simple editing to full synthesis
  publication-title: Digital Invest
  doi: 10.1016/j.diin.2019.03.006
– start-page: 28
  year: 2007
  ident: 10.1016/j.compeleceng.2025.110423_bib0015
  article-title: Image splicing detection using camera response function consistency and automatic segmentation
– volume: 79
  start-page: 5767
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110423_bib0026
  article-title: An improved surveillance video forgery detection technique using sensor pattern noise and correlation of noise residues
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-08236-2
– volume: 625
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110423_bib0024
  article-title: An ensemble CNN-LSTM and GRU adaptive weighting model based improved sparrow search algorithm for predicting runoff using historical meteorological and runoff data as input
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2023.129977
– volume: 31
  start-page: 917
  issue: 3
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110423_bib0001
  article-title: Sequential and patch analyses for object removal video forgery detection and localization
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2020.2993004
– start-page: 69
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110423_bib0041
  article-title: Linear regression
– volume: 1818
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110423_bib0043
  article-title: Detection of image forgery using information standard method with SVM
– volume: 10
  start-page: 110754
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110423_bib0020
  article-title: Dual attention network approaches to face forgery video detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3215963
– volume: 29
  issue: 3
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110423_bib0040
  article-title: Duplicate frame video forgery detection using Siamese-based RNN
  publication-title: Intell Autom Soft Comput
  doi: 10.32604/iasc.2021.018854
– start-page: 485
  year: 2019
  ident: 10.1016/j.compeleceng.2025.110423_bib0009
  article-title: An ontology of digital video forensics: classification, research gaps & datasets
– volume: 81
  start-page: 22731
  issue: 16
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110423_bib0032
  article-title: Multiple forgery detection and localization technique for digital video using PCT and NBAP
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-10989-8
– start-page: 1025
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110423_bib0044
  article-title: A novel approach for credit card fraud detection using decision tree and random forest algorithms
– volume: 2
  start-page: 2172
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110423_bib0045
  article-title: Novel logistic regression over naive Bayes improves accuracy in credit card fraud detection
  publication-title: J Surv Fish Sci
– volume: 33
  start-page: 7943
  issue: 12
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110423_bib0028
  article-title: Spatial-temporal frequency forgery clue for video forgery detection in VIS and NIR scenario
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2023.3281475
– volume: 112
  start-page: 1763
  issue: 3
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110423_bib0042
  article-title: Deep convolutional neural network for graphics forgery detection in video
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-020-07126-3
– volume: 112
  start-page: 1281
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110423_bib0010
  article-title: Image and video forensics: a critical survey
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-020-07102-x
– volume: 12
  start-page: 21156
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110423_bib0033
  article-title: Deep convolutional neural network for robust detection of object-based forgeries in advanced video
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3357395
– start-page: 25
  year: 2013
  ident: 10.1016/j.compeleceng.2025.110423_bib0019
  article-title: Forgery detection for surveillance video
– volume: 24
  start-page: 5341
  issue: 16
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110423_bib0038
  article-title: An anti-forensics video forgery detection method based on noise transfer matrix analysis
  publication-title: Sensor
  doi: 10.3390/s24165341
– volume: 10
  start-page: 607
  issue: 6
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110423_bib0039
  article-title: A survey on deepfake video detection
  publication-title: Iet Biom
  doi: 10.1049/bme2.12031
– volume: 77
  start-page: 412
  year: 2018
  ident: 10.1016/j.compeleceng.2025.110423_bib0017
  article-title: A multi-channel approach through fusion of audio for detecting video inter-frame forgery
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2018.04.013
– volume: 63
  start-page: 1099
  issue: 4
  year: 2018
  ident: 10.1016/j.compeleceng.2025.110423_bib0013
  article-title: Authentication of surveillance videos: detecting frame duplication based on residual frame
  publication-title: J Forensic Sci
  doi: 10.1111/1556-4029.13658
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.compeleceng.2025.110423_bib0018
  article-title: PLC-based design of monitoring system for ICT-integrated vertical fish farm
  publication-title: Hum Centric Comput Inf Sci
  doi: 10.1186/s13673-017-0101-x
– ident: 10.1016/j.compeleceng.2025.110423_bib0035
– volume: 13
  start-page: 1662
  issue: 9
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110423_bib0029
  article-title: A hybrid CNN-LSTM approach for precision deepfake image detection based on transfer learning
  publication-title: Electronic
  doi: 10.3390/electronics13091662
– volume: 19
  start-page: 1
  year: 2016
  ident: 10.1016/j.compeleceng.2025.110423_bib0006
  article-title: Passive forensics in image and video using noise features: a review
  publication-title: Digit Investig
  doi: 10.1016/j.diin.2016.08.002
– start-page: 1
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110423_bib0004
  article-title: A comprehensive taxonomy on multimedia video forgery detection techniques: challenges and novel trends
  publication-title: Multimed Tools Appl
– volume: 8
  start-page: 61
  issue: 2
  year: 2019
  ident: 10.1016/j.compeleceng.2025.110423_bib0011
  article-title: A review on robust video copy detection
  publication-title: Int J Multimed Inf Retr
  doi: 10.1007/s13735-018-0159-x
– volume: 37
  start-page: 2369
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110423_bib0003
  article-title: Dual adaptive deep convolutional neural network for video forgery detection in 3D lighting environment
  publication-title: Visual Comput
  doi: 10.1007/s00371-020-01992-5
– start-page: 267
  year: 2012
  ident: 10.1016/j.compeleceng.2025.110423_bib0012
  article-title: A novel video inter-frame forgery model detection scheme based on optical flow consistency
– volume: 45
  start-page: 10335
  issue: 6
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110423_bib0022
  article-title: Automated tuberculosis classification using Egret Swarm optimization with deep learning based fusion model on chest X-ray images
  publication-title: J Intell Fuzzy Syst
– start-page: 170
  year: 2008
  ident: 10.1016/j.compeleceng.2025.110423_bib0016
  article-title: Video forgery detection using correlation of noise residue
– volume: 51
  issue: 7
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110423_bib0046
  article-title: Image splicing forgery detection model using hybrid boosting machine
  publication-title: IAENG Int J Comput Sci
– volume: 9
  start-page: 191
  issue: 3
  year: 2017
  ident: 10.1016/j.compeleceng.2025.110423_bib0007
  article-title: A review of video falsifying techniques and video forgery detection techniques
  publication-title: Int J Electron Secur Digit Forensic
  doi: 10.1504/IJESDF.2017.085196
– start-page: 1407
  year: 2018
  ident: 10.1016/j.compeleceng.2025.110423_bib0021
  article-title: Comparative study of feature extraction using several wavelet transforms for source camera identification
– volume: 83
  start-page: 5415
  issue: 2
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110423_bib0031
  article-title: Multiple forgery detection in digital video with VGG-16-based deep neural network and KPCA
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-15561-0
– volume: 81
  start-page: 35733
  issue: 25
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110423_bib0027
  article-title: Towards general object-based video forgery detection via dual-stream networks and depth information embedding
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-11126-1
– volume: 12
  issue: 1
  year: 2025
  ident: 10.1016/j.compeleceng.2025.110423_bib0047
  article-title: An efficient video forgery detection using two-layer hybridized deep CNN classifier
  publication-title: EAI Endorsed Trans Scalable Inf Syst
– ident: 10.1016/j.compeleceng.2025.110423_bib0034
SSID ssj0004618
Score 2.3794603
Snippet Digital forgery detection implies the identification of any modifications or manipulation of the digital content, typically image, video, or document, to...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110423
SubjectTerms Deep learning
Digital forensics
Dunnock hunt optimization
Image manipulation
Video forgery detection
Title MDR-LOD2 Model: Forgery Detection using Modified Depth ResNet features and Layer Optimized Dunnock Deep Model from Videos
URI https://dx.doi.org/10.1016/j.compeleceng.2025.110423
Volume 125
WOSCitedRecordID wos001502000400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0045-7906
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004618
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLagQwgeELeJjYuMxNuUKXWcxEG8THQTTF2HYJv6FiXxMc3G0qjNpsGv59iO03ATIMRLVEW-1efTOZ-dcyHkBYdIccUiTwWSezwKcy9hKvNCFSKXA6l8U3nuZBxPJmI6Td61LkFLU04gripxdZXU_1XU-A6FrUNn_0Lc3aD4An-j0PGJYsfnHwn-YPTeGx-OmClz9kmf-PfmJvQZdUsDtjL4hbkhwAal0hR0BHUz0zf5E2i2FJhcnzZ38zhDSr51iHrlvPyiWyLfRQ2KPaC2E9gAlZNSwnzZZ7quXMTSgMtW2zGAgFUGRCft44_OqxlP1Z2dOCjlDK3uLDs7yxbZJf5Vi4j97f5VBQs7t9b2_szF0KwcloxO5jppph99o5NtNPQP-t1eNZxq8dR65bjkbT2TjmbgNnD5u_TZH_T4enjkemitI_86WWNxmIgBWdt5uzvd70XRDq3dbtdzkzxfeQP-YsKfs5keQzm6S-60Rwu6YyFxj1yD6j653Us4-YB8duCgRnYvaQsN2kGDGmhQBw1qoEEtNKiDBkVoUAMN2kGDttCgGhp2eKqhQS00HpLjvd2j12-8tviGV6Cab7ww4oBcLo-l5DxniRCBnwPyGYizTBZ-IBhAHIg4KIQqQAz9QKFByHOZcWwpgnUyqOYVPCI0BCGHeYisAA_fhWICshDNRpDLmOkPfRuEuU1Ma5tjJXXOh6dpb-dTvfOp3fkN8sptd9qSRUsCU8TK77tv_lv3x-TWCuBPyKBZXMBTcqO4bMrl4lmLrK84DpYZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MDR-LOD2+Model%3A+Forgery+Detection+using+Modified+Depth+ResNet+features+and+Layer+Optimized+Dunnock+Deep+Model+from+Videos&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Ugale%2C+Meena&rft.au=Midhunchakkaravarthy%2C+J.&rft.date=2025-07-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7906&rft.volume=125&rft_id=info:doi/10.1016%2Fj.compeleceng.2025.110423&rft.externalDocID=S0045790625003660
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon