Alpine skiing optimization: A new bio-inspired optimization algorithm

•A mathematical model is proposed to simulate the behaviors of skiers competing for the championship.•A novel optimization algorithm is proposed using the mathematical model.•The proposed alpine skiing optimization (ASO) algorithm is tested on twenty-three unconstrained benchmark functions and four...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in engineering software (1992) Ročník 170; s. 103158
Hlavní autoři: Yuan, Yongliang, Ren, Jianji, Wang, Shuo, Wang, Zhenxi, Mu, Xiaokai, Zhao, Wu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2022
Témata:
ISSN:0965-9978
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A mathematical model is proposed to simulate the behaviors of skiers competing for the championship.•A novel optimization algorithm is proposed using the mathematical model.•The proposed alpine skiing optimization (ASO) algorithm is tested on twenty-three unconstrained benchmark functions and four engineering design problems.•The results indicate that ASO can be used as a state-of-the-art optimization algorithm to solve engineering optimization problems.•ASO is applied to ensure the parameter of an auto drum fashioned brake. The braking efficiency factor can be improved 28.446% compared with the initial design. Results reveal that ASO is appreciated for complex engineering optimization problem due to its high efficiency, strong reliability and robust exploration performances. A novel swarm intelligence optimization algorithm is proposed, which is named alpine skiing optimization (ASO). The main inspiration of the ASO originated from the behaviors of skiers competing for the championship. In the ASO, physical stamina and sprint are two essential factors for skiers to win the tournament, which are similar to the two stages of exploration and exploitation. The skiers revealed the behaviour of winning the tournament according to the static sliding and dynamic sliding. This work simulates this behaviour from a mathematical perspective and develops the ASO algorithm. The performance of the ASO algorithm is investigated, through a comparison with many competitive optimization algorithms and four constrained engineering problems. The statistical results validate that the ASO can provide competitive results compared to other state-of-the-art optimization algorithms. Furthermore, ASO is applied to optimize the parameter of an auto drum fashioned brake engineering problem. The objective function is chosen to maximize the braking efficiency coefficient. Results show that the braking efficiency factor is improved by 28.446% compared with the initial design.
AbstractList •A mathematical model is proposed to simulate the behaviors of skiers competing for the championship.•A novel optimization algorithm is proposed using the mathematical model.•The proposed alpine skiing optimization (ASO) algorithm is tested on twenty-three unconstrained benchmark functions and four engineering design problems.•The results indicate that ASO can be used as a state-of-the-art optimization algorithm to solve engineering optimization problems.•ASO is applied to ensure the parameter of an auto drum fashioned brake. The braking efficiency factor can be improved 28.446% compared with the initial design. Results reveal that ASO is appreciated for complex engineering optimization problem due to its high efficiency, strong reliability and robust exploration performances. A novel swarm intelligence optimization algorithm is proposed, which is named alpine skiing optimization (ASO). The main inspiration of the ASO originated from the behaviors of skiers competing for the championship. In the ASO, physical stamina and sprint are two essential factors for skiers to win the tournament, which are similar to the two stages of exploration and exploitation. The skiers revealed the behaviour of winning the tournament according to the static sliding and dynamic sliding. This work simulates this behaviour from a mathematical perspective and develops the ASO algorithm. The performance of the ASO algorithm is investigated, through a comparison with many competitive optimization algorithms and four constrained engineering problems. The statistical results validate that the ASO can provide competitive results compared to other state-of-the-art optimization algorithms. Furthermore, ASO is applied to optimize the parameter of an auto drum fashioned brake engineering problem. The objective function is chosen to maximize the braking efficiency coefficient. Results show that the braking efficiency factor is improved by 28.446% compared with the initial design.
ArticleNumber 103158
Author Wang, Shuo
Wang, Zhenxi
Ren, Jianji
Yuan, Yongliang
Zhao, Wu
Mu, Xiaokai
Author_xml – sequence: 1
  givenname: Yongliang
  surname: Yuan
  fullname: Yuan, Yongliang
  organization: School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China
– sequence: 2
  givenname: Jianji
  surname: Ren
  fullname: Ren, Jianji
  email: renjianji@hpu.edu.cn
  organization: School of Software, Henan Polytechnic University, Jiaozuo 454003, China
– sequence: 3
  givenname: Shuo
  surname: Wang
  fullname: Wang, Shuo
  organization: School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 4
  givenname: Zhenxi
  surname: Wang
  fullname: Wang, Zhenxi
  organization: School of Software, Henan Polytechnic University, Jiaozuo 454003, China
– sequence: 5
  givenname: Xiaokai
  surname: Mu
  fullname: Mu, Xiaokai
  organization: School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 6
  givenname: Wu
  surname: Zhao
  fullname: Zhao, Wu
  organization: School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China
BookMark eNqNkM1KAzEUhbOoYFt9h7zA1CTzl3Eh1FJ_oOBG1yGTuTPeOk2GJFT06Z1aQXSjqwuXcz4434xMrLNACOVswRkvLrYL3ezBdsG1cSGYEOM75bmckCmrijypqlKeklkIW8Z4xgSfkvWyH9ACDS-ItqNuiLjDdx3R2Uu6pBZeaY0uQRsG9ND8CFDdd85jfN6dkZNW9wHOv-6cPN2sH1d3yebh9n613CQm5TImmYa0KqpKSw26amsp2zZLU9MUtUnrGkohZMnLMstqkddjGHLOpGCSZS0rcp3OiTxyjXcheGjV4HGn_ZviTB0UqK36VqAOCtRRwVi9-lU1GD9nRK-x_w_g-giAceAewatgEKyBZhRjomoc_g35AOeyhFo
CitedBy_id crossref_primary_10_1016_j_oceaneng_2023_115426
crossref_primary_10_1109_ACCESS_2024_3483457
crossref_primary_10_1016_j_aei_2023_101908
crossref_primary_10_1007_s13369_023_08376_6
crossref_primary_10_1016_j_apm_2025_116423
crossref_primary_10_1063_5_0157491
crossref_primary_10_1038_s41598_024_57098_8
crossref_primary_10_1007_s10462_024_10821_3
crossref_primary_10_1007_s42235_023_00392_4
crossref_primary_10_1016_j_aei_2024_102516
crossref_primary_10_1063_5_0137562
crossref_primary_10_1007_s11831_025_10228_5
crossref_primary_10_1108_RIA_12_2023_0177
crossref_primary_10_1063_5_0157407
crossref_primary_10_1007_s00500_023_09350_y
crossref_primary_10_1080_08839514_2023_2175115
crossref_primary_10_1109_ACCESS_2023_3265712
crossref_primary_10_1109_ACCESS_2023_3262600
crossref_primary_10_1007_s10462_024_10946_5
crossref_primary_10_1038_s41598_024_83589_9
crossref_primary_10_1063_5_0147299
crossref_primary_10_1109_ACCESS_2024_3453488
crossref_primary_10_1007_s11227_023_05618_0
crossref_primary_10_1016_j_sna_2023_114973
crossref_primary_10_1007_s10586_024_04901_w
crossref_primary_10_1063_5_0141913
crossref_primary_10_1016_j_renene_2024_120211
crossref_primary_10_1016_j_aei_2024_102923
crossref_primary_10_1109_ACCESS_2023_3276932
crossref_primary_10_1016_j_eswa_2023_120904
crossref_primary_10_1016_j_measurement_2025_118361
crossref_primary_10_3390_automation6020013
crossref_primary_10_1063_5_0149442
crossref_primary_10_1080_0305215X_2025_2501647
crossref_primary_10_1016_j_cma_2025_117908
crossref_primary_10_1016_j_eswa_2023_122413
crossref_primary_10_3390_math13172721
crossref_primary_10_1016_j_advengsoft_2023_103517
crossref_primary_10_1016_j_oceaneng_2023_113647
crossref_primary_10_1007_s42235_024_00545_z
crossref_primary_10_1038_s41598_023_50910_x
crossref_primary_10_1109_ACCESS_2022_3195519
crossref_primary_10_1016_j_oceaneng_2023_114317
crossref_primary_10_1016_j_jer_2024_01_008
crossref_primary_10_1038_s41598_025_91418_w
crossref_primary_10_1109_ACCESS_2025_3562686
crossref_primary_10_3390_axioms12090834
crossref_primary_10_1063_5_0153077
crossref_primary_10_1063_5_0153550
crossref_primary_10_1007_s00477_023_02657_0
crossref_primary_10_1038_s41598_024_54910_3
crossref_primary_10_1109_ACCESS_2022_3214206
crossref_primary_10_1063_5_0125885
crossref_primary_10_3390_biomimetics10040233
crossref_primary_10_1016_j_aei_2023_102210
crossref_primary_10_1109_ACCESS_2023_3313973
crossref_primary_10_1007_s13369_024_08710_6
crossref_primary_10_1038_s41598_024_65676_z
crossref_primary_10_3390_biomimetics8040377
crossref_primary_10_1016_j_sna_2024_115651
crossref_primary_10_3390_biomimetics8060462
crossref_primary_10_1007_s10462_024_10986_x
crossref_primary_10_1016_j_bspc_2023_105295
crossref_primary_10_3390_biomimetics9030130
crossref_primary_10_1007_s42235_023_00387_1
crossref_primary_10_1016_j_swevo_2025_102082
crossref_primary_10_1063_5_0130344
crossref_primary_10_1016_j_aei_2023_102209
crossref_primary_10_1016_j_asoc_2024_111262
crossref_primary_10_1088_1742_6596_2339_1_012020
crossref_primary_10_1007_s00500_023_07952_0
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_1016_j_aei_2023_102004
crossref_primary_10_3390_electronics14020274
crossref_primary_10_1038_s41598_023_48462_1
crossref_primary_10_1016_j_aei_2024_102783
crossref_primary_10_1063_5_0152822
crossref_primary_10_1007_s00371_023_03016_4
crossref_primary_10_1016_j_asoc_2024_111976
crossref_primary_10_1007_s11042_024_18806_8
crossref_primary_10_1002_dac_70030
crossref_primary_10_1016_j_knosys_2025_114273
crossref_primary_10_1016_j_swevo_2024_101766
crossref_primary_10_1038_s41598_024_61786_w
crossref_primary_10_1007_s00521_024_10694_1
crossref_primary_10_1038_s41598_024_63826_x
crossref_primary_10_1109_ACCESS_2023_3261266
Cites_doi 10.1016/j.apm.2015.10.040
10.1016/j.ins.2015.06.044
10.1016/j.ijepes.2016.01.037
10.1016/j.advengsoft.2015.01.010
10.1016/j.advengsoft.2017.01.004
10.1016/j.mechmachtheory.2006.02.004
10.1016/j.cnsns.2013.08.027
10.1007/s00366-011-0241-y
10.1016/j.cma.2021.114194
10.3901/JME.2021.06.211
10.1016/j.asoc.2009.08.031
10.1063/5.0035635
10.1109/3477.484436
10.1007/s00158-009-0454-5
10.1016/j.procs.2019.11.284
10.1016/j.ins.2009.03.004
10.1016/j.future.2020.03.055
10.1080/0305215X.2019.1618290
10.1016/j.future.2019.02.028
10.1007/s00158-008-0238-3
10.1016/j.eswa.2012.12.045
10.1016/j.knosys.2015.12.020
10.1038/scientificamerican0792-66
10.2991/ijcis.d.210309.001
10.1016/j.cad.2010.12.015
10.2528/PIER07082403
10.1080/03052150108940941
10.1016/j.knosys.2015.07.006
10.1109/4235.585893
10.1108/EC-08-2019-0362
10.1016/j.asoc.2021.107574
10.1016/j.compstruc.2012.07.010
10.1016/j.ins.2011.08.006
10.1109/TEVC.2008.927706
10.1162/106365603321828970
10.1080/03052150500066737
10.1016/j.physrep.2016.08.001
10.1007/s10898-007-9149-x
10.4018/IJSIR.2016070102
10.1109/ACCESS.2019.2923468
10.1023/A:1008202821328
10.1016/j.mechmachtheory.2006.10.002
10.1016/j.gaitpost.2017.10.007
10.1016/j.swevo.2013.12.005
10.1016/j.engappai.2017.07.005
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.advengsoft.2022.103158
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
ExternalDocumentID 10_1016_j_advengsoft_2022_103158
S0965997822000692
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-4ae39699a8aea9fb88ff433cd6bc3bbe7228717744b25bae3e510820804f065a3
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000812318000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0965-9978
IngestDate Sat Nov 29 07:08:21 EST 2025
Tue Nov 18 21:48:17 EST 2025
Fri Feb 23 02:41:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Alpine skiing optimization algorithm
Physical stamina
Swarm intelligence
Auto drum fashioned brake
Constrained optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-4ae39699a8aea9fb88ff433cd6bc3bbe7228717744b25bae3e510820804f065a3
ParticipantIDs crossref_primary_10_1016_j_advengsoft_2022_103158
crossref_citationtrail_10_1016_j_advengsoft_2022_103158
elsevier_sciencedirect_doi_10_1016_j_advengsoft_2022_103158
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Advances in engineering software (1992)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gandomi, Yang, Alavi (bib0047) 2013; 29
Seyedali (bib0044) 2016; 27
de Melo, Carosio (bib0059) 2013; 40
Gandomi, Yang, Alavi (bib0010) 2013; 29
Askarzadeh (bib0030) 2014; 19
Storn, Price (bib0009) 1997; 11
Rao, Savsani, Vakharia (bib0053) 2011; 43
Precup, Hedrea, Roman, Petriu, Szedlak-Stinean, Bojan-Dragos (bib0017) 2020; 99
Precup, David, Roman, Petriu, Szedlak-Stinean (bib0020) 2021; 14
Yu, Wang, Wang (bib0033) 2016; 96
More, Lalit, Nidul (bib0038) 2016; 80
Nikolaus, Sibylle, Petros (bib0043) 2003; 11
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (bib0003) 2019; 97
Qin, Huang, Suganthan (bib0042) 2009; 13
Yuan, Wang, Lv, Song (bib0002) 2021; 38
Formato (bib0013) 2007; 77
Rashedi, Nezamabadi-Pour, Saryazdi (bib0011) 2009; 179
Hein, Hentschel, Runkler, Udluft (bib0018) 2016; 7
Eskandar, Sadollah, Bahreininejad, Hamdi (bib0052) 2012; 110
Eberhart, Kennedy (bib0008) 1995
Rao, Savsani, Vakharia (bib0014) 2012; 183
Liu, Cai, Wang (bib0057) 2010; 10
Liu, Cai, Wang (bib0050) 2010; 10
Premku, Pradeep, Sowmya (bib0026) 2021
Karaboga, Basturk (bib0007) 2007; 39
Zapata, Perozo, Angulo, Contreras (bib0016) 2020; 18
Li, Chen, Wang (bib0024) 2020
Dehkordi, Sadiq, Mirjalili (bib0029) 2021; 109
Ray, Saini (bib0049) 2001; 33
Akira, Aya, Ryosuke, Kohei, Hiroshi (bib0034) 2018; 59
Yang (bib0035) 2010
Zhao, Wang, Mirjalili (bib0051) 2022; 388
Yuan, Mu, Shao (bib0025) 2022
Saremi, Mirjalili, Lewis (bib0046) 2017; 105
Savsani, Savsani (bib0054) 2016; 40
Hein, Hentschel, Runkler, Udluft (bib0015) 2017; 65
Yuan, Guo, Wang, Song (bib0005) 2021; 57
Seyedali (bib0041) 2015; 89
Song, Li (bib0045) 2017
Wang, Yuan, Guo (bib0022) 2019; 7
Wang, Li (bib0058) 2010; 41
Holland (bib0006) 1992; 267
Rao, Tiwari (bib0055) 2007; 42
Gupta, Tiwari, Nair (bib0060) 2007; 42
Tsai (bib0048) 2005; 37
Ahmed, Sheikh, Mirjalili (bib0027) 2022
Wang, Cai, Zhou, Fan (bib0056) 2009; 37
Seyedali (bib0040) 2015; 83
Roman, Precup, Dragos, Szedlak-Stinean (bib0019) 2019; 162
Zhao, Wang, Mirjalili (bib0028) 2022
Aljarah, Faris, Mirjalili (bib0037) 2016; 47
Wolpert, Macready (bib0032) 1997; 1
Li, Zhou, Zhang, Song (bib0036) 2016; 8
Zhao, Zhang, Wang (bib0061) 2020; 87
Salcedo-Sanz (bib0031) 2016; 655
Yuan, Lv, Wang, Song (bib0001) 2020; 52
Vivek, Vimal (bib0004) 2015; 324
Yuan, Ren, Zu, Mu (bib0021) 2021; 11
Dorigo, Maniezzo, Colorni (bib0012) 1996; 26
Satapathy, Naik (bib0039) 2014; 16
Faramarzi, Heidarinejad, Stephens (bib0023) 2020
Seyedali (10.1016/j.advengsoft.2022.103158_bib0044) 2016; 27
Savsani (10.1016/j.advengsoft.2022.103158_bib0054) 2016; 40
Yuan (10.1016/j.advengsoft.2022.103158_bib0021) 2021; 11
Zhao (10.1016/j.advengsoft.2022.103158_bib0051) 2022; 388
Zhao (10.1016/j.advengsoft.2022.103158_bib0061) 2020; 87
Rao (10.1016/j.advengsoft.2022.103158_bib0053) 2011; 43
Eskandar (10.1016/j.advengsoft.2022.103158_bib0052) 2012; 110
Wang (10.1016/j.advengsoft.2022.103158_bib0058) 2010; 41
Song (10.1016/j.advengsoft.2022.103158_bib0045) 2017
Li (10.1016/j.advengsoft.2022.103158_bib0024) 2020
Zapata (10.1016/j.advengsoft.2022.103158_bib0016) 2020; 18
Precup (10.1016/j.advengsoft.2022.103158_bib0020) 2021; 14
Yuan (10.1016/j.advengsoft.2022.103158_bib0005) 2021; 57
Dorigo (10.1016/j.advengsoft.2022.103158_bib0012) 1996; 26
Heidari (10.1016/j.advengsoft.2022.103158_bib0003) 2019; 97
Nikolaus (10.1016/j.advengsoft.2022.103158_bib0043) 2003; 11
Yang (10.1016/j.advengsoft.2022.103158_bib0035) 2010
Dehkordi (10.1016/j.advengsoft.2022.103158_bib0029) 2021; 109
Qin (10.1016/j.advengsoft.2022.103158_bib0042) 2009; 13
Gandomi (10.1016/j.advengsoft.2022.103158_bib0047) 2013; 29
Wang (10.1016/j.advengsoft.2022.103158_bib0056) 2009; 37
Precup (10.1016/j.advengsoft.2022.103158_bib0017) 2020; 99
Yuan (10.1016/j.advengsoft.2022.103158_bib0002) 2021; 38
Ahmed (10.1016/j.advengsoft.2022.103158_bib0027) 2022
Li (10.1016/j.advengsoft.2022.103158_bib0036) 2016; 8
Wang (10.1016/j.advengsoft.2022.103158_bib0022) 2019; 7
Wolpert (10.1016/j.advengsoft.2022.103158_bib0032) 1997; 1
Yu (10.1016/j.advengsoft.2022.103158_bib0033) 2016; 96
Salcedo-Sanz (10.1016/j.advengsoft.2022.103158_bib0031) 2016; 655
Karaboga (10.1016/j.advengsoft.2022.103158_bib0007) 2007; 39
Vivek (10.1016/j.advengsoft.2022.103158_bib0004) 2015; 324
Seyedali (10.1016/j.advengsoft.2022.103158_bib0041) 2015; 89
Eberhart (10.1016/j.advengsoft.2022.103158_bib0008) 1995
Yuan (10.1016/j.advengsoft.2022.103158_bib0025) 2022
Hein (10.1016/j.advengsoft.2022.103158_bib0018) 2016; 7
Ray (10.1016/j.advengsoft.2022.103158_bib0049) 2001; 33
Storn (10.1016/j.advengsoft.2022.103158_bib0009) 1997; 11
Askarzadeh (10.1016/j.advengsoft.2022.103158_bib0030) 2014; 19
Satapathy (10.1016/j.advengsoft.2022.103158_bib0039) 2014; 16
Saremi (10.1016/j.advengsoft.2022.103158_bib0046) 2017; 105
Rao (10.1016/j.advengsoft.2022.103158_bib0014) 2012; 183
Formato (10.1016/j.advengsoft.2022.103158_bib0013) 2007; 77
More (10.1016/j.advengsoft.2022.103158_bib0038) 2016; 80
Roman (10.1016/j.advengsoft.2022.103158_bib0019) 2019; 162
Liu (10.1016/j.advengsoft.2022.103158_bib0057) 2010; 10
Gandomi (10.1016/j.advengsoft.2022.103158_bib0010) 2013; 29
Akira (10.1016/j.advengsoft.2022.103158_bib0034) 2018; 59
Aljarah (10.1016/j.advengsoft.2022.103158_bib0037) 2016; 47
Gupta (10.1016/j.advengsoft.2022.103158_bib0060) 2007; 42
Yuan (10.1016/j.advengsoft.2022.103158_bib0001) 2020; 52
Liu (10.1016/j.advengsoft.2022.103158_bib0050) 2010; 10
Premku (10.1016/j.advengsoft.2022.103158_bib0026) 2021
de Melo (10.1016/j.advengsoft.2022.103158_bib0059) 2013; 40
Hein (10.1016/j.advengsoft.2022.103158_bib0015) 2017; 65
Faramarzi (10.1016/j.advengsoft.2022.103158_bib0023) 2020
Rao (10.1016/j.advengsoft.2022.103158_bib0055) 2007; 42
Zhao (10.1016/j.advengsoft.2022.103158_bib0028) 2022
Seyedali (10.1016/j.advengsoft.2022.103158_bib0040) 2015; 83
Tsai (10.1016/j.advengsoft.2022.103158_bib0048) 2005; 37
Holland (10.1016/j.advengsoft.2022.103158_bib0006) 1992; 267
Rashedi (10.1016/j.advengsoft.2022.103158_bib0011) 2009; 179
References_xml – volume: 52
  start-page: 915
  year: 2020
  end-page: 931
  ident: bib0001
  article-title: Optimization of a frame structure using the Coulomb force search strategy-based dragonfly algorithm
  publication-title: Eng Optim
– volume: 11
  start-page: 25012
  year: 2021
  ident: bib0021
  article-title: An adaptive instinctive reaction strategy based on Harris hawks optimization algorithm for numerical optimization problems
  publication-title: AIP Adv
– volume: 96
  start-page: 156
  year: 2016
  end-page: 170
  ident: bib0033
  article-title: Multiple learning particle swarm optimization with space transformation perturbation and its application in ethylene cracking furnace optimization
  publication-title: Knowl Based Syst
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: bib0046
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Adv Eng Softw
– volume: 16
  start-page: 28
  year: 2014
  end-page: 37
  ident: bib0039
  article-title: Modified teaching-learning-based optimization algorithm for global numerical optimization-a comparative study
  publication-title: Swarm Evol Comput
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: bib0041
  article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm
  publication-title: Knowl Based Syst
– volume: 42
  start-page: 1418
  year: 2007
  end-page: 1443
  ident: bib0060
  article-title: Multi-objective design optimisation of rolling bearings using genetic algorithms
  publication-title: Mech Mach Theory
– volume: 33
  start-page: 735
  year: 2001
  end-page: 748
  ident: bib0049
  article-title: Engineering design optimization using a swarm with an intelligent information sharing among individuals
  publication-title: Eng Optim
– volume: 80
  start-page: 52
  year: 2016
  end-page: 63
  ident: bib0038
  article-title: Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller
  publication-title: Int J Electr Power Energy Syst
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: bib0053
  article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput Aided Des
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: bib0003
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Gener Comput Syst
– volume: 18
  start-page: 1
  year: 2020
  end-page: 18
  ident: bib0016
  article-title: A hybrid swarm algorithm for collective construction of 3d structures
  publication-title: Int J Artif Intell
– volume: 40
  start-page: 3370
  year: 2013
  end-page: 3377
  ident: bib0059
  article-title: Investigating multi-view differential evolution for solving constrained engineering design problems
  publication-title: Expert Syst Appl
– volume: 19
  start-page: 1213
  year: 2014
  end-page: 1228
  ident: bib0030
  article-title: Bird mating optimizer: an optimization algorithm inspired by bird mating strategies
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0032
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
– year: 2020
  ident: bib0023
  article-title: Equilibrium optimizer: a novel optimization algorithm
  publication-title: Knowl Based Syst
– volume: 10
  start-page: 629
  year: 2010
  end-page: 640
  ident: bib0057
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl Soft Comput
– volume: 324
  start-page: 217
  year: 2015
  end-page: 246
  ident: bib0004
  article-title: Heat transfer search (HTS): a novel optimization algorithm
  publication-title: Inform Sci
– volume: 7
  start-page: 80570
  year: 2019
  end-page: 80576
  ident: bib0022
  article-title: An improved rider optimization algorithm for solving engineering optimization problems
  publication-title: IEEE Access
– volume: 65
  start-page: 87
  year: 2017
  end-page: 98
  ident: bib0015
  article-title: Particle swarm optimization for generating interpretable fuzzy reinforcement learning policies
  publication-title: Eng Appl Artif Intell
– volume: 162
  start-page: 267
  year: 2019
  end-page: 274
  ident: bib0019
  article-title: Combined Model-free adaptive control with fuzzy component by virtual reference feedback tuning for tower crane systems
  publication-title: Proced Comput Sci
– start-page: 300
  year: 2020
  end-page: 323
  ident: bib0024
  article-title: Slime mould algorithm: a new method for stochastic optimization
  publication-title: Future Gener Comp Syst
– volume: 7
  start-page: 23
  year: 2016
  end-page: 42
  ident: bib0018
  article-title: Reinforcement learning with particle swarm optimization policy (pso-p) in continuous state and action spaces
  publication-title: Int J Swarm Intell Res
– start-page: 1178
  year: 2017
  end-page: 1183
  ident: bib0045
  article-title: Elite opposition learning and exponential function steps-based dragonfly algorithm for global optimization
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: bib0012
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: IEEE Trans Syst Man Cybern B
– year: 2022
  ident: bib0028
  article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications
  publication-title: Comput Method Appl Mech Eng
– volume: 27
  start-page: 79
  year: 2016
  end-page: 95
  ident: bib0044
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput Appl
– year: 2022
  ident: bib0025
  article-title: Optimization of an auto drum fashioned brake using the elite opposition-based learning and chaotic k-best gravitational search strategy based grey wolf optimizer algorithm
  publication-title: Appl Soft Comput
– volume: 8
  start-page: 1
  year: 2016
  end-page: 22
  ident: bib0036
  article-title: Lévy-flight moth-flame algorithm for function optimization and engineering design problems
  publication-title: Math Probl Eng
– volume: 38
  start-page: 2228
  year: 2021
  end-page: 2251
  ident: bib0002
  article-title: An adaptive resistance and stamina strategy-based dragonfly algorithm for solving engineering optimization problems
  publication-title: Eng Comput
– volume: 77
  start-page: 425
  year: 2007
  end-page: 491
  ident: bib0013
  article-title: Central force optimization
  publication-title: Prog Electromagn Res
– volume: 57
  start-page: 211
  year: 2021
  end-page: 223
  ident: bib0005
  article-title: Multi-objective optimization of bucket wheel reclaimer based on improved dragonfly algorithm
  publication-title: Jixie Gongcheng Xuebao/J Mech Eng
– volume: 11
  start-page: 34
  year: 1997
  end-page: 359
  ident: bib0009
  article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J Glob Optim
– volume: 655
  start-page: 1
  year: 2016
  end-page: 70
  ident: bib0031
  article-title: Modern meta-heuristics based on nonlinear physics processes: a review of models and design procedures
  publication-title: Phys Rep
– volume: 59
  start-page: 134
  year: 2018
  end-page: 139
  ident: bib0034
  article-title: Similarity of muscle synergies extracted from the lower limb including the deep muscles between level and uphill treadmill walking
  publication-title: Gait Posture
– volume: 110
  start-page: 151
  year: 2012
  end-page: 166
  ident: bib0052
  article-title: Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput Struct
– volume: 13
  start-page: 398
  year: 2009
  end-page: 417
  ident: bib0042
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans Evol Comput
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: bib0011
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf Sci
– volume: 42
  start-page: 233
  year: 2007
  end-page: 250
  ident: bib0055
  article-title: Optimum design of rolling element bearings using genetic algorithms
  publication-title: Mech Mach Theory
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  ident: bib0047
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng Comput
– volume: 109
  year: 2021
  ident: bib0029
  article-title: Nonlinear-based chaotic harris hawks optimizer: algorithm and internet of vehicles application
  publication-title: Appl Soft Comput
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  ident: bib0010
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng Comput
– year: 2022
  ident: bib0027
  article-title: Binary Simulated Normal Distribution Optimizer for feature selection: theory and application in COVID-19 datasets
  publication-title: Expert Syst Appl
– start-page: 24
  year: 2021
  end-page: 50
  ident: bib0026
  article-title: Multi-objective equilibrium optimizer: framework and development for solving multi-objective optimization problems
  publication-title: J Comput Des Eng
– year: 2010
  ident: bib0035
  article-title: Nature-inspired metaheuristic algorithms
– volume: 10
  start-page: 629
  year: 2010
  end-page: 640
  ident: bib0050
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl Soft Comput
– volume: 267
  start-page: 66
  year: 1992
  end-page: 73
  ident: bib0006
  article-title: Genetic algorithms
  publication-title: Sci Am
– volume: 40
  start-page: 3951
  year: 2016
  end-page: 3978
  ident: bib0054
  article-title: Passing vehicle search (pvs): a novel metaheuristic algorithm
  publication-title: Appl Math Model
– start-page: 39
  year: 1995
  end-page: 43
  ident: bib0008
  article-title: A new optimizer using particle swarm theory
  publication-title: Proceedings of the sixth international symposium on micro machine and human science, MHS’95
– volume: 47
  start-page: 2652
  year: 2016
  end-page: 2670
  ident: bib0037
  article-title: Lévy flight artificial bee colony algorithm
  publication-title: Int J Syst Sci
– volume: 87
  year: 2020
  ident: bib0061
  article-title: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications
  publication-title: Eng Appl Artif Intell
– volume: 11
  start-page: 1
  year: 2003
  end-page: 18
  ident: bib0043
  article-title: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
  publication-title: Evol Comput
– volume: 183
  start-page: 1
  year: 2012
  end-page: 15
  ident: bib0014
  article-title: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inf Sci
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: bib0040
  article-title: The ant lion optimizer
  publication-title: Adv Eng Softw
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: bib0007
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J Glob Optim
– volume: 41
  start-page: 947
  year: 2010
  end-page: 963
  ident: bib0058
  article-title: An effective differential evolution with level comparison for constrained engineering design
  publication-title: Struct Multidiscip Optim
– volume: 99
  start-page: 1
  year: 2020
  end-page: 7
  ident: bib0017
  article-title: Experiment-based approach to teach optimization techniques
  publication-title: IEEE Trans Educ
– volume: 14
  start-page: 1042
  year: 2021
  end-page: 1052
  ident: bib0020
  article-title: Slime mould algorithm-based tuning of cost-effective fuzzy controllers for servo systems
  publication-title: Int J Comput Int Sys
– volume: 37
  start-page: 399
  year: 2005
  end-page: 409
  ident: bib0048
  article-title: Global optimization of nonlinear fractional programming problems in engineering design
  publication-title: Eng Optim
– volume: 37
  start-page: 395
  year: 2009
  end-page: 413
  ident: bib0056
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Struct Multidiscip Optim
– volume: 388
  year: 2022
  ident: bib0051
  article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications
  publication-title: Comput Methods Appl Mech Eng
– volume: 27
  start-page: 79
  issue: 4
  year: 2016
  ident: 10.1016/j.advengsoft.2022.103158_bib0044
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput Appl
– volume: 40
  start-page: 3951
  year: 2016
  ident: 10.1016/j.advengsoft.2022.103158_bib0054
  article-title: Passing vehicle search (pvs): a novel metaheuristic algorithm
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2015.10.040
– volume: 324
  start-page: 217
  year: 2015
  ident: 10.1016/j.advengsoft.2022.103158_bib0004
  article-title: Heat transfer search (HTS): a novel optimization algorithm
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2015.06.044
– volume: 80
  start-page: 52
  year: 2016
  ident: 10.1016/j.advengsoft.2022.103158_bib0038
  article-title: Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2016.01.037
– volume: 83
  start-page: 80
  year: 2015
  ident: 10.1016/j.advengsoft.2022.103158_bib0040
  article-title: The ant lion optimizer
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.advengsoft.2022.103158_bib0046
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 42
  start-page: 233
  issue: 2
  year: 2007
  ident: 10.1016/j.advengsoft.2022.103158_bib0055
  article-title: Optimum design of rolling element bearings using genetic algorithms
  publication-title: Mech Mach Theory
  doi: 10.1016/j.mechmachtheory.2006.02.004
– volume: 19
  start-page: 1213
  year: 2014
  ident: 10.1016/j.advengsoft.2022.103158_bib0030
  article-title: Bird mating optimizer: an optimization algorithm inspired by bird mating strategies
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2013.08.027
– issue: 123
  year: 2022
  ident: 10.1016/j.advengsoft.2022.103158_bib0025
  article-title: Optimization of an auto drum fashioned brake using the elite opposition-based learning and chaotic k-best gravitational search strategy based grey wolf optimizer algorithm
  publication-title: Appl Soft Comput
– volume: 29
  start-page: 17
  year: 2013
  ident: 10.1016/j.advengsoft.2022.103158_bib0047
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng Comput
  doi: 10.1007/s00366-011-0241-y
– volume: 388
  year: 2022
  ident: 10.1016/j.advengsoft.2022.103158_bib0051
  article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.114194
– volume: 57
  start-page: 211
  issue: 6
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103158_bib0005
  article-title: Multi-objective optimization of bucket wheel reclaimer based on improved dragonfly algorithm
  publication-title: Jixie Gongcheng Xuebao/J Mech Eng
  doi: 10.3901/JME.2021.06.211
– volume: 10
  start-page: 629
  year: 2010
  ident: 10.1016/j.advengsoft.2022.103158_bib0050
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.08.031
– volume: 11
  start-page: 25012
  issue: 2
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103158_bib0021
  article-title: An adaptive instinctive reaction strategy based on Harris hawks optimization algorithm for numerical optimization problems
  publication-title: AIP Adv
  doi: 10.1063/5.0035635
– volume: 8
  start-page: 1
  year: 2016
  ident: 10.1016/j.advengsoft.2022.103158_bib0036
  article-title: Lévy-flight moth-flame algorithm for function optimization and engineering design problems
  publication-title: Math Probl Eng
– volume: 26
  start-page: 29
  year: 1996
  ident: 10.1016/j.advengsoft.2022.103158_bib0012
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: IEEE Trans Syst Man Cybern B
  doi: 10.1109/3477.484436
– volume: 41
  start-page: 947
  issue: 6
  year: 2010
  ident: 10.1016/j.advengsoft.2022.103158_bib0058
  article-title: An effective differential evolution with level comparison for constrained engineering design
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-009-0454-5
– volume: 162
  start-page: 267
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103158_bib0019
  article-title: Combined Model-free adaptive control with fuzzy component by virtual reference feedback tuning for tower crane systems
  publication-title: Proced Comput Sci
  doi: 10.1016/j.procs.2019.11.284
– volume: 179
  start-page: 2232
  year: 2009
  ident: 10.1016/j.advengsoft.2022.103158_bib0011
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.03.004
– start-page: 300
  issue: 111
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103158_bib0024
  article-title: Slime mould algorithm: a new method for stochastic optimization
  publication-title: Future Gener Comp Syst
  doi: 10.1016/j.future.2020.03.055
– volume: 52
  start-page: 915
  issue: 6
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103158_bib0001
  article-title: Optimization of a frame structure using the Coulomb force search strategy-based dragonfly algorithm
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2019.1618290
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103158_bib0003
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 37
  start-page: 395
  issue: 4
  year: 2009
  ident: 10.1016/j.advengsoft.2022.103158_bib0056
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-008-0238-3
– volume: 40
  start-page: 3370
  issue: 9
  year: 2013
  ident: 10.1016/j.advengsoft.2022.103158_bib0059
  article-title: Investigating multi-view differential evolution for solving constrained engineering design problems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.12.045
– volume: 29
  start-page: 17
  year: 2013
  ident: 10.1016/j.advengsoft.2022.103158_bib0010
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng Comput
  doi: 10.1007/s00366-011-0241-y
– issue: 388
  year: 2022
  ident: 10.1016/j.advengsoft.2022.103158_bib0028
  article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications
  publication-title: Comput Method Appl Mech Eng
– volume: 96
  start-page: 156
  issue: 15
  year: 2016
  ident: 10.1016/j.advengsoft.2022.103158_bib0033
  article-title: Multiple learning particle swarm optimization with space transformation perturbation and its application in ethylene cracking furnace optimization
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.12.020
– volume: 267
  start-page: 66
  year: 1992
  ident: 10.1016/j.advengsoft.2022.103158_bib0006
  article-title: Genetic algorithms
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0792-66
– volume: 87
  issue: 1
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103158_bib0061
  article-title: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications
  publication-title: Eng Appl Artif Intell
– start-page: 24
  issue: 1
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103158_bib0026
  article-title: Multi-objective equilibrium optimizer: framework and development for solving multi-objective optimization problems
  publication-title: J Comput Des Eng
– volume: 14
  start-page: 1042
  issue: 1
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103158_bib0020
  article-title: Slime mould algorithm-based tuning of cost-effective fuzzy controllers for servo systems
  publication-title: Int J Comput Int Sys
  doi: 10.2991/ijcis.d.210309.001
– volume: 43
  start-page: 303
  year: 2011
  ident: 10.1016/j.advengsoft.2022.103158_bib0053
  article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2010.12.015
– volume: 77
  start-page: 425
  year: 2007
  ident: 10.1016/j.advengsoft.2022.103158_bib0013
  article-title: Central force optimization
  publication-title: Prog Electromagn Res
  doi: 10.2528/PIER07082403
– volume: 33
  start-page: 735
  year: 2001
  ident: 10.1016/j.advengsoft.2022.103158_bib0049
  article-title: Engineering design optimization using a swarm with an intelligent information sharing among individuals
  publication-title: Eng Optim
  doi: 10.1080/03052150108940941
– issue: 200
  year: 2022
  ident: 10.1016/j.advengsoft.2022.103158_bib0027
  article-title: Binary Simulated Normal Distribution Optimizer for feature selection: theory and application in COVID-19 datasets
  publication-title: Expert Syst Appl
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.advengsoft.2022.103158_bib0041
  article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– volume: 1
  start-page: 67
  year: 1997
  ident: 10.1016/j.advengsoft.2022.103158_bib0032
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 38
  start-page: 2228
  issue: 5
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103158_bib0002
  article-title: An adaptive resistance and stamina strategy-based dragonfly algorithm for solving engineering optimization problems
  publication-title: Eng Comput
  doi: 10.1108/EC-08-2019-0362
– volume: 47
  start-page: 2652
  issue: 9–12
  year: 2016
  ident: 10.1016/j.advengsoft.2022.103158_bib0037
  article-title: Lévy flight artificial bee colony algorithm
  publication-title: Int J Syst Sci
– issue: 191
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103158_bib0023
  article-title: Equilibrium optimizer: a novel optimization algorithm
  publication-title: Knowl Based Syst
– volume: 109
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103158_bib0029
  article-title: Nonlinear-based chaotic harris hawks optimizer: algorithm and internet of vehicles application
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107574
– start-page: 39
  year: 1995
  ident: 10.1016/j.advengsoft.2022.103158_bib0008
  article-title: A new optimizer using particle swarm theory
– start-page: 1178
  year: 2017
  ident: 10.1016/j.advengsoft.2022.103158_bib0045
– volume: 110
  start-page: 151
  year: 2012
  ident: 10.1016/j.advengsoft.2022.103158_bib0052
  article-title: Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2012.07.010
– volume: 183
  start-page: 1
  year: 2012
  ident: 10.1016/j.advengsoft.2022.103158_bib0014
  article-title: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2011.08.006
– volume: 99
  start-page: 1
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103158_bib0017
  article-title: Experiment-based approach to teach optimization techniques
  publication-title: IEEE Trans Educ
– volume: 13
  start-page: 398
  issue: 2
  year: 2009
  ident: 10.1016/j.advengsoft.2022.103158_bib0042
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.927706
– volume: 11
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.advengsoft.2022.103158_bib0043
  article-title: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
  publication-title: Evol Comput
  doi: 10.1162/106365603321828970
– year: 2010
  ident: 10.1016/j.advengsoft.2022.103158_bib0035
– volume: 37
  start-page: 399
  year: 2005
  ident: 10.1016/j.advengsoft.2022.103158_bib0048
  article-title: Global optimization of nonlinear fractional programming problems in engineering design
  publication-title: Eng Optim
  doi: 10.1080/03052150500066737
– volume: 18
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103158_bib0016
  article-title: A hybrid swarm algorithm for collective construction of 3d structures
  publication-title: Int J Artif Intell
– volume: 655
  start-page: 1
  year: 2016
  ident: 10.1016/j.advengsoft.2022.103158_bib0031
  article-title: Modern meta-heuristics based on nonlinear physics processes: a review of models and design procedures
  publication-title: Phys Rep
  doi: 10.1016/j.physrep.2016.08.001
– volume: 39
  start-page: 459
  year: 2007
  ident: 10.1016/j.advengsoft.2022.103158_bib0007
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J Glob Optim
  doi: 10.1007/s10898-007-9149-x
– volume: 7
  start-page: 23
  issue: 3
  year: 2016
  ident: 10.1016/j.advengsoft.2022.103158_bib0018
  article-title: Reinforcement learning with particle swarm optimization policy (pso-p) in continuous state and action spaces
  publication-title: Int J Swarm Intell Res
  doi: 10.4018/IJSIR.2016070102
– volume: 7
  start-page: 80570
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103158_bib0022
  article-title: An improved rider optimization algorithm for solving engineering optimization problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923468
– volume: 10
  start-page: 629
  issue: 2
  year: 2010
  ident: 10.1016/j.advengsoft.2022.103158_bib0057
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.08.031
– volume: 11
  start-page: 34
  year: 1997
  ident: 10.1016/j.advengsoft.2022.103158_bib0009
  article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– volume: 42
  start-page: 1418
  year: 2007
  ident: 10.1016/j.advengsoft.2022.103158_bib0060
  article-title: Multi-objective design optimisation of rolling bearings using genetic algorithms
  publication-title: Mech Mach Theory
  doi: 10.1016/j.mechmachtheory.2006.10.002
– volume: 59
  start-page: 134
  year: 2018
  ident: 10.1016/j.advengsoft.2022.103158_bib0034
  article-title: Similarity of muscle synergies extracted from the lower limb including the deep muscles between level and uphill treadmill walking
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.10.007
– volume: 16
  start-page: 28
  year: 2014
  ident: 10.1016/j.advengsoft.2022.103158_bib0039
  article-title: Modified teaching-learning-based optimization algorithm for global numerical optimization-a comparative study
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2013.12.005
– volume: 65
  start-page: 87
  year: 2017
  ident: 10.1016/j.advengsoft.2022.103158_bib0015
  article-title: Particle swarm optimization for generating interpretable fuzzy reinforcement learning policies
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2017.07.005
SSID ssj0014021
Score 2.5855958
Snippet •A mathematical model is proposed to simulate the behaviors of skiers competing for the championship.•A novel optimization algorithm is proposed using the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103158
SubjectTerms Alpine skiing optimization algorithm
Auto drum fashioned brake
Constrained optimization
Physical stamina
Swarm intelligence
Title Alpine skiing optimization: A new bio-inspired optimization algorithm
URI https://dx.doi.org/10.1016/j.advengsoft.2022.103158
Volume 170
WOSCitedRecordID wos000812318000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0965-9978
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0014021
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELZQ4bAceO0iHgvygVuVqs3bcIpQV4AQWgl2VfYS2YlNU0pSNS305zOOnQe7SLBCXKJoZDuJZzKeGX_jQeiIuzyynC4zaE8Iw6asaxCQJYO53LWYQ0lclPP5feldXfmDAfmpcbp5UU7AS1N_sSCTT2U10IDZMnX2P9hdDQoEuAemwxXYDtd3MT4YT6TlmN8nBaAZVMKDzrVUWehgR7dZkhlJKjfZwd5sNmnT8V02TWbDh6bVGiigQAGd5fUBhu0cdPiThI7J054IMRthhdu5iqzeZjJPmOr1Ue7s6GwQoI2SOpyvo9bDefY37c-Qp4ukGZ0Ax7bExumQWZk2U2OUitij6xiEqNo9lRpWBUT-UekqujDq0Bi0_538sI58UKeoT-HXy1gFLryWw8vRzSINicACvWx6DvFbaDk47w8uql0m8J2Liorl62ikl8L_vf68182Xhklys4HWtC-BAyUDm2iJp1toXfsVWGvtHEhl6Y6StoVWG-dQfkV9JTNYyQxuCsQxDjBIDG5KzIsGuJKYb-jXj_7N6Zmh62sYEWjyGfyZ3CIuIdSnnBLBfF8I27Ki2GWRxRj3TOlOg39gM9Nh0JiDAgeL0e_aAixXam2jVpqlfAdhh0fM9XoxOLTEFuDyUw8se8G6MXOYoN4u8sppCyN9-LysgTIOS5ThKKwnPJQTHqoJ30W9qudEHcDyjj4nJWdCbUgqAzEEoXqz996Heu-jL_V_8B21ZtM5P0Ar0eMsyaeHWgKfAWoCnxM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alpine+skiing+optimization%3A+A+new+bio-inspired+optimization+algorithm&rft.jtitle=Advances+in+engineering+software+%281992%29&rft.au=Yuan%2C+Yongliang&rft.au=Ren%2C+Jianji&rft.au=Wang%2C+Shuo&rft.au=Wang%2C+Zhenxi&rft.date=2022-08-01&rft.pub=Elsevier+Ltd&rft.issn=0965-9978&rft.volume=170&rft_id=info:doi/10.1016%2Fj.advengsoft.2022.103158&rft.externalDocID=S0965997822000692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-9978&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-9978&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-9978&client=summon