MDR-LOD2 Model: Forgery Detection using Modified Depth ResNet features and Layer Optimized Dunnock Deep Model from Videos
Digital forgery detection implies the identification of any modifications or manipulation of the digital content, typically image, video, or document, to confirm their authenticity. Consequently, this contribution seeks to address the challenges experienced by existing techniques by introducing the...
Saved in:
| Published in: | Computers & electrical engineering Vol. 125; p. 110423 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.07.2025
|
| Subjects: | |
| ISSN: | 0045-7906 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Digital forgery detection implies the identification of any modifications or manipulation of the digital content, typically image, video, or document, to confirm their authenticity. Consequently, this contribution seeks to address the challenges experienced by existing techniques by introducing the Modified DepthResNet descriptor and Layer Optimized Dunnock Deep model (MDR-LOD2) model. MDR descriptor is proficient at generating features in ResNet architecture and hence it helps in the fusion of a DepthNet to detect depth-related cues which plays a crucial role in spotting forgery. More specifically, the MDR descriptor captures the subtle details via the spatial connections and depth perception, resulting in boosting the detection performance. The hybrid optimizer strategy combines meticulous exploration and dynamic adaptation together increasing the model's ability to detect splicing forgery. The proposed approach exploits the LOD2 architecture well suited for capturing the temporal aspects and effectively analyzes the intricate patterns of video data. Additionally, the LOD2 model is enabled with the Dunnock Hunt Optimization (DHO) algorithm for layer optimization facilitating optimal performance of every layer in LSTM. Moreover, the integration of LOD2 and MDR descriptor in conjunction with the DHO algorithm in the proposed approach assist in identifying the forged regions in the video frames. The experimental results demonstrate that the proposed approach attains an accuracy of 98.54 %, sensitivity of 98.54 %, specificity of 98.53 %, and F1-score of 98.54 % for DSO-1. For DSI-1 DTS, the proposed approach achieves remarkable results with high accuracy of 98.47 %, sensitivity of 98.41 %, specificity of 98.52 %, and F1-score of 98.47 %. Finally, the proposed model obtained the remarkable results for the Face Forensics database achieving high accuracy of 97.83 %, sensitivity of 97.76 %, specificity of 97.89 %, and F1-score of 97.83 % outperforming other existing techniques. |
|---|---|
| AbstractList | Digital forgery detection implies the identification of any modifications or manipulation of the digital content, typically image, video, or document, to confirm their authenticity. Consequently, this contribution seeks to address the challenges experienced by existing techniques by introducing the Modified DepthResNet descriptor and Layer Optimized Dunnock Deep model (MDR-LOD2) model. MDR descriptor is proficient at generating features in ResNet architecture and hence it helps in the fusion of a DepthNet to detect depth-related cues which plays a crucial role in spotting forgery. More specifically, the MDR descriptor captures the subtle details via the spatial connections and depth perception, resulting in boosting the detection performance. The hybrid optimizer strategy combines meticulous exploration and dynamic adaptation together increasing the model's ability to detect splicing forgery. The proposed approach exploits the LOD2 architecture well suited for capturing the temporal aspects and effectively analyzes the intricate patterns of video data. Additionally, the LOD2 model is enabled with the Dunnock Hunt Optimization (DHO) algorithm for layer optimization facilitating optimal performance of every layer in LSTM. Moreover, the integration of LOD2 and MDR descriptor in conjunction with the DHO algorithm in the proposed approach assist in identifying the forged regions in the video frames. The experimental results demonstrate that the proposed approach attains an accuracy of 98.54 %, sensitivity of 98.54 %, specificity of 98.53 %, and F1-score of 98.54 % for DSO-1. For DSI-1 DTS, the proposed approach achieves remarkable results with high accuracy of 98.47 %, sensitivity of 98.41 %, specificity of 98.52 %, and F1-score of 98.47 %. Finally, the proposed model obtained the remarkable results for the Face Forensics database achieving high accuracy of 97.83 %, sensitivity of 97.76 %, specificity of 97.89 %, and F1-score of 97.83 % outperforming other existing techniques. |
| ArticleNumber | 110423 |
| Author | Midhunchakkaravarthy, J. Ugale, Meena |
| Author_xml | – sequence: 1 givenname: Meena surname: Ugale fullname: Ugale, Meena email: meenaugale@gmail.com organization: Department of Computer Science and Multimedia, Lincoln University College, Kuala Lumpur 47301, Malaysia – sequence: 2 givenname: J. surname: Midhunchakkaravarthy fullname: Midhunchakkaravarthy, J. email: midhun@lincoln.edu.my organization: Faculty of Computer Science and Multimedia, Lincoln University College, Kuala Lumpur 47301, Malaysia |
| BookMark | eNqNkMtOwzAQRb0oEm3hH8wHJNhxHi471FJAaqlUAVsrsSfFpbEjO0UKX4-jsGDJajS6D12dGZoYawChG0piSmh-e4ylbVo4gQRziBOSZDGlJE3YBE0JSbOoWJD8Es28P5Lw55RPUb9d7aPNbpXgrVVwusNr6w7geryCDmSnrcFnr81hkHWtQQWh7T7wHvwLdLiGsjs78Lg0Cm_KHhzetZ1u9PfgPBtj5WdIQDvW49rZBr9rBdZfoYu6PHm4_r1z9LZ-eF0-hTWPz8v7TSQZ5V2U5SlQnlWFUmlaJQvOGamAEwpFWSpJGE8ACsYLJnktgVPCapKSqlJlGpyczdFi7JXOeu-gFq3TTel6QYkYuImj-MNNDNzEyC1kl2MWwsAvDU54qcFIUNoFOkJZ_Y-WHypSgLQ |
| Cites_doi | 10.1007/s11277-020-07126-3 10.1155/2023/8378073 10.1016/j.image.2020.116066 10.1016/j.diin.2019.03.006 10.1007/s11042-019-08236-2 10.1016/j.jhydrol.2023.129977 10.1109/TCSVT.2020.2993004 10.1109/ACCESS.2022.3215963 10.32604/iasc.2021.018854 10.1007/s11042-021-10989-8 10.1109/TCSVT.2023.3281475 10.1007/s11277-020-07102-x 10.1109/ACCESS.2024.3357395 10.3390/s24165341 10.1049/bme2.12031 10.1016/j.cose.2018.04.013 10.1111/1556-4029.13658 10.1186/s13673-017-0101-x 10.3390/electronics13091662 10.1016/j.diin.2016.08.002 10.1007/s13735-018-0159-x 10.1007/s00371-020-01992-5 10.1504/IJESDF.2017.085196 10.1007/s11042-023-15561-0 10.1007/s11042-021-11126-1 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compeleceng.2025.110423 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_compeleceng_2025_110423 S0045790625003660 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- 9DU AAYXX ACLOT CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c318t-564e185b7dd44b298830be801e7aadc0382ee73873c8fce8103f040bbda430b83 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502000400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7906 |
| IngestDate | Sat Nov 29 07:51:58 EST 2025 Sat Jul 05 17:12:24 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Image manipulation Dunnock hunt optimization Digital forensics Video forgery detection |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c318t-564e185b7dd44b298830be801e7aadc0382ee73873c8fce8103f040bbda430b83 |
| OpenAccessLink | https://doi.org/10.1016/j.compeleceng.2025.110423 |
| ParticipantIDs | crossref_primary_10_1016_j_compeleceng_2025_110423 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2025_110423 |
| PublicationCentury | 2000 |
| PublicationDate | July 2025 2025-07-00 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & electrical engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Yao, Wang, Wang, Wu, Chen (bib0024) 2023; 625 El-Shafai, Fouda, El-Rabaie, El-Salam (bib0004) 2024 Johnston, Elyan (bib0008) 2019; 29 DSO-1 and DSI-1 datasets Kaur, Jindal (bib0010) 2020; 112 Munawar, Noreen (bib0040) 2021; 29 Atchaya, Somasundaram (bib0045) 2023; 2 Bao, Wang, Hua, Dong, Lee (bib0038) 2024; 24 Fadl, Han, Li (bib0013) 2018; 63 Jeyalakshmi, Chitra (bib0021) 2018 Wang, Peng, Liu, Wang, Gao (bib0028) 2023; 33 Mizher, Ang, Mazhar, Mizher (bib0007) 2017; 9 Huh (bib0018) 2017; 7 Tuerxun, Xu, Guo, Guo, Zeng, Gao (bib0023) 2022; 15 Arini, Bahaweres, Al Haq (bib0037) 2022 Hosler, Mayer, Bayar, Zhao, Chen, Shackleford, Stamm (bib0014) 2019 Vinolin, Sucharitha (bib0003) 2021; 37 Hsu, Hung, Lin, Hsu (bib0016) 2008 Fadl, Han, Li (bib0002) 2021; 90 Ugale, Midhunchakkaravarthy (bib0047) 2025; 12 Jin, Xu, Xu, Hyun, Lee, Ryu, Lee, Lee (bib0019) 2013 Shelke, Kasana (bib0031) 2024; 83 Hsu, Chang (bib0015) 2007 Sharma, Kanwal, Batth (bib0009) 2019 Gan, Yang, Zhong (bib0030) 2023; 2023 Manivannan, Sathiamoorthy (bib0022) 2023; 45 Shelke, Kasana (bib0032) 2022; 81 Jin, He, Wang, Yu, Xu (bib0027) 2022; 81 Face Forensics Database is taken from Mazhar, Jameel, Nadeem, Khan, Alkhateeb, Bibi, Seerat (bib0033) 2024; 12 Dileep, Navaneeth, Abhishek (bib0044) 2021 Fayyaz, Anjum, Ziauddin, Khan, Sarfaraz (bib0026) 2020; 79 Kaur, Jindal (bib0042) 2020; 112 Ugale, Midhunchakkaravarthy (bib0046) 2024; 51 Mohammed, Badr, Ali (bib0043) 2021; 1818 Huang, Zhang, Huang, Lin, Su (bib0017) 2018; 77 Aloraini, Sharifzadeh, Agarwal, Schonfeld (bib0005) 2019; 31 Kaur, Jindal (bib0025) 2020; 112 . Chao, Jiang, Sun (bib0012) 2012 Wary, Neelima (bib0011) 2019; 8 Al-Dulaimi, Kurnaz (bib0029) 2024; 13 James, Witten, Hastie, Tibshirani, Taylor (bib0041) 2023 Pandey, Singh, Shukla (bib0006) 2016; 19 Aloraini, Sharifzadeh, Schonfeld (bib0001) 2020; 31 Luo, Chen (bib0020) 2022; 10 Yu, Xia, Fei, Lu (bib0039) 2021; 10 Accessed on May 2023. Johnston (10.1016/j.compeleceng.2025.110423_bib0008) 2019; 29 Kaur (10.1016/j.compeleceng.2025.110423_bib0025) 2020; 112 Munawar (10.1016/j.compeleceng.2025.110423_bib0040) 2021; 29 Luo (10.1016/j.compeleceng.2025.110423_bib0020) 2022; 10 Yao (10.1016/j.compeleceng.2025.110423_bib0024) 2023; 625 10.1016/j.compeleceng.2025.110423_bib0035 Atchaya (10.1016/j.compeleceng.2025.110423_bib0045) 2023; 2 Ugale (10.1016/j.compeleceng.2025.110423_bib0047) 2025; 12 Vinolin (10.1016/j.compeleceng.2025.110423_bib0003) 2021; 37 Aloraini (10.1016/j.compeleceng.2025.110423_bib0005) 2019; 31 Al-Dulaimi (10.1016/j.compeleceng.2025.110423_bib0029) 2024; 13 Ugale (10.1016/j.compeleceng.2025.110423_bib0046) 2024; 51 10.1016/j.compeleceng.2025.110423_bib0034 Mohammed (10.1016/j.compeleceng.2025.110423_bib0043) 2021; 1818 Hsu (10.1016/j.compeleceng.2025.110423_bib0016) 2008 Kaur (10.1016/j.compeleceng.2025.110423_bib0042) 2020; 112 Shelke (10.1016/j.compeleceng.2025.110423_bib0031) 2024; 83 Dileep (10.1016/j.compeleceng.2025.110423_bib0044) 2021 Fadl (10.1016/j.compeleceng.2025.110423_bib0002) 2021; 90 Tuerxun (10.1016/j.compeleceng.2025.110423_bib0023) 2022; 15 Bao (10.1016/j.compeleceng.2025.110423_bib0038) 2024; 24 Shelke (10.1016/j.compeleceng.2025.110423_bib0032) 2022; 81 Wang (10.1016/j.compeleceng.2025.110423_bib0028) 2023; 33 Jin (10.1016/j.compeleceng.2025.110423_bib0027) 2022; 81 Pandey (10.1016/j.compeleceng.2025.110423_bib0006) 2016; 19 Manivannan (10.1016/j.compeleceng.2025.110423_bib0022) 2023; 45 Chao (10.1016/j.compeleceng.2025.110423_bib0012) 2012 Kaur (10.1016/j.compeleceng.2025.110423_bib0010) 2020; 112 Gan (10.1016/j.compeleceng.2025.110423_bib0030) 2023; 2023 Mazhar (10.1016/j.compeleceng.2025.110423_bib0033) 2024; 12 Sharma (10.1016/j.compeleceng.2025.110423_bib0009) 2019 Aloraini (10.1016/j.compeleceng.2025.110423_bib0001) 2020; 31 Yu (10.1016/j.compeleceng.2025.110423_bib0039) 2021; 10 Fadl (10.1016/j.compeleceng.2025.110423_bib0013) 2018; 63 Hsu (10.1016/j.compeleceng.2025.110423_bib0015) 2007 Jin (10.1016/j.compeleceng.2025.110423_bib0019) 2013 James (10.1016/j.compeleceng.2025.110423_bib0041) 2023 Hosler (10.1016/j.compeleceng.2025.110423_bib0014) 2019 Mizher (10.1016/j.compeleceng.2025.110423_bib0007) 2017; 9 Fayyaz (10.1016/j.compeleceng.2025.110423_bib0026) 2020; 79 Wary (10.1016/j.compeleceng.2025.110423_bib0011) 2019; 8 El-Shafai (10.1016/j.compeleceng.2025.110423_bib0004) 2024 Jeyalakshmi (10.1016/j.compeleceng.2025.110423_bib0021) 2018 Huang (10.1016/j.compeleceng.2025.110423_bib0017) 2018; 77 Huh (10.1016/j.compeleceng.2025.110423_bib0018) 2017; 7 Arini (10.1016/j.compeleceng.2025.110423_bib0037) 2022 |
| References_xml | – reference: Face Forensics Database is taken from – volume: 10 start-page: 607 year: 2021 end-page: 624 ident: bib0039 article-title: A survey on deepfake video detection publication-title: Iet Biom – start-page: 69 year: 2023 end-page: 134 ident: bib0041 article-title: Linear regression publication-title: In an introduction to statistical learning: with applications in python – volume: 112 start-page: 1763 year: 2020 end-page: 1781 ident: bib0042 article-title: Deep convolutional neural network for graphics forgery detection in video publication-title: Wirel Pers Commun – volume: 63 start-page: 1099 year: 2018 end-page: 1109 ident: bib0013 article-title: Authentication of surveillance videos: detecting frame duplication based on residual frame publication-title: J Forensic Sci – volume: 81 start-page: 35733 year: 2022 end-page: 35749 ident: bib0027 article-title: Towards general object-based video forgery detection via dual-stream networks and depth information embedding publication-title: Multimed Tools Appl – volume: 83 start-page: 5415 year: 2024 end-page: 5435 ident: bib0031 article-title: Multiple forgery detection in digital video with VGG-16-based deep neural network and KPCA publication-title: Multimed Tools Appl – reference: , Accessed on May 2023. – start-page: 1407 year: 2018 end-page: 1414 ident: bib0021 article-title: Comparative study of feature extraction using several wavelet transforms for source camera identification publication-title: 2018 2nd Int Conf Inventive Syst Control – volume: 31 start-page: 1 year: 2019 end-page: 7 ident: bib0005 article-title: Statistical sequential analysis for object-based video forgery detection publication-title: IS T Int Symp Electron Imaging Sci Technol – volume: 112 start-page: 1281 year: 2020 end-page: 1302 ident: bib0010 article-title: Image and video forensics: a critical survey publication-title: Wirel Pers Commun – start-page: 485 year: 2019 end-page: 491 ident: bib0009 article-title: An ontology of digital video forensics: classification, research gaps & datasets publication-title: 2019 Int Conf Comput Intell Knowl Econ – volume: 19 start-page: 1 year: 2016 end-page: 28 ident: bib0006 article-title: Passive forensics in image and video using noise features: a review publication-title: Digit Investig – start-page: 267 year: 2012 end-page: 281 ident: bib0012 article-title: A novel video inter-frame forgery model detection scheme based on optical flow consistency publication-title: The Int Workshop Digit Forensics Watermarking – volume: 33 start-page: 7943 year: 2023 end-page: 7956 ident: bib0028 article-title: Spatial-temporal frequency forgery clue for video forgery detection in VIS and NIR scenario publication-title: IEEE Trans Circuits Syst Video Technol – volume: 12 year: 2025 ident: bib0047 article-title: An efficient video forgery detection using two-layer hybridized deep CNN classifier publication-title: EAI Endorsed Trans Scalable Inf Syst – volume: 10 start-page: 110754 year: 2022 end-page: 110760 ident: bib0020 article-title: Dual attention network approaches to face forgery video detection publication-title: IEEE Access – start-page: 170 year: 2008 end-page: 174 ident: bib0016 article-title: Video forgery detection using correlation of noise residue publication-title: 2008 IEEE 10th Workshop Multimedia Signal Process – start-page: 254 year: 2022 end-page: 259 ident: bib0037 article-title: Quick classification of xception and resnet-50 models on deepfake video using local binary pattern publication-title: 2021 Int Semin Mach Learn Optim Data Sci – volume: 37 start-page: 2369 year: 2021 end-page: 2390 ident: bib0003 article-title: Dual adaptive deep convolutional neural network for video forgery detection in 3D lighting environment publication-title: Visual Comput – volume: 625 year: 2023 ident: bib0024 article-title: An ensemble CNN-LSTM and GRU adaptive weighting model based improved sparrow search algorithm for predicting runoff using historical meteorological and runoff data as input publication-title: J Hydrol – start-page: 1025 year: 2021 end-page: 1028 ident: bib0044 article-title: A novel approach for credit card fraud detection using decision tree and random forest algorithms publication-title: 2021 Third Int Conf Intell Commun Technol Virtual Mobile Network – volume: 8 start-page: 61 year: 2019 end-page: 78 ident: bib0011 article-title: A review on robust video copy detection publication-title: Int J Multimed Inf Retr – volume: 12 start-page: 21156 year: 2024 end-page: 21164 ident: bib0033 article-title: Deep convolutional neural network for robust detection of object-based forgeries in advanced video publication-title: IEEE Access – start-page: 1 year: 2024 end-page: 67 ident: bib0004 article-title: A comprehensive taxonomy on multimedia video forgery detection techniques: challenges and novel trends publication-title: Multimed Tools Appl – start-page: 8271 year: 2019 end-page: 8275 ident: bib0014 article-title: A video camera model identification system using deep learning and fusion publication-title: ICASSP 2019-2019 IEEE Int Conf. Acoust speech Signal Process – volume: 45 start-page: 10335 year: 2023 end-page: 10347 ident: bib0022 article-title: Automated tuberculosis classification using Egret Swarm optimization with deep learning based fusion model on chest X-ray images publication-title: J Intell Fuzzy Syst – volume: 13 start-page: 1662 year: 2024 ident: bib0029 article-title: A hybrid CNN-LSTM approach for precision deepfake image detection based on transfer learning publication-title: Electronic – volume: 7 start-page: 1 year: 2017 end-page: 19 ident: bib0018 article-title: PLC-based design of monitoring system for ICT-integrated vertical fish farm publication-title: Hum Centric Comput Inf Sci – volume: 31 start-page: 917 year: 2020 end-page: 930 ident: bib0001 article-title: Sequential and patch analyses for object removal video forgery detection and localization publication-title: IEEE Trans Circuits Syst Video Technol – volume: 15 start-page: 2031 year: 2022 ident: bib0023 article-title: A wind power forecasting model using LSTM optimized by the modified bald eagle search algorithm publication-title: Energy – volume: 2023 year: 2023 ident: bib0030 article-title: Video surveillance object forgery detection using PDCL Network with residual-based steganalysis feature publication-title: Int J Intell Syst – volume: 112 start-page: 1763 year: 2020 end-page: 1781 ident: bib0025 article-title: Deep convolutional neural network for graphics forgery detection in video publication-title: Wirel Pers Commun – volume: 29 year: 2021 ident: bib0040 article-title: Duplicate frame video forgery detection using Siamese-based RNN publication-title: Intell Autom Soft Comput – volume: 90 year: 2021 ident: bib0002 article-title: CNN spatiotemporal features and fusion for surveillance video forgery detection publication-title: Signal Process Image Commun – reference: . – volume: 77 start-page: 412 year: 2018 end-page: 426 ident: bib0017 article-title: A multi-channel approach through fusion of audio for detecting video inter-frame forgery publication-title: Comput Secur – volume: 79 start-page: 5767 year: 2020 end-page: 5788 ident: bib0026 article-title: An improved surveillance video forgery detection technique using sensor pattern noise and correlation of noise residues publication-title: Multimed Tools Appl – volume: 29 start-page: 67 year: 2019 end-page: 81 ident: bib0008 article-title: A review of digital video tampering: from simple editing to full synthesis publication-title: Digital Invest – start-page: 28 year: 2007 end-page: 31 ident: bib0015 article-title: Image splicing detection using camera response function consistency and automatic segmentation publication-title: 2007 IEEE Int Conf Multimedia Expo – volume: 24 start-page: 5341 year: 2024 ident: bib0038 article-title: An anti-forensics video forgery detection method based on noise transfer matrix analysis publication-title: Sensor – volume: 81 start-page: 22731 year: 2022 end-page: 22759 ident: bib0032 article-title: Multiple forgery detection and localization technique for digital video using PCT and NBAP publication-title: Multimed Tools Appl – reference: DSO-1 and DSI-1 datasets, – volume: 51 year: 2024 ident: bib0046 article-title: Image splicing forgery detection model using hybrid boosting machine publication-title: IAENG Int J Comput Sci – start-page: 25 year: 2013 end-page: 36 ident: bib0019 article-title: Forgery detection for surveillance video publication-title: The Era Interact Media – volume: 2 start-page: 2172 year: 2023 end-page: 2181 ident: bib0045 article-title: Novel logistic regression over naive Bayes improves accuracy in credit card fraud detection publication-title: J Surv Fish Sci – volume: 9 start-page: 191 year: 2017 end-page: 208 ident: bib0007 article-title: A review of video falsifying techniques and video forgery detection techniques publication-title: Int J Electron Secur Digit Forensic – volume: 1818 year: 2021 ident: bib0043 article-title: Detection of image forgery using information standard method with SVM publication-title: Int Phys Conf Ser. – start-page: 254 year: 2022 ident: 10.1016/j.compeleceng.2025.110423_bib0037 article-title: Quick classification of xception and resnet-50 models on deepfake video using local binary pattern – volume: 112 start-page: 1763 year: 2020 ident: 10.1016/j.compeleceng.2025.110423_bib0025 article-title: Deep convolutional neural network for graphics forgery detection in video publication-title: Wirel Pers Commun doi: 10.1007/s11277-020-07126-3 – volume: 2023 issue: 1 year: 2023 ident: 10.1016/j.compeleceng.2025.110423_bib0030 article-title: Video surveillance object forgery detection using PDCL Network with residual-based steganalysis feature publication-title: Int J Intell Syst doi: 10.1155/2023/8378073 – start-page: 8271 year: 2019 ident: 10.1016/j.compeleceng.2025.110423_bib0014 article-title: A video camera model identification system using deep learning and fusion – volume: 31 start-page: 1 year: 2019 ident: 10.1016/j.compeleceng.2025.110423_bib0005 article-title: Statistical sequential analysis for object-based video forgery detection publication-title: IS T Int Symp Electron Imaging Sci Technol – volume: 15 start-page: 2031 issue: 6 year: 2022 ident: 10.1016/j.compeleceng.2025.110423_bib0023 article-title: A wind power forecasting model using LSTM optimized by the modified bald eagle search algorithm publication-title: Energy – volume: 90 year: 2021 ident: 10.1016/j.compeleceng.2025.110423_bib0002 article-title: CNN spatiotemporal features and fusion for surveillance video forgery detection publication-title: Signal Process Image Commun doi: 10.1016/j.image.2020.116066 – volume: 29 start-page: 67 year: 2019 ident: 10.1016/j.compeleceng.2025.110423_bib0008 article-title: A review of digital video tampering: from simple editing to full synthesis publication-title: Digital Invest doi: 10.1016/j.diin.2019.03.006 – start-page: 28 year: 2007 ident: 10.1016/j.compeleceng.2025.110423_bib0015 article-title: Image splicing detection using camera response function consistency and automatic segmentation – volume: 79 start-page: 5767 year: 2020 ident: 10.1016/j.compeleceng.2025.110423_bib0026 article-title: An improved surveillance video forgery detection technique using sensor pattern noise and correlation of noise residues publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-08236-2 – volume: 625 year: 2023 ident: 10.1016/j.compeleceng.2025.110423_bib0024 article-title: An ensemble CNN-LSTM and GRU adaptive weighting model based improved sparrow search algorithm for predicting runoff using historical meteorological and runoff data as input publication-title: J Hydrol doi: 10.1016/j.jhydrol.2023.129977 – volume: 31 start-page: 917 issue: 3 year: 2020 ident: 10.1016/j.compeleceng.2025.110423_bib0001 article-title: Sequential and patch analyses for object removal video forgery detection and localization publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2020.2993004 – start-page: 69 year: 2023 ident: 10.1016/j.compeleceng.2025.110423_bib0041 article-title: Linear regression – volume: 1818 year: 2021 ident: 10.1016/j.compeleceng.2025.110423_bib0043 article-title: Detection of image forgery using information standard method with SVM – volume: 10 start-page: 110754 year: 2022 ident: 10.1016/j.compeleceng.2025.110423_bib0020 article-title: Dual attention network approaches to face forgery video detection publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3215963 – volume: 29 issue: 3 year: 2021 ident: 10.1016/j.compeleceng.2025.110423_bib0040 article-title: Duplicate frame video forgery detection using Siamese-based RNN publication-title: Intell Autom Soft Comput doi: 10.32604/iasc.2021.018854 – start-page: 485 year: 2019 ident: 10.1016/j.compeleceng.2025.110423_bib0009 article-title: An ontology of digital video forensics: classification, research gaps & datasets – volume: 81 start-page: 22731 issue: 16 year: 2022 ident: 10.1016/j.compeleceng.2025.110423_bib0032 article-title: Multiple forgery detection and localization technique for digital video using PCT and NBAP publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-10989-8 – start-page: 1025 year: 2021 ident: 10.1016/j.compeleceng.2025.110423_bib0044 article-title: A novel approach for credit card fraud detection using decision tree and random forest algorithms – volume: 2 start-page: 2172 year: 2023 ident: 10.1016/j.compeleceng.2025.110423_bib0045 article-title: Novel logistic regression over naive Bayes improves accuracy in credit card fraud detection publication-title: J Surv Fish Sci – volume: 33 start-page: 7943 issue: 12 year: 2023 ident: 10.1016/j.compeleceng.2025.110423_bib0028 article-title: Spatial-temporal frequency forgery clue for video forgery detection in VIS and NIR scenario publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2023.3281475 – volume: 112 start-page: 1763 issue: 3 year: 2020 ident: 10.1016/j.compeleceng.2025.110423_bib0042 article-title: Deep convolutional neural network for graphics forgery detection in video publication-title: Wirel Pers Commun doi: 10.1007/s11277-020-07126-3 – volume: 112 start-page: 1281 year: 2020 ident: 10.1016/j.compeleceng.2025.110423_bib0010 article-title: Image and video forensics: a critical survey publication-title: Wirel Pers Commun doi: 10.1007/s11277-020-07102-x – volume: 12 start-page: 21156 year: 2024 ident: 10.1016/j.compeleceng.2025.110423_bib0033 article-title: Deep convolutional neural network for robust detection of object-based forgeries in advanced video publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3357395 – start-page: 25 year: 2013 ident: 10.1016/j.compeleceng.2025.110423_bib0019 article-title: Forgery detection for surveillance video – volume: 24 start-page: 5341 issue: 16 year: 2024 ident: 10.1016/j.compeleceng.2025.110423_bib0038 article-title: An anti-forensics video forgery detection method based on noise transfer matrix analysis publication-title: Sensor doi: 10.3390/s24165341 – volume: 10 start-page: 607 issue: 6 year: 2021 ident: 10.1016/j.compeleceng.2025.110423_bib0039 article-title: A survey on deepfake video detection publication-title: Iet Biom doi: 10.1049/bme2.12031 – volume: 77 start-page: 412 year: 2018 ident: 10.1016/j.compeleceng.2025.110423_bib0017 article-title: A multi-channel approach through fusion of audio for detecting video inter-frame forgery publication-title: Comput Secur doi: 10.1016/j.cose.2018.04.013 – volume: 63 start-page: 1099 issue: 4 year: 2018 ident: 10.1016/j.compeleceng.2025.110423_bib0013 article-title: Authentication of surveillance videos: detecting frame duplication based on residual frame publication-title: J Forensic Sci doi: 10.1111/1556-4029.13658 – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.compeleceng.2025.110423_bib0018 article-title: PLC-based design of monitoring system for ICT-integrated vertical fish farm publication-title: Hum Centric Comput Inf Sci doi: 10.1186/s13673-017-0101-x – ident: 10.1016/j.compeleceng.2025.110423_bib0035 – volume: 13 start-page: 1662 issue: 9 year: 2024 ident: 10.1016/j.compeleceng.2025.110423_bib0029 article-title: A hybrid CNN-LSTM approach for precision deepfake image detection based on transfer learning publication-title: Electronic doi: 10.3390/electronics13091662 – volume: 19 start-page: 1 year: 2016 ident: 10.1016/j.compeleceng.2025.110423_bib0006 article-title: Passive forensics in image and video using noise features: a review publication-title: Digit Investig doi: 10.1016/j.diin.2016.08.002 – start-page: 1 year: 2024 ident: 10.1016/j.compeleceng.2025.110423_bib0004 article-title: A comprehensive taxonomy on multimedia video forgery detection techniques: challenges and novel trends publication-title: Multimed Tools Appl – volume: 8 start-page: 61 issue: 2 year: 2019 ident: 10.1016/j.compeleceng.2025.110423_bib0011 article-title: A review on robust video copy detection publication-title: Int J Multimed Inf Retr doi: 10.1007/s13735-018-0159-x – volume: 37 start-page: 2369 year: 2021 ident: 10.1016/j.compeleceng.2025.110423_bib0003 article-title: Dual adaptive deep convolutional neural network for video forgery detection in 3D lighting environment publication-title: Visual Comput doi: 10.1007/s00371-020-01992-5 – start-page: 267 year: 2012 ident: 10.1016/j.compeleceng.2025.110423_bib0012 article-title: A novel video inter-frame forgery model detection scheme based on optical flow consistency – volume: 45 start-page: 10335 issue: 6 year: 2023 ident: 10.1016/j.compeleceng.2025.110423_bib0022 article-title: Automated tuberculosis classification using Egret Swarm optimization with deep learning based fusion model on chest X-ray images publication-title: J Intell Fuzzy Syst – start-page: 170 year: 2008 ident: 10.1016/j.compeleceng.2025.110423_bib0016 article-title: Video forgery detection using correlation of noise residue – volume: 51 issue: 7 year: 2024 ident: 10.1016/j.compeleceng.2025.110423_bib0046 article-title: Image splicing forgery detection model using hybrid boosting machine publication-title: IAENG Int J Comput Sci – volume: 9 start-page: 191 issue: 3 year: 2017 ident: 10.1016/j.compeleceng.2025.110423_bib0007 article-title: A review of video falsifying techniques and video forgery detection techniques publication-title: Int J Electron Secur Digit Forensic doi: 10.1504/IJESDF.2017.085196 – start-page: 1407 year: 2018 ident: 10.1016/j.compeleceng.2025.110423_bib0021 article-title: Comparative study of feature extraction using several wavelet transforms for source camera identification – volume: 83 start-page: 5415 issue: 2 year: 2024 ident: 10.1016/j.compeleceng.2025.110423_bib0031 article-title: Multiple forgery detection in digital video with VGG-16-based deep neural network and KPCA publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-15561-0 – volume: 81 start-page: 35733 issue: 25 year: 2022 ident: 10.1016/j.compeleceng.2025.110423_bib0027 article-title: Towards general object-based video forgery detection via dual-stream networks and depth information embedding publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-11126-1 – volume: 12 issue: 1 year: 2025 ident: 10.1016/j.compeleceng.2025.110423_bib0047 article-title: An efficient video forgery detection using two-layer hybridized deep CNN classifier publication-title: EAI Endorsed Trans Scalable Inf Syst – ident: 10.1016/j.compeleceng.2025.110423_bib0034 |
| SSID | ssj0004618 |
| Score | 2.3794603 |
| Snippet | Digital forgery detection implies the identification of any modifications or manipulation of the digital content, typically image, video, or document, to... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 110423 |
| SubjectTerms | Deep learning Digital forensics Dunnock hunt optimization Image manipulation Video forgery detection |
| Title | MDR-LOD2 Model: Forgery Detection using Modified Depth ResNet features and Layer Optimized Dunnock Deep Model from Videos |
| URI | https://dx.doi.org/10.1016/j.compeleceng.2025.110423 |
| Volume | 125 |
| WOSCitedRecordID | wos001502000400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0045-7906 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004618 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLagQwgeELeJjYuMxNuUKXWcxEG8THQTTF2HYJv6FiXxMc3G0qjNpsGv59iO03ATIMRLVEW-1efTOZ-dcyHkBYdIccUiTwWSezwKcy9hKvNCFSKXA6l8U3nuZBxPJmI6Td61LkFLU04gripxdZXU_1XU-A6FrUNn_0Lc3aD4An-j0PGJYsfnHwn-YPTeGx-OmClz9kmf-PfmJvQZdUsDtjL4hbkhwAal0hR0BHUz0zf5E2i2FJhcnzZ38zhDSr51iHrlvPyiWyLfRQ2KPaC2E9gAlZNSwnzZZ7quXMTSgMtW2zGAgFUGRCft44_OqxlP1Z2dOCjlDK3uLDs7yxbZJf5Vi4j97f5VBQs7t9b2_szF0KwcloxO5jppph99o5NtNPQP-t1eNZxq8dR65bjkbT2TjmbgNnD5u_TZH_T4enjkemitI_86WWNxmIgBWdt5uzvd70XRDq3dbtdzkzxfeQP-YsKfs5keQzm6S-60Rwu6YyFxj1yD6j653Us4-YB8duCgRnYvaQsN2kGDGmhQBw1qoEEtNKiDBkVoUAMN2kGDttCgGhp2eKqhQS00HpLjvd2j12-8tviGV6Cab7ww4oBcLo-l5DxniRCBnwPyGYizTBZ-IBhAHIg4KIQqQAz9QKFByHOZcWwpgnUyqOYVPCI0BCGHeYisAA_fhWICshDNRpDLmOkPfRuEuU1Ma5tjJXXOh6dpb-dTvfOp3fkN8sptd9qSRUsCU8TK77tv_lv3x-TWCuBPyKBZXMBTcqO4bMrl4lmLrK84DpYZ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MDR-LOD2+Model%3A+Forgery+Detection+using+Modified+Depth+ResNet+features+and+Layer+Optimized+Dunnock+Deep+Model+from+Videos&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Ugale%2C+Meena&rft.au=Midhunchakkaravarthy%2C+J.&rft.date=2025-07-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7906&rft.volume=125&rft_id=info:doi/10.1016%2Fj.compeleceng.2025.110423&rft.externalDocID=S0045790625003660 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |