Incremental fast relevance vector regression model based multi-pollutant emission prediction of biomass cogeneration systems

Exact and trusty prediction of pollutant emissions is pivotal for optimal combustion control in biomass cogeneration systems, which possess multiple variables, high-volume data streams, and dynamic characteristics. Aiming at the multivariate dynamic systems, this paper extends a classical fast relev...

Full description

Saved in:
Bibliographic Details
Published in:Control engineering practice Vol. 149; p. 105986
Main Authors: Wang, Xiuli, Sun, Zhifei, He, Defeng, Wu, Shaomin, Zhao, Lianna
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2024
Subjects:
ISSN:0967-0661, 1873-6939
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Exact and trusty prediction of pollutant emissions is pivotal for optimal combustion control in biomass cogeneration systems, which possess multiple variables, high-volume data streams, and dynamic characteristics. Aiming at the multivariate dynamic systems, this paper extends a classical fast relevance vector regression (FRVR) algorithm into a multivariate form to accomplish synchronous multi-pollutant prediction. Meanwhile, a flexible and effective online training strategy is proposed to solve the problems of low accuracy of multi-step prediction and lack of dynamic updating capability. First, the given dataset is divided utilizing the k-means clustering method to enhance the clustering of similar features and expedite the prediction process. Then, the classical FRVR algorithm is extended into a multiple-output form, enabling the simultaneous prediction of multiple pollutant emissions. Moreover, the incremental learning method is introduced into the proposed multivariate FRVR model to improve its dynamic performance and online learning ability. Finally, the proposed method’s effectiveness is verified through a biomass cogeneration systems case. Experimental findings fully illustrate that the proposed method provides the lower RMSE and MAE while runtime decreases by 50% and R2 reaches 96%. The proposed method significantly outperforms others, showing excellent potential in the pollutant prediction field. •An IMFRVR algorithm is proposed to predict multiple pollutant concentrations.•The k-means method cluster the data to extract useful information from the original data.•The MFRVR model is built by setting a Gaussian distribution to the FRVR weight matrix.•The incremental learning algorithm is employed to update prediction model dynamically.
AbstractList Exact and trusty prediction of pollutant emissions is pivotal for optimal combustion control in biomass cogeneration systems, which possess multiple variables, high-volume data streams, and dynamic characteristics. Aiming at the multivariate dynamic systems, this paper extends a classical fast relevance vector regression (FRVR) algorithm into a multivariate form to accomplish synchronous multi-pollutant prediction. Meanwhile, a flexible and effective online training strategy is proposed to solve the problems of low accuracy of multi-step prediction and lack of dynamic updating capability. First, the given dataset is divided utilizing the k-means clustering method to enhance the clustering of similar features and expedite the prediction process. Then, the classical FRVR algorithm is extended into a multiple-output form, enabling the simultaneous prediction of multiple pollutant emissions. Moreover, the incremental learning method is introduced into the proposed multivariate FRVR model to improve its dynamic performance and online learning ability. Finally, the proposed method’s effectiveness is verified through a biomass cogeneration systems case. Experimental findings fully illustrate that the proposed method provides the lower RMSE and MAE while runtime decreases by 50% and R2 reaches 96%. The proposed method significantly outperforms others, showing excellent potential in the pollutant prediction field. •An IMFRVR algorithm is proposed to predict multiple pollutant concentrations.•The k-means method cluster the data to extract useful information from the original data.•The MFRVR model is built by setting a Gaussian distribution to the FRVR weight matrix.•The incremental learning algorithm is employed to update prediction model dynamically.
ArticleNumber 105986
Author Zhao, Lianna
He, Defeng
Wang, Xiuli
Sun, Zhifei
Wu, Shaomin
Author_xml – sequence: 1
  givenname: Xiuli
  surname: Wang
  fullname: Wang, Xiuli
  organization: College of Information Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
– sequence: 2
  givenname: Zhifei
  surname: Sun
  fullname: Sun, Zhifei
  organization: College of Information Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
– sequence: 3
  givenname: Defeng
  surname: He
  fullname: He, Defeng
  email: hdfzj@zjut.edu.cn
  organization: College of Information Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
– sequence: 4
  givenname: Shaomin
  surname: Wu
  fullname: Wu, Shaomin
  organization: Kent Business School, University of Kent, Canterbury, Kent CT2 7FS, United Kingdom
– sequence: 5
  givenname: Lianna
  surname: Zhao
  fullname: Zhao, Lianna
  organization: Information School, The University of Sheffield, Sheffield, South Yorkshire S10 2AH, United Kingdom
BookMark eNqNkMtq5DAQRcWQwHQe_6AfcEeybFnaDCQhLwhkk6xFuVxu1NhSIykNgXx83OmBgdnMrEpcdA9V54ydhBiIMS7FWgqpr7ZrXIKw2SXAdS3qZolba_QPtpKmU5W2yp6wlbC6q4TW8ic7y3krlqq1csU-nwImmikUmPgIufBEE-0hIPE9YYlpCTaJcvYx8DkONPEeMg18fp-Kr3Zxmt4LhMJp9sdPu0SDx3J4xpH3Ps6QM8e4oUAJvvP8kQvN-YKdjjBluvw9z9nb_d3r7WP1_PLwdHv9XKGSplRNDWRapXQjGtW2g20N6M6MWDedVCiHph2xF8J0uhcSLIy1BdOrFiV0KFCds19HLqaYc6LRoS_fm5QEfnJSuINLt3V_XLqDS3d0uQDMX4Bd8jOkj_-p3hyrtBy495RcRk-L3sGnxa8bov835AsEqptt
CitedBy_id crossref_primary_10_1016_j_apenergy_2024_124179
crossref_primary_10_1016_j_energy_2025_135049
crossref_primary_10_1016_j_energy_2025_138442
crossref_primary_10_1016_j_eswa_2025_127969
crossref_primary_10_1016_j_applthermaleng_2025_126709
crossref_primary_10_1002_qre_70075
Cites_doi 10.1016/j.isatra.2018.11.024
10.1109/TNNLS.2023.3290974
10.1016/j.applthermaleng.2017.06.104
10.1016/j.energy.2010.03.035
10.1016/j.fuel.2021.121975
10.1016/j.egyr.2019.09.012
10.1016/j.renene.2012.06.045
10.1016/j.energy.2015.11.020
10.1016/j.energy.2013.02.062
10.1109/TCST.2023.3287758
10.1109/TNNLS.2022.3201511
10.1016/j.rser.2014.07.181
10.1016/j.energy.2022.123339
10.1016/j.measurement.2014.11.031
10.1016/j.fuel.2020.117811
10.1016/j.automatica.2021.109930
10.1016/j.jmsy.2021.03.019
10.1016/j.engappai.2011.08.005
10.1109/TIM.2015.2411999
10.1016/j.patrec.2008.02.004
10.1016/j.fuel.2017.08.065
10.1016/j.energy.2019.116482
10.1109/TIE.2021.3114724
10.1016/j.energy.2019.116597
10.1109/TCYB.2021.3105453
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conengprac.2024.105986
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
ExternalDocumentID 10_1016_j_conengprac_2024_105986
S0967066124001461
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c318t-42ae85336404355d958a678fc24713c1d45fcb00876b01a9af29a8b35c1a7c0c3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001255279900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0967-0661
IngestDate Tue Nov 18 22:14:44 EST 2025
Sat Nov 29 01:39:57 EST 2025
Tue Jun 18 08:51:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Extended fast relevance vector regression algorithm
Pollutant emission prediction
Incremental learning method
k-means clustering method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-42ae85336404355d958a678fc24713c1d45fcb00876b01a9af29a8b35c1a7c0c3
ParticipantIDs crossref_citationtrail_10_1016_j_conengprac_2024_105986
crossref_primary_10_1016_j_conengprac_2024_105986
elsevier_sciencedirect_doi_10_1016_j_conengprac_2024_105986
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Control engineering practice
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Feng, Wang, Wang, Li (b5) 2022; 135
Park, Park, Ryu, Baek, Kim, Park (b19) 2017; 124
Thayananthan, Navaratnam, Stenger, Torr, Cipolla (b23) 2008; 29
Nazari, Shahhoseini, Sohrabi-Kashani, Davari, Paydar, Delavar-Moghadam (b17) 2010; 35
Chen, Luo, Huang, Jiang, Kaynak (b4) 2023; 35
Li, Lu, Li, Yan (b12) 2015; 64
Tan, Xia, Zhang, Fang, Chen (b21) 2016; 94
Liu, Zhou, Pan, Peng, Peng (b15) 2015; 63
Xie, Gao, Zhang, Niu, Wang (b29) 2020; 190
Tipping, Faul (b25) 2003
Li, Xu, Chen, Jia, Ma (b14) 2022
Yang, Ma, Lv, Bai (b31) 2020; 274
Tipping (b24) 2001; 1
Lv, Liu, Yang, Zeng (b16) 2013; 55
Kang, Jeong, Farid, Hwang (b10) 2017; 210
Qiu (b20) 2013; 50
Chen, Liu, Alippi, Huang, Liu (b3) 2024; 35
Li, Fei, Jia, Lu, Kaynak, Zio (b11) 2024
Jia, Ma, Guo, Li (b8) 2021; 61
Nunes, Matias, Catalão (b18) 2014; 40
Bishop (b1) 2006; 2
Han, Li, Hossain, Qi, Zhang, Xu (b7) 2022; 308
Li, Wang, Lu, Jiang (b13) 2021; 52
Thayananthan, Navaratnam, Stenger, Torr, Cipolla (b22) 2006
Wang, Jiang, Lu (b27) 2019; 87
Chen, Huang (b2) 2023; 31
Xu, Chen, Liu, Wang, Chai, Zheng, Chen (b30) 2023; 72
Jin, Scherer, Sutanudjaja, Tukker, Behrens (b9) 2022; 245
Wang, Jiang, Wu, Lu, Ding (b28) 2021; 69
Yang, Wang, Li (b32) 2020; 192
Valente, Tarelho, Costa (b26) 2020; 6
Zhou, Zhao, Zheng, Wang, Cen (b33) 2012; 25
Guo, He (b6) 2022; 71
Tipping (10.1016/j.conengprac.2024.105986_b25) 2003
Yang (10.1016/j.conengprac.2024.105986_b32) 2020; 192
Feng (10.1016/j.conengprac.2024.105986_b5) 2022; 135
Liu (10.1016/j.conengprac.2024.105986_b15) 2015; 63
Chen (10.1016/j.conengprac.2024.105986_b4) 2023; 35
Tipping (10.1016/j.conengprac.2024.105986_b24) 2001; 1
Guo (10.1016/j.conengprac.2024.105986_b6) 2022; 71
Thayananthan (10.1016/j.conengprac.2024.105986_b23) 2008; 29
Chen (10.1016/j.conengprac.2024.105986_b2) 2023; 31
Nazari (10.1016/j.conengprac.2024.105986_b17) 2010; 35
Wang (10.1016/j.conengprac.2024.105986_b27) 2019; 87
Valente (10.1016/j.conengprac.2024.105986_b26) 2020; 6
Lv (10.1016/j.conengprac.2024.105986_b16) 2013; 55
Thayananthan (10.1016/j.conengprac.2024.105986_b22) 2006
Han (10.1016/j.conengprac.2024.105986_b7) 2022; 308
Li (10.1016/j.conengprac.2024.105986_b13) 2021; 52
Wang (10.1016/j.conengprac.2024.105986_b28) 2021; 69
Li (10.1016/j.conengprac.2024.105986_b14) 2022
Nunes (10.1016/j.conengprac.2024.105986_b18) 2014; 40
Jin (10.1016/j.conengprac.2024.105986_b9) 2022; 245
Xie (10.1016/j.conengprac.2024.105986_b29) 2020; 190
Kang (10.1016/j.conengprac.2024.105986_b10) 2017; 210
Jia (10.1016/j.conengprac.2024.105986_b8) 2021; 61
Qiu (10.1016/j.conengprac.2024.105986_b20) 2013; 50
Xu (10.1016/j.conengprac.2024.105986_b30) 2023; 72
Chen (10.1016/j.conengprac.2024.105986_b3) 2024; 35
Li (10.1016/j.conengprac.2024.105986_b11) 2024
Tan (10.1016/j.conengprac.2024.105986_b21) 2016; 94
Bishop (10.1016/j.conengprac.2024.105986_b1) 2006; 2
Zhou (10.1016/j.conengprac.2024.105986_b33) 2012; 25
Li (10.1016/j.conengprac.2024.105986_b12) 2015; 64
Park (10.1016/j.conengprac.2024.105986_b19) 2017; 124
Yang (10.1016/j.conengprac.2024.105986_b31) 2020; 274
References_xml – volume: 64
  start-page: 2409
  year: 2015
  end-page: 2416
  ident: b12
  article-title: Prediction of pollutant emissions of biomass flames through digital imaging, contourlet transform, and support vector regression modeling
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 63
  start-page: 143
  year: 2015
  end-page: 151
  ident: b15
  article-title: Lithium-ion battery remaining useful life estimation with an optimized relevance vector machine algorithm with incremental learning
  publication-title: Measurement
– volume: 192
  year: 2020
  ident: b32
  article-title: Prediction of the NOx emissions from thermal power plant using long-short term memory neural network
  publication-title: Energy
– volume: 190
  year: 2020
  ident: b29
  article-title: Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network
  publication-title: Energy
– volume: 55
  start-page: 319
  year: 2013
  end-page: 329
  ident: b16
  article-title: A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler
  publication-title: Energy
– volume: 1
  start-page: 211
  year: 2001
  end-page: 244
  ident: b24
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: Journal of Machine Learning Research
– volume: 35
  start-page: 6166
  year: 2024
  end-page: 6179
  ident: b3
  article-title: Explainable intelligent fault diagnosis for nonlinear dynamic systems: From unsupervised to supervised learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 308
  year: 2022
  ident: b7
  article-title: An ensemble deep learning model for exhaust emissions prediction of heavy oil-fired boiler combustion
  publication-title: Fuel
– volume: 87
  start-page: 217
  year: 2019
  end-page: 224
  ident: b27
  article-title: Multivariate relevance vector regression based degradation modeling and remaining useful life prediction
  publication-title: ISA Transcations
– volume: 35
  start-page: 2969
  year: 2023
  end-page: 2983
  ident: b4
  article-title: Transfer learning-motivated intelligent fault diagnosis designs: A survey, insights, and perspectives
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 245
  year: 2022
  ident: b9
  article-title: Climate change and CCS increase the water vulnerability of China’s thermoelectric power fleet
  publication-title: Energy
– volume: 124
  start-page: 1247
  year: 2017
  end-page: 1256
  ident: b19
  article-title: CFD analysis on bioliquid co-firing with heavy fuel oil in a 400 MWe power plant with a wall-firing boiler
  publication-title: Applied Thermal Engineering
– start-page: 1
  year: 2024
  end-page: 11
  ident: b11
  article-title: Novel outlier-robust accelerated degradation testing model and lifetime analysis method considering time-stress-dependent factors
  publication-title: IEEE Transactions on Industrial Informatics
– start-page: 124
  year: 2006
  end-page: 138
  ident: b22
  article-title: Multivariate relevance vector machines for tracking
  publication-title: Computer vision–ECCV 2006: 9th European conference on computer vision, Graz, Austria, May 7–13, 2006, proceedings, part III 9
– volume: 274
  year: 2020
  ident: b31
  article-title: Real-time dynamic prediction model of NOx emission of coal-fired boilers under variable load conditions
  publication-title: Fuel
– volume: 71
  start-page: 1
  year: 2022
  end-page: 14
  ident: b6
  article-title: An integrated method for bearing state change identification and prognostics based on improved relevance vector machine and degradation model
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 29
  start-page: 1302
  year: 2008
  end-page: 1310
  ident: b23
  article-title: Pose estimation and tracking using multivariate regression
  publication-title: Pattern Recognition Letters
– volume: 69
  start-page: 9514
  year: 2021
  end-page: 9523
  ident: b28
  article-title: Multivariate relevance vector regression based degradation modeling and remaining useful life prediction
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 31
  start-page: 2805
  year: 2023
  end-page: 2818
  ident: b2
  article-title: Fault-tolerant soft sensors for dynamic systems
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 61
  start-page: 773
  year: 2021
  end-page: 781
  ident: b8
  article-title: A sample entropy based prognostics method for lithium-ion batteries using relevance vector machine
  publication-title: Journal of Manufacturing Systems
– start-page: 276
  year: 2003
  end-page: 283
  ident: b25
  article-title: Fast marginal likelihood maximisation for sparse Bayesian models
  publication-title: International workshop on artificial intelligence and statistics
– volume: 210
  start-page: 282
  year: 2017
  end-page: 289
  ident: b10
  article-title: Effect of staged combustion on low NOx emission from an industrial-scale fuel oil combustor in South Korea
  publication-title: Fuel
– volume: 2
  start-page: 1122
  year: 2006
  end-page: 1128
  ident: b1
  article-title: Pattern recognition and machine learning
  publication-title: Springer Google Schola
– volume: 135
  year: 2022
  ident: b5
  article-title: Backstepping-based distributed abnormality localization for linear parabolic distributed parameter systems
  publication-title: Automatica
– volume: 6
  start-page: 483
  year: 2020
  end-page: 489
  ident: b26
  article-title: Emissions mitigation by control of biomass feeding in an industrial biomass boiler
  publication-title: Energy Reports
– volume: 52
  start-page: 13168
  year: 2021
  end-page: 13180
  ident: b13
  article-title: Conditional joint distribution-based test selection for fault detection and isolation
  publication-title: IEEE Transactions on Cybernetics
– volume: 40
  start-page: 153
  year: 2014
  end-page: 160
  ident: b18
  article-title: A review on torrefied biomass pellets as a sustainable alternative to coal in power generation
  publication-title: Renewable and Sustainable Energy Reviews
– start-page: 7742
  year: 2022
  end-page: 7750
  ident: b14
  article-title: A general degradation process of useful life analysis under unreliable signals for accelerated degradation testing
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 50
  start-page: 94
  year: 2013
  end-page: 102
  ident: b20
  article-title: Testing of flue gas emissions of a biomass pellet boiler and abatement of particle emissions
  publication-title: Renewable Energy
– volume: 72
  start-page: 1
  year: 2023
  end-page: 15
  ident: b30
  article-title: A novel adaptive SMO-based simultaneous diagnosis method for igbt open-circuit faults and current sensor incipient faults of inverters in pmsm drives for electric vehicles
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 94
  start-page: 672
  year: 2016
  end-page: 679
  ident: b21
  article-title: Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method
  publication-title: Energy
– volume: 35
  start-page: 2992
  year: 2010
  end-page: 2998
  ident: b17
  article-title: Experimental determination and analysis of CO2, SO2 and NOx emission factors in Iran’s thermal power plants
  publication-title: Energy
– volume: 25
  start-page: 147
  year: 2012
  end-page: 158
  ident: b33
  article-title: Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 87
  start-page: 217
  year: 2019
  ident: 10.1016/j.conengprac.2024.105986_b27
  article-title: Multivariate relevance vector regression based degradation modeling and remaining useful life prediction
  publication-title: ISA Transcations
  doi: 10.1016/j.isatra.2018.11.024
– volume: 35
  start-page: 2969
  issue: 3
  year: 2023
  ident: 10.1016/j.conengprac.2024.105986_b4
  article-title: Transfer learning-motivated intelligent fault diagnosis designs: A survey, insights, and perspectives
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2023.3290974
– volume: 124
  start-page: 1247
  year: 2017
  ident: 10.1016/j.conengprac.2024.105986_b19
  article-title: CFD analysis on bioliquid co-firing with heavy fuel oil in a 400 MWe power plant with a wall-firing boiler
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2017.06.104
– volume: 35
  start-page: 2992
  issue: 7
  year: 2010
  ident: 10.1016/j.conengprac.2024.105986_b17
  article-title: Experimental determination and analysis of CO2, SO2 and NOx emission factors in Iran’s thermal power plants
  publication-title: Energy
  doi: 10.1016/j.energy.2010.03.035
– volume: 1
  start-page: 211
  issue: Jun
  year: 2001
  ident: 10.1016/j.conengprac.2024.105986_b24
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: Journal of Machine Learning Research
– volume: 308
  year: 2022
  ident: 10.1016/j.conengprac.2024.105986_b7
  article-title: An ensemble deep learning model for exhaust emissions prediction of heavy oil-fired boiler combustion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121975
– start-page: 1
  year: 2024
  ident: 10.1016/j.conengprac.2024.105986_b11
  article-title: Novel outlier-robust accelerated degradation testing model and lifetime analysis method considering time-stress-dependent factors
  publication-title: IEEE Transactions on Industrial Informatics
– start-page: 276
  year: 2003
  ident: 10.1016/j.conengprac.2024.105986_b25
  article-title: Fast marginal likelihood maximisation for sparse Bayesian models
– volume: 6
  start-page: 483
  year: 2020
  ident: 10.1016/j.conengprac.2024.105986_b26
  article-title: Emissions mitigation by control of biomass feeding in an industrial biomass boiler
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2019.09.012
– volume: 50
  start-page: 94
  year: 2013
  ident: 10.1016/j.conengprac.2024.105986_b20
  article-title: Testing of flue gas emissions of a biomass pellet boiler and abatement of particle emissions
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2012.06.045
– volume: 94
  start-page: 672
  year: 2016
  ident: 10.1016/j.conengprac.2024.105986_b21
  article-title: Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method
  publication-title: Energy
  doi: 10.1016/j.energy.2015.11.020
– volume: 55
  start-page: 319
  year: 2013
  ident: 10.1016/j.conengprac.2024.105986_b16
  article-title: A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler
  publication-title: Energy
  doi: 10.1016/j.energy.2013.02.062
– volume: 31
  start-page: 2805
  issue: 6
  year: 2023
  ident: 10.1016/j.conengprac.2024.105986_b2
  article-title: Fault-tolerant soft sensors for dynamic systems
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2023.3287758
– volume: 35
  start-page: 6166
  issue: 5
  year: 2024
  ident: 10.1016/j.conengprac.2024.105986_b3
  article-title: Explainable intelligent fault diagnosis for nonlinear dynamic systems: From unsupervised to supervised learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2022.3201511
– volume: 40
  start-page: 153
  year: 2014
  ident: 10.1016/j.conengprac.2024.105986_b18
  article-title: A review on torrefied biomass pellets as a sustainable alternative to coal in power generation
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2014.07.181
– volume: 2
  start-page: 1122
  year: 2006
  ident: 10.1016/j.conengprac.2024.105986_b1
  article-title: Pattern recognition and machine learning
  publication-title: Springer Google Schola
– volume: 245
  year: 2022
  ident: 10.1016/j.conengprac.2024.105986_b9
  article-title: Climate change and CCS increase the water vulnerability of China’s thermoelectric power fleet
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123339
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.conengprac.2024.105986_b6
  article-title: An integrated method for bearing state change identification and prognostics based on improved relevance vector machine and degradation model
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 63
  start-page: 143
  year: 2015
  ident: 10.1016/j.conengprac.2024.105986_b15
  article-title: Lithium-ion battery remaining useful life estimation with an optimized relevance vector machine algorithm with incremental learning
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.11.031
– volume: 274
  year: 2020
  ident: 10.1016/j.conengprac.2024.105986_b31
  article-title: Real-time dynamic prediction model of NOx emission of coal-fired boilers under variable load conditions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117811
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.conengprac.2024.105986_b30
  article-title: A novel adaptive SMO-based simultaneous diagnosis method for igbt open-circuit faults and current sensor incipient faults of inverters in pmsm drives for electric vehicles
  publication-title: IEEE Transactions on Instrumentation and Measurement
– start-page: 124
  year: 2006
  ident: 10.1016/j.conengprac.2024.105986_b22
  article-title: Multivariate relevance vector machines for tracking
– volume: 135
  year: 2022
  ident: 10.1016/j.conengprac.2024.105986_b5
  article-title: Backstepping-based distributed abnormality localization for linear parabolic distributed parameter systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2021.109930
– volume: 61
  start-page: 773
  year: 2021
  ident: 10.1016/j.conengprac.2024.105986_b8
  article-title: A sample entropy based prognostics method for lithium-ion batteries using relevance vector machine
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2021.03.019
– volume: 25
  start-page: 147
  issue: 1
  year: 2012
  ident: 10.1016/j.conengprac.2024.105986_b33
  article-title: Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2011.08.005
– volume: 64
  start-page: 2409
  issue: 9
  year: 2015
  ident: 10.1016/j.conengprac.2024.105986_b12
  article-title: Prediction of pollutant emissions of biomass flames through digital imaging, contourlet transform, and support vector regression modeling
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2015.2411999
– volume: 29
  start-page: 1302
  issue: 9
  year: 2008
  ident: 10.1016/j.conengprac.2024.105986_b23
  article-title: Pose estimation and tracking using multivariate regression
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2008.02.004
– volume: 210
  start-page: 282
  year: 2017
  ident: 10.1016/j.conengprac.2024.105986_b10
  article-title: Effect of staged combustion on low NOx emission from an industrial-scale fuel oil combustor in South Korea
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.08.065
– volume: 190
  year: 2020
  ident: 10.1016/j.conengprac.2024.105986_b29
  article-title: Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116482
– start-page: 7742
  year: 2022
  ident: 10.1016/j.conengprac.2024.105986_b14
  article-title: A general degradation process of useful life analysis under unreliable signals for accelerated degradation testing
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 69
  start-page: 9514
  issue: 9
  year: 2021
  ident: 10.1016/j.conengprac.2024.105986_b28
  article-title: Multivariate relevance vector regression based degradation modeling and remaining useful life prediction
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2021.3114724
– volume: 192
  year: 2020
  ident: 10.1016/j.conengprac.2024.105986_b32
  article-title: Prediction of the NOx emissions from thermal power plant using long-short term memory neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116597
– volume: 52
  start-page: 13168
  issue: 12
  year: 2021
  ident: 10.1016/j.conengprac.2024.105986_b13
  article-title: Conditional joint distribution-based test selection for fault detection and isolation
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2021.3105453
SSID ssj0016991
Score 2.4521606
Snippet Exact and trusty prediction of pollutant emissions is pivotal for optimal combustion control in biomass cogeneration systems, which possess multiple variables,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105986
SubjectTerms Extended fast relevance vector regression algorithm
Incremental learning method
k-means clustering method
Pollutant emission prediction
Title Incremental fast relevance vector regression model based multi-pollutant emission prediction of biomass cogeneration systems
URI https://dx.doi.org/10.1016/j.conengprac.2024.105986
Volume 149
WOSCitedRecordID wos001255279900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIf2UPqk6Qsdelsc_JJlkVMoKWkpodC0LL0YWZaTDVvvsi9yyJ_oP-6MRn6QBppSejGLvFp5PZ9nxqOZbxh7m2Pz8jJVgTFlEqS1MEFeYjWaUFmV6lBoV8f97ZM8OcknE_V5NPrZ1sJsZ7Jp8stLtfivooYxEDaWzv6FuLsfhQH4DEKHI4gdjrcSPDzxFPPD0kS9Wru2KG6jf7x1IXoYOKPs14Ya4YzRlFWUWxgssPcxthYeYyc496XFEndzWtcSC_Y1clrPzxxltRtfDYjPW94DnwRve8bDriarD-OTqplMN7Npvz_lNOH382ltu8FjS9qxtt7U4uyNi92e6_kPzx_uwxdx2iXP-ZhaW1fTJzG54GSGSXlE075vSTXnMgkyRdRHne4mvtPf7ACFJC5AjA1cFv65fVwcuxqr69Tbzph_wSVxRcypxV7nd9huLIUCRbl7-OFo8rHbmsoUtWFsL9Gnh1HS4M3r3ezzDPyY04fsgX8B4YcEnEdsZJvH7P6AlvIJuxpAiCOEeAchThDiPYS4gxB3EOLXIMRbCPEeQnxecw8hPoQQ9xB6yr6-Pzp9dxz4Lh2BAXuwDtJYW_D5kgx5moSolMg1eEC1icHvSUxUpaI2paM-LMNIK13HSoM-ECbS0oQmecZ2GrhtzxnXtkyjCE6GokpVLJUMjYT3Cy1sUudltcdkex8L4ynssZPKrGhzFS-KXgIFSqAgCeyxqJu5IBqXW8w5aEVVeHeU3MwCUPbH2S_-afZLdq9_WF6xnfVyY1-zu2a7nq6WbzwkfwH9q7y1
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incremental+fast+relevance+vector+regression+model+based+multi-pollutant+emission+prediction+of+biomass+cogeneration+systems&rft.jtitle=Control+engineering+practice&rft.au=Wang%2C+Xiuli&rft.au=Sun%2C+Zhifei&rft.au=He%2C+Defeng&rft.au=Wu%2C+Shaomin&rft.date=2024-08-01&rft.pub=Elsevier+Ltd&rft.issn=0967-0661&rft.eissn=1873-6939&rft.volume=149&rft_id=info:doi/10.1016%2Fj.conengprac.2024.105986&rft.externalDocID=S0967066124001461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon