Energy-efficient operation by cooperative control among trains: A multi-agent reinforcement learning approach

With the ever-increasing operating mileage of urban rail transit systems, a large amount of energy is consumed for train operation, and the energy-saving for train operation has become an attractive topic in the research community in recent years. In order to minimize the net energy consumption (i.e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Control engineering practice Ročník 116; s. 104901
Hlavní autori: Su, Shuai, Wang, Xuekai, Tang, Tao, Wang, Guang, Cao, Yuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.11.2021
Predmet:
ISSN:0967-0661, 1873-6939
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the ever-increasing operating mileage of urban rail transit systems, a large amount of energy is consumed for train operation, and the energy-saving for train operation has become an attractive topic in the research community in recent years. In order to minimize the net energy consumption (i.e., the difference between the traction energy and the reused regenerative energy), an energy-efficient train operation method using the cooperative control approach is proposed in this paper. Firstly, a set of mathematical models for the cooperative control are formulated with considering the transmission mechanism of regenerative energy. Then, a multi-agent reinforcement learning algorithm is designed to obtain the cooperative driving strategy for trains. In this algorithm, the global Q-function is decomposed into several local Q-functions by using value function factorization method. A proposed update method is applied to update the local Q-functions according to the transmission mechanism of regenerative energy. Finally, the case studies built upon a metro line is performed to illustrate the effectiveness of the proposed method. According to the simulation results, the net energy consumption is reduced by more than 11.1% compared to the method in which the driving strategy of each train is independently optimized. •An innovative framework of the energy-efficient operation by cooperative control among trains.•An improved multi-agent reinforcement learning algorithm based on the weighted decomposition of individual reward.•The energy-efficient ratio can reach more than 11.1%.
AbstractList With the ever-increasing operating mileage of urban rail transit systems, a large amount of energy is consumed for train operation, and the energy-saving for train operation has become an attractive topic in the research community in recent years. In order to minimize the net energy consumption (i.e., the difference between the traction energy and the reused regenerative energy), an energy-efficient train operation method using the cooperative control approach is proposed in this paper. Firstly, a set of mathematical models for the cooperative control are formulated with considering the transmission mechanism of regenerative energy. Then, a multi-agent reinforcement learning algorithm is designed to obtain the cooperative driving strategy for trains. In this algorithm, the global Q-function is decomposed into several local Q-functions by using value function factorization method. A proposed update method is applied to update the local Q-functions according to the transmission mechanism of regenerative energy. Finally, the case studies built upon a metro line is performed to illustrate the effectiveness of the proposed method. According to the simulation results, the net energy consumption is reduced by more than 11.1% compared to the method in which the driving strategy of each train is independently optimized. •An innovative framework of the energy-efficient operation by cooperative control among trains.•An improved multi-agent reinforcement learning algorithm based on the weighted decomposition of individual reward.•The energy-efficient ratio can reach more than 11.1%.
ArticleNumber 104901
Author Tang, Tao
Su, Shuai
Wang, Guang
Wang, Xuekai
Cao, Yuan
Author_xml – sequence: 1
  givenname: Shuai
  surname: Su
  fullname: Su, Shuai
  organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Xuekai
  surname: Wang
  fullname: Wang, Xuekai
  organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Tao
  surname: Tang
  fullname: Tang, Tao
  organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
– sequence: 4
  givenname: Guang
  surname: Wang
  fullname: Wang, Guang
  organization: Department of Computer Science, Rutgers University, Piscataway, NJ, USA
– sequence: 5
  givenname: Yuan
  surname: Cao
  fullname: Cao, Yuan
  email: ycao@bjtu.edu.cn
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
BookMark eNqNkN1KxDAQhYOs4K76Dn2BrklT08YLYV3WH1jwRq9DOp3ULG1S0rqwb2_qLgje6NXMHOYcZr4FmTnvkJCE0SWjTNzslhAF1_RBwzKjGYtyLik7I3NWFjwVkssZmVMpipQKwS7IYhh2NFqlZHPSbRyG5pCiMRYsujHxPQY9Wu-S6pCAP417jL0bg28T3XnXJGPQ1g13ySrpPtvRprqZzAGtMz4AdtPUog7OxmXd98Fr-Lgi50a3A16f6iV5f9y8rZ_T7evTy3q1TYGzcky5AaErxuWtLmhJaSGlADCZqHle5VnGDBieaV1zyOIqUlFUmdCY11AZZBW_JPfHXAh-GAIaBXb8fmo6u1WMqgme2qkfeGqCp47wYkD5K6APttPh8B_rw9GK8cG9xaCGCSxgbQPCqGpv_w75ArqUlhA
CitedBy_id crossref_primary_10_1002_acs_3602
crossref_primary_10_1016_j_arcontrol_2025_100993
crossref_primary_10_1002_acs_3604
crossref_primary_10_1109_TVT_2023_3305603
crossref_primary_10_1016_j_cam_2023_115297
crossref_primary_10_1016_j_tre_2023_103212
crossref_primary_10_1016_j_jfranklin_2022_08_045
crossref_primary_10_1016_j_sysconle_2024_105762
crossref_primary_10_1016_j_cie_2025_111244
crossref_primary_10_1109_TITS_2023_3347409
crossref_primary_10_1002_rnc_6951
crossref_primary_10_1049_cth2_12331
crossref_primary_10_1109_TVT_2022_3211979
crossref_primary_10_1002_rnc_6796
crossref_primary_10_1002_rnc_7323
crossref_primary_10_1007_s00034_022_02285_z
crossref_primary_10_3390_act11090247
crossref_primary_10_1109_TITS_2025_3582585
crossref_primary_10_1016_j_conengprac_2023_105480
crossref_primary_10_1002_acs_3699
crossref_primary_10_1002_rnc_7705
crossref_primary_10_1016_j_cam_2023_115107
crossref_primary_10_1002_rnc_6657
crossref_primary_10_1109_TTE_2024_3389960
crossref_primary_10_1016_j_conengprac_2024_105865
crossref_primary_10_1088_1361_6501_ad6784
crossref_primary_10_1007_s00034_024_02730_1
crossref_primary_10_1016_j_conengprac_2023_105768
crossref_primary_10_1111_mice_13138
crossref_primary_10_1016_j_cam_2023_115104
crossref_primary_10_1088_1361_6501_ad3a05
crossref_primary_10_1016_j_engappai_2023_107393
crossref_primary_10_1109_MITS_2024_3449803
crossref_primary_10_1109_TTE_2024_3364232
crossref_primary_10_1002_acs_3669
crossref_primary_10_1109_MITS_2023_3295376
crossref_primary_10_1002_acs_3865
crossref_primary_10_1016_j_conengprac_2023_105452
crossref_primary_10_1002_acs_3904
crossref_primary_10_3390_app112412155
crossref_primary_10_1109_TVT_2024_3371676
crossref_primary_10_1177_03611981221109175
crossref_primary_10_3390_s23010378
crossref_primary_10_1002_oca_3158
crossref_primary_10_1109_TVT_2024_3355230
crossref_primary_10_1007_s10489_025_06542_x
crossref_primary_10_1016_j_trb_2025_103233
crossref_primary_10_1007_s00034_025_03068_y
crossref_primary_10_1016_j_trb_2023_02_015
crossref_primary_10_1016_j_isatra_2024_01_035
crossref_primary_10_1016_j_isatra_2024_11_048
crossref_primary_10_1002_rnc_7344
crossref_primary_10_1016_j_apm_2023_10_038
crossref_primary_10_1002_acs_3712
crossref_primary_10_1016_j_cam_2023_115724
crossref_primary_10_1109_TTE_2023_3288622
crossref_primary_10_1049_itr2_12509
crossref_primary_10_1007_s00034_025_03156_z
crossref_primary_10_1016_j_conengprac_2023_105784
crossref_primary_10_1016_j_seta_2023_103360
crossref_primary_10_3390_math13132119
crossref_primary_10_1002_acs_3550
crossref_primary_10_1016_j_sysconle_2025_106094
crossref_primary_10_1002_acs_3593
crossref_primary_10_1002_acs_3753
crossref_primary_10_1080_21680566_2025_2515487
crossref_primary_10_1002_acs_3871
crossref_primary_10_1002_rnc_6917
crossref_primary_10_1007_s00034_024_02627_z
crossref_primary_10_1109_TIM_2023_3334370
crossref_primary_10_1016_j_arcontrol_2024_100942
crossref_primary_10_1016_j_trc_2024_104893
crossref_primary_10_1016_j_trc_2024_104970
crossref_primary_10_1016_j_aap_2024_107617
crossref_primary_10_1002_rnc_7014
Cites_doi 10.1109/TITS.2019.2912038
10.1016/j.trb.2017.01.002
10.1016/j.trb.2017.05.012
10.1016/j.tre.2016.10.012
10.1016/j.aej.2020.12.010
10.1109/9.867018
10.1109/ChiCC.2014.6896526
10.1109/TITS.2013.2285737
10.1016/0967-0661(94)90198-8
10.1109/TITS.2013.2244885
10.1109/TITS.2019.2897279
10.1177/0954409713515648
10.1049/iet-its.2010.0144
10.1109/TITS.2016.2598425
10.1109/TITS.2017.2682270
10.1007/978-3-642-17569-5
10.1109/TVT.2019.2914936
10.1007/s11071-015-2472-8
10.1016/j.tre.2021.102323
10.1016/j.trb.2015.07.023
10.1023/A:1019235819716
10.1155/2017/6173795
10.1016/j.tra.2003.07.001
10.1109/TSMCC.2007.913919
10.3390/en9020105
10.1049/ip-epa:19970797
10.1016/j.conengprac.2013.09.011
10.1109/TITS.2014.2334061
10.1109/TPWRS.2005.851939
10.1016/j.trb.2016.05.009
10.1016/j.future.2021.02.014
10.1109/TITS.2018.2873145
10.1299/jsme1958.11.857
10.1109/TITS.2019.2939358
10.1109/TITS.2016.2518649
10.1109/ChiCC.2014.6895507
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conengprac.2021.104901
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
ExternalDocumentID 10_1016_j_conengprac_2021_104901
S0967066121001787
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-3fc6ab1395a708007996ccf26d34b4221fcf32aad3c2fc6e067b26ae4dcbfe1b3
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000762073500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0967-0661
IngestDate Tue Nov 18 20:49:28 EST 2025
Sat Nov 29 07:03:30 EST 2025
Fri Feb 23 02:44:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-agent reinforcement learning
Energy saving
Regenerative energy
Cooperative control
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-3fc6ab1395a708007996ccf26d34b4221fcf32aad3c2fc6e067b26ae4dcbfe1b3
ParticipantIDs crossref_citationtrail_10_1016_j_conengprac_2021_104901
crossref_primary_10_1016_j_conengprac_2021_104901
elsevier_sciencedirect_doi_10_1016_j_conengprac_2021_104901
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Control engineering practice
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Yang, Gao (b25) 2016; 83
Su, Tang, Wang (b36) 2016; 9
Tian, Zhao, Hillmansen, Roberts, Dowens, Kerr (b40) 2019; 20
Albrecht, Howlett, Pudney, Vu, Zhou (b2) 2016; 94
Howlett (b15) 2000; 98
Xu, Y., Zhao, X., Wang, L., Liu, X., & Zhang, Q. (2014). Optimal control of automatic train operation based on multi-scale dynamic programming. In
Howlett, Milroy, Pudney (b18) 1995
Dong, Gao, Ning (b12) 2016; 17
Su, Tang, Chen, Liu (b33) 2015; 229
Su, Wang, Cao, Yin (b38) 2020; 21
Sun, Lu, Dong (b39) 2017; 18
Keskin, Karamancioglu (b21) 2017; 2017
Su, Li, Tang, Gao (b32) 2013; 14
Zhu, Su, Tang, Liu, Zhang, Tian (b49) 2021
Ichikawa (b19) 1968; 11
.
Wang, De Schutter, van den Boom, Ning (b41) 2014; 22
Dong, H., Zhang, L., Chen, Y., Ning, B., & Bai, W. (2014). Multi-objective train trajectory design based on dynamic programming. In
Galán, A. R., Peña, M., Fernández, A., & Cucala, P. (2007). Mathematical programming approach to underground timetabling problem for maximizing time synchronization. In
Su, Tang, Xun, Cao, Wang (b37) 2019
Su, Tang, Roberts (b35) 2015; 16
Albrecht (b1) 2004; 769
Kim, Suk-Mun, Han (b23) 2010; 2182
Bai, Cao, Yu, Ho, Roberts, Mao (b3) 2019; 21
Su, Tang, Li, Gao (b34) 2014; 15
Ke, Lin, Yang (b20) 2012; 6
Khmelnitsky (b22) 2000; 45
Yang, Chen, Ning, Tang (b45) 2017; 97
Nasri, Moghadam, Mokhtari (b30) 2010
San, Masirin (b31) 2016
Kok, Vlassis, Littman (b24) 2006; 7
Cao, Wen, Ma (b8) 2021; 60
Cao, Wen, Ma (b7) 2021; 120
Howlett, Milroy, Pudney (b17) 1994; 2
Zhou, Tong, Chen, Tang, Zhou (b48) 2017; 97
Cao, Wang, Liu, Li, Xie (b6) 2019; 68
Cheng, Howlett (b11) 1993; 28
Watkins, Dayan (b43) 1992; 8
Chen, Lin, Liu (b10) 2005; 20
Yang, Li, Yang (b46) 2017
Chang, Sim (b9) 1997; 144
Canca, Zarzo (b5) 2017; 102
Liu, Zhou, Su, Xun, Tang (b29) 2021
(pp. 1395–1406).
Liu, Golovitcher (b26) 2003; 37
Wang, Tang, Su, Yin, Gao, Lv (b42) 2021; 150
Busoniu, Babuska, De Schutter (b4) 2008; 38
Liu, Zhou, Guo, Zhang, Ning, Tang (b28) 2018; 20
Howlett, Cheng, Pudney (b16) 1995
Liu, Guo, Yu (b27) 2017; 18
Yin, Tang, Yang, Gao, Ran (b47) 2016; 91
Li (10.1016/j.conengprac.2021.104901_b25) 2016; 83
Yang (10.1016/j.conengprac.2021.104901_b46) 2017
Zhu (10.1016/j.conengprac.2021.104901_b49) 2021
Busoniu (10.1016/j.conengprac.2021.104901_b4) 2008; 38
Ichikawa (10.1016/j.conengprac.2021.104901_b19) 1968; 11
Howlett (10.1016/j.conengprac.2021.104901_b18) 1995
Su (10.1016/j.conengprac.2021.104901_b38) 2020; 21
Howlett (10.1016/j.conengprac.2021.104901_b15) 2000; 98
Wang (10.1016/j.conengprac.2021.104901_b41) 2014; 22
Cao (10.1016/j.conengprac.2021.104901_b7) 2021; 120
Su (10.1016/j.conengprac.2021.104901_b37) 2019
Dong (10.1016/j.conengprac.2021.104901_b12) 2016; 17
Su (10.1016/j.conengprac.2021.104901_b36) 2016; 9
Wang (10.1016/j.conengprac.2021.104901_b42) 2021; 150
Su (10.1016/j.conengprac.2021.104901_b34) 2014; 15
Kim (10.1016/j.conengprac.2021.104901_b23) 2010; 2182
Yin (10.1016/j.conengprac.2021.104901_b47) 2016; 91
Albrecht (10.1016/j.conengprac.2021.104901_b1) 2004; 769
Canca (10.1016/j.conengprac.2021.104901_b5) 2017; 102
Sun (10.1016/j.conengprac.2021.104901_b39) 2017; 18
Chang (10.1016/j.conengprac.2021.104901_b9) 1997; 144
Liu (10.1016/j.conengprac.2021.104901_b26) 2003; 37
Cao (10.1016/j.conengprac.2021.104901_b8) 2021; 60
10.1016/j.conengprac.2021.104901_b14
Bai (10.1016/j.conengprac.2021.104901_b3) 2019; 21
10.1016/j.conengprac.2021.104901_b13
Yang (10.1016/j.conengprac.2021.104901_b45) 2017; 97
Howlett (10.1016/j.conengprac.2021.104901_b17) 1994; 2
Kok (10.1016/j.conengprac.2021.104901_b24) 2006; 7
Chen (10.1016/j.conengprac.2021.104901_b10) 2005; 20
Liu (10.1016/j.conengprac.2021.104901_b27) 2017; 18
Khmelnitsky (10.1016/j.conengprac.2021.104901_b22) 2000; 45
Su (10.1016/j.conengprac.2021.104901_b32) 2013; 14
Watkins (10.1016/j.conengprac.2021.104901_b43) 1992; 8
Tian (10.1016/j.conengprac.2021.104901_b40) 2019; 20
Su (10.1016/j.conengprac.2021.104901_b33) 2015; 229
Albrecht (10.1016/j.conengprac.2021.104901_b2) 2016; 94
Ke (10.1016/j.conengprac.2021.104901_b20) 2012; 6
Cao (10.1016/j.conengprac.2021.104901_b6) 2019; 68
Cheng (10.1016/j.conengprac.2021.104901_b11) 1993; 28
Howlett (10.1016/j.conengprac.2021.104901_b16) 1995
10.1016/j.conengprac.2021.104901_b44
Keskin (10.1016/j.conengprac.2021.104901_b21) 2017; 2017
San (10.1016/j.conengprac.2021.104901_b31) 2016
Zhou (10.1016/j.conengprac.2021.104901_b48) 2017; 97
Nasri (10.1016/j.conengprac.2021.104901_b30) 2010
Liu (10.1016/j.conengprac.2021.104901_b29) 2021
Su (10.1016/j.conengprac.2021.104901_b35) 2015; 16
Liu (10.1016/j.conengprac.2021.104901_b28) 2018; 20
References_xml – volume: 22
  start-page: 44
  year: 2014
  end-page: 56
  ident: b41
  article-title: Optimal trajectory planning for trains under fixed and moving signaling systems using mixed integer linear programming
  publication-title: Control Engineering Practice
– year: 2021
  ident: b49
  article-title: An eco-driving algorithm for trains through distributing energy: A Q-Learning approach
  publication-title: ISA Transactions
– reference: (pp. 1395–1406).
– year: 2017
  ident: b46
  article-title: Mean-variance model for optimization of the timetable in urban rail transit systems
  publication-title: Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit
– reference: Xu, Y., Zhao, X., Wang, L., Liu, X., & Zhang, Q. (2014). Optimal control of automatic train operation based on multi-scale dynamic programming. In
– volume: 120
  start-page: 76
  year: 2021
  end-page: 90
  ident: b7
  article-title: Tracking and collision avoidance of virtual coupling train control system
  publication-title: Future Generation Computer Systems
– volume: 94
  start-page: 482
  year: 2016
  end-page: 508
  ident: b2
  article-title: The key principles of optimal train control-Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points
  publication-title: Transportation Research, Part B (Methodological)
– volume: 17
  start-page: 2730
  year: 2016
  end-page: 2738
  ident: b12
  article-title: Cooperative control synthesis and stability analysis of multiple trains under moving signaling systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 91
  start-page: 178
  year: 2016
  end-page: 210
  ident: b47
  article-title: Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach
  publication-title: Transportation Research, Part B (Methodological)
– year: 2016
  ident: b31
  article-title: Train dwell time models for rail passenger service
  publication-title: MATEC web of conferences (Vol. 47)
– year: 1995
  ident: b16
  article-title: Optimal Strategies for energy-efficient train control
– year: 2010
  ident: b30
  article-title: Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems
  publication-title: International symposium on power electronics electrical drives automation & motion
– volume: 83
  start-page: 2157
  year: 2016
  end-page: 2169
  ident: b25
  article-title: Adaptive coordinated control of multiple high-speed trains with input saturation
  publication-title: Nonlinear Dynamics
– volume: 21
  start-page: 4252
  year: 2020
  end-page: 4268
  ident: b38
  article-title: An energy-efficient train operation approach by integrating the metro timetabling and eco-driving
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 1995
  ident: b18
  article-title: Energy-efficient train control
– volume: 14
  start-page: 883
  year: 2013
  end-page: 893
  ident: b32
  article-title: A subway train timetable optimization approach based on energy-efficient operation strategy
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 98
  start-page: 65
  year: 2000
  end-page: 87
  ident: b15
  article-title: The optimal control of a train
  publication-title: Annals of Operations Research
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 12
  ident: b21
  article-title: Energy-efficient train operation using nature-inspired algorithms
  publication-title: Journal of Advanced Transportation
– volume: 21
  start-page: 2063
  year: 2019
  end-page: 2077
  ident: b3
  article-title: Cooperative control of metro trains to minimize net energy consumption
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 60
  start-page: 2115
  year: 2021
  end-page: 2125
  ident: b8
  article-title: Tracking and collision avoidance of virtual coupling train control system
  publication-title: Alexandria Engineering Journal
– volume: 6
  start-page: 58
  year: 2012
  end-page: 66
  ident: b20
  article-title: Optimisation of train energy-efficient operation for mass rapid transit systems
  publication-title: IET Intelligent Transport Systems
– volume: 102
  start-page: 142
  year: 2017
  end-page: 161
  ident: b5
  article-title: Design of energy-efficient timetables in two-way railway rapid transit lines
  publication-title: Transportation Research, Part B (Methodological)
– year: 2021
  ident: b29
  article-title: An analytical optimal control approach for virtually coupled high-speed trains with local and string stability
  publication-title: Transportation Research Part C (Emerging Technologies)
– volume: 68
  start-page: 6331
  year: 2019
  end-page: 6342
  ident: b6
  article-title: Bio-inspired speed curve optimization and sliding mode tracking control for subway trains
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 2
  start-page: 193
  year: 1994
  end-page: 200
  ident: b17
  article-title: Energy-efficient train control
  publication-title: Control Engineering Practice
– volume: 38
  start-page: 156
  year: 2008
  end-page: 172
  ident: b4
  article-title: A comprehensive survey of multiagent reinforcement learning
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
– volume: 11
  start-page: 857
  year: 1968
  end-page: 865
  ident: b19
  article-title: Application of optimization theory for boufnded state variable problems to the operation of train
  publication-title: Bulletin of JSME
– volume: 2182
  year: 2010
  ident: b23
  article-title: A mathematical approach for reducing the maximum traction energy: The case of Korean MRT trains
  publication-title: Lecture Notes in Engineering & Computer Science
– volume: 97
  start-page: 22
  year: 2017
  end-page: 37
  ident: b45
  article-title: Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty
  publication-title: Transportation Research Part E: Logistics and Transportation Review
– volume: 20
  start-page: 1366
  year: 2005
  end-page: 1372
  ident: b10
  article-title: Optimization of an MRT train schedule: Reducing maximum traction power by using genetic algorithms
  publication-title: IEEE Transactions on Power Systems
– volume: 769
  start-page: 100
  year: 2004
  end-page: 107
  ident: b1
  article-title: Reducing power peaks and energy consumption in rail transit systems by simultaneous train running time control
  publication-title: Computers in Railways
– volume: 28
  start-page: 165
  year: 1993
  end-page: 169
  ident: b11
  article-title: Application of critical velocities to the minimisation of fuel consumption in the control of trains
  publication-title: Automatica
– reference: Galán, A. R., Peña, M., Fernández, A., & Cucala, P. (2007). Mathematical programming approach to underground timetabling problem for maximizing time synchronization. In
– volume: 150
  start-page: 102323
  year: 2021
  ident: b42
  article-title: An integrated energy-efficient train operation approach based on the space-time-speed network methodology
  publication-title: Transportation Research Part E: Logistics and Transportation Review
– volume: 8
  start-page: 279
  year: 1992
  end-page: 292
  ident: b43
  article-title: Q-learning
  publication-title: Machine Learning
– volume: 18
  start-page: 3114
  year: 2017
  end-page: 3121
  ident: b39
  article-title: Energy-efficient train control by multi-train dynamic cooperation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 7
  start-page: 1789
  year: 2006
  end-page: 1828
  ident: b24
  article-title: Collaborative multiagent reinforcement learning by payoff propagation
  publication-title: Journal of Machine Learning Research
– volume: 18
  start-page: 1134
  year: 2017
  end-page: 1142
  ident: b27
  article-title: Research on the cooperative train control strategy to reduce energy consumption
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 97
  start-page: 157
  year: 2017
  end-page: 181
  ident: b48
  article-title: Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks
  publication-title: Transportation Research, Part B (Methodological)
– volume: 15
  start-page: 673
  year: 2014
  end-page: 684
  ident: b34
  article-title: Optimization of multitrain operations in a subway system
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 45
  start-page: 1257
  year: 2000
  end-page: 1266
  ident: b22
  article-title: On an optimal control problem of train operation
  publication-title: IEEE Transactions on Automatic Control
– reference: Dong, H., Zhang, L., Chen, Y., Ning, B., & Bai, W. (2014). Multi-objective train trajectory design based on dynamic programming. In
– reference: .
– volume: 9
  start-page: 105
  year: 2016
  ident: b36
  article-title: Evaluation of strategies to reducing traction energy consumption of metro systems using an optimal train control simulation model
  publication-title: Energies
– volume: 37
  start-page: 917
  year: 2003
  end-page: 932
  ident: b26
  article-title: Energy-efficient operation of rail vehicles
  publication-title: Transportation Research Part A Policy and Practice
– volume: 144
  start-page: 65
  year: 1997
  end-page: 73
  ident: b9
  article-title: Optimising train movements through coast control using genetic algorithms
  publication-title: Electric Power Applications, IEE Proceedings
– volume: 20
  start-page: 2764
  year: 2019
  end-page: 2773
  ident: b40
  article-title: Smartdrive: Traction energy optimization and applications in rail systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 229
  start-page: 446
  year: 2015
  end-page: 454
  ident: b33
  article-title: Energy-efficient train control in urban rail transit systems
  publication-title: Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit
– volume: 16
  start-page: 622
  year: 2015
  end-page: 631
  ident: b35
  article-title: A cooperative train control model for energy saving
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 1
  year: 2019
  ident: b37
  article-title: Design of running grades for energy-efficient train regulation: A case study for Beijing yizhuang line
  publication-title: IEEE Intelligent Transportation Systems Magazine
– volume: 20
  start-page: 3247
  year: 2018
  end-page: 3257
  ident: b28
  article-title: Timetable optimization for regenerative energy utilization in subway systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– ident: 10.1016/j.conengprac.2021.104901_b14
– volume: 21
  start-page: 2063
  issue: 5
  year: 2019
  ident: 10.1016/j.conengprac.2021.104901_b3
  article-title: Cooperative control of metro trains to minimize net energy consumption
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2019.2912038
– volume: 97
  start-page: 157
  year: 2017
  ident: 10.1016/j.conengprac.2021.104901_b48
  article-title: Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks
  publication-title: Transportation Research, Part B (Methodological)
  doi: 10.1016/j.trb.2017.01.002
– volume: 102
  start-page: 142
  year: 2017
  ident: 10.1016/j.conengprac.2021.104901_b5
  article-title: Design of energy-efficient timetables in two-way railway rapid transit lines
  publication-title: Transportation Research, Part B (Methodological)
  doi: 10.1016/j.trb.2017.05.012
– volume: 97
  start-page: 22
  year: 2017
  ident: 10.1016/j.conengprac.2021.104901_b45
  article-title: Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty
  publication-title: Transportation Research Part E: Logistics and Transportation Review
  doi: 10.1016/j.tre.2016.10.012
– year: 2017
  ident: 10.1016/j.conengprac.2021.104901_b46
  article-title: Mean-variance model for optimization of the timetable in urban rail transit systems
  publication-title: Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit
– volume: 60
  start-page: 2115
  issue: 2
  year: 2021
  ident: 10.1016/j.conengprac.2021.104901_b8
  article-title: Tracking and collision avoidance of virtual coupling train control system
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2020.12.010
– volume: 45
  start-page: 1257
  issue: 7
  year: 2000
  ident: 10.1016/j.conengprac.2021.104901_b22
  article-title: On an optimal control problem of train operation
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.867018
– ident: 10.1016/j.conengprac.2021.104901_b13
  doi: 10.1109/ChiCC.2014.6896526
– volume: 15
  start-page: 673
  issue: 2
  year: 2014
  ident: 10.1016/j.conengprac.2021.104901_b34
  article-title: Optimization of multitrain operations in a subway system
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2013.2285737
– volume: 2
  start-page: 193
  issue: 2
  year: 1994
  ident: 10.1016/j.conengprac.2021.104901_b17
  article-title: Energy-efficient train control
  publication-title: Control Engineering Practice
  doi: 10.1016/0967-0661(94)90198-8
– volume: 14
  start-page: 883
  issue: 2
  year: 2013
  ident: 10.1016/j.conengprac.2021.104901_b32
  article-title: A subway train timetable optimization approach based on energy-efficient operation strategy
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2013.2244885
– volume: 20
  start-page: 2764
  issue: 7
  year: 2019
  ident: 10.1016/j.conengprac.2021.104901_b40
  article-title: Smartdrive: Traction energy optimization and applications in rail systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2019.2897279
– volume: 229
  start-page: 446
  issue: 4
  year: 2015
  ident: 10.1016/j.conengprac.2021.104901_b33
  article-title: Energy-efficient train control in urban rail transit systems
  publication-title: Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit
  doi: 10.1177/0954409713515648
– year: 1995
  ident: 10.1016/j.conengprac.2021.104901_b18
– year: 1995
  ident: 10.1016/j.conengprac.2021.104901_b16
– volume: 769
  start-page: 100
  issue: 769
  year: 2004
  ident: 10.1016/j.conengprac.2021.104901_b1
  article-title: Reducing power peaks and energy consumption in rail transit systems by simultaneous train running time control
  publication-title: Computers in Railways
– volume: 6
  start-page: 58
  issue: 1
  year: 2012
  ident: 10.1016/j.conengprac.2021.104901_b20
  article-title: Optimisation of train energy-efficient operation for mass rapid transit systems
  publication-title: IET Intelligent Transport Systems
  doi: 10.1049/iet-its.2010.0144
– volume: 18
  start-page: 1134
  issue: 5
  year: 2017
  ident: 10.1016/j.conengprac.2021.104901_b27
  article-title: Research on the cooperative train control strategy to reduce energy consumption
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2016.2598425
– volume: 18
  start-page: 3114
  issue: 11
  year: 2017
  ident: 10.1016/j.conengprac.2021.104901_b39
  article-title: Energy-efficient train control by multi-train dynamic cooperation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2017.2682270
– volume: 2182
  issue: 1
  year: 2010
  ident: 10.1016/j.conengprac.2021.104901_b23
  article-title: A mathematical approach for reducing the maximum traction energy: The case of Korean MRT trains
  publication-title: Lecture Notes in Engineering & Computer Science
  doi: 10.1007/978-3-642-17569-5
– volume: 68
  start-page: 6331
  issue: 7
  year: 2019
  ident: 10.1016/j.conengprac.2021.104901_b6
  article-title: Bio-inspired speed curve optimization and sliding mode tracking control for subway trains
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2019.2914936
– volume: 8
  start-page: 279
  issue: 3–4
  year: 1992
  ident: 10.1016/j.conengprac.2021.104901_b43
  article-title: Q-learning
  publication-title: Machine Learning
– volume: 83
  start-page: 2157
  issue: 4
  year: 2016
  ident: 10.1016/j.conengprac.2021.104901_b25
  article-title: Adaptive coordinated control of multiple high-speed trains with input saturation
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-015-2472-8
– volume: 150
  start-page: 102323
  year: 2021
  ident: 10.1016/j.conengprac.2021.104901_b42
  article-title: An integrated energy-efficient train operation approach based on the space-time-speed network methodology
  publication-title: Transportation Research Part E: Logistics and Transportation Review
  doi: 10.1016/j.tre.2021.102323
– year: 2021
  ident: 10.1016/j.conengprac.2021.104901_b49
  article-title: An eco-driving algorithm for trains through distributing energy: A Q-Learning approach
  publication-title: ISA Transactions
– volume: 94
  start-page: 482
  year: 2016
  ident: 10.1016/j.conengprac.2021.104901_b2
  article-title: The key principles of optimal train control-Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points
  publication-title: Transportation Research, Part B (Methodological)
  doi: 10.1016/j.trb.2015.07.023
– volume: 28
  start-page: 165
  issue: 1
  year: 1993
  ident: 10.1016/j.conengprac.2021.104901_b11
  article-title: Application of critical velocities to the minimisation of fuel consumption in the control of trains
  publication-title: Automatica
– volume: 98
  start-page: 65
  issue: 1
  year: 2000
  ident: 10.1016/j.conengprac.2021.104901_b15
  article-title: The optimal control of a train
  publication-title: Annals of Operations Research
  doi: 10.1023/A:1019235819716
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.conengprac.2021.104901_b21
  article-title: Energy-efficient train operation using nature-inspired algorithms
  publication-title: Journal of Advanced Transportation
  doi: 10.1155/2017/6173795
– volume: 37
  start-page: 917
  issue: 10
  year: 2003
  ident: 10.1016/j.conengprac.2021.104901_b26
  article-title: Energy-efficient operation of rail vehicles
  publication-title: Transportation Research Part A Policy and Practice
  doi: 10.1016/j.tra.2003.07.001
– year: 2010
  ident: 10.1016/j.conengprac.2021.104901_b30
  article-title: Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems
– start-page: 1
  year: 2019
  ident: 10.1016/j.conengprac.2021.104901_b37
  article-title: Design of running grades for energy-efficient train regulation: A case study for Beijing yizhuang line
  publication-title: IEEE Intelligent Transportation Systems Magazine
– volume: 38
  start-page: 156
  issue: 2
  year: 2008
  ident: 10.1016/j.conengprac.2021.104901_b4
  article-title: A comprehensive survey of multiagent reinforcement learning
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
  doi: 10.1109/TSMCC.2007.913919
– volume: 9
  start-page: 105
  issue: 2
  year: 2016
  ident: 10.1016/j.conengprac.2021.104901_b36
  article-title: Evaluation of strategies to reducing traction energy consumption of metro systems using an optimal train control simulation model
  publication-title: Energies
  doi: 10.3390/en9020105
– volume: 144
  start-page: 65
  issue: 1
  year: 1997
  ident: 10.1016/j.conengprac.2021.104901_b9
  article-title: Optimising train movements through coast control using genetic algorithms
  publication-title: Electric Power Applications, IEE Proceedings
  doi: 10.1049/ip-epa:19970797
– volume: 22
  start-page: 44
  year: 2014
  ident: 10.1016/j.conengprac.2021.104901_b41
  article-title: Optimal trajectory planning for trains under fixed and moving signaling systems using mixed integer linear programming
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2013.09.011
– volume: 16
  start-page: 622
  issue: 2
  year: 2015
  ident: 10.1016/j.conengprac.2021.104901_b35
  article-title: A cooperative train control model for energy saving
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2014.2334061
– year: 2021
  ident: 10.1016/j.conengprac.2021.104901_b29
  article-title: An analytical optimal control approach for virtually coupled high-speed trains with local and string stability
  publication-title: Transportation Research Part C (Emerging Technologies)
– volume: 20
  start-page: 1366
  issue: 3
  year: 2005
  ident: 10.1016/j.conengprac.2021.104901_b10
  article-title: Optimization of an MRT train schedule: Reducing maximum traction power by using genetic algorithms
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2005.851939
– volume: 91
  start-page: 178
  year: 2016
  ident: 10.1016/j.conengprac.2021.104901_b47
  article-title: Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach
  publication-title: Transportation Research, Part B (Methodological)
  doi: 10.1016/j.trb.2016.05.009
– volume: 120
  start-page: 76
  year: 2021
  ident: 10.1016/j.conengprac.2021.104901_b7
  article-title: Tracking and collision avoidance of virtual coupling train control system
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2021.02.014
– volume: 20
  start-page: 3247
  issue: 9
  year: 2018
  ident: 10.1016/j.conengprac.2021.104901_b28
  article-title: Timetable optimization for regenerative energy utilization in subway systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2018.2873145
– year: 2016
  ident: 10.1016/j.conengprac.2021.104901_b31
  article-title: Train dwell time models for rail passenger service
– volume: 11
  start-page: 857
  issue: 47
  year: 1968
  ident: 10.1016/j.conengprac.2021.104901_b19
  article-title: Application of optimization theory for boufnded state variable problems to the operation of train
  publication-title: Bulletin of JSME
  doi: 10.1299/jsme1958.11.857
– volume: 21
  start-page: 4252
  issue: 10
  year: 2020
  ident: 10.1016/j.conengprac.2021.104901_b38
  article-title: An energy-efficient train operation approach by integrating the metro timetabling and eco-driving
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2019.2939358
– volume: 17
  start-page: 2730
  issue: 10
  year: 2016
  ident: 10.1016/j.conengprac.2021.104901_b12
  article-title: Cooperative control synthesis and stability analysis of multiple trains under moving signaling systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2016.2518649
– volume: 7
  start-page: 1789
  issue: 1
  year: 2006
  ident: 10.1016/j.conengprac.2021.104901_b24
  article-title: Collaborative multiagent reinforcement learning by payoff propagation
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.conengprac.2021.104901_b44
  doi: 10.1109/ChiCC.2014.6895507
SSID ssj0016991
Score 2.5983365
Snippet With the ever-increasing operating mileage of urban rail transit systems, a large amount of energy is consumed for train operation, and the energy-saving for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104901
SubjectTerms Cooperative control
Energy saving
Multi-agent reinforcement learning
Regenerative energy
Title Energy-efficient operation by cooperative control among trains: A multi-agent reinforcement learning approach
URI https://dx.doi.org/10.1016/j.conengprac.2021.104901
Volume 116
WOSCitedRecordID wos000762073500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa2wKEcEAUqlkflQ2_IiCTOC04rtIhWFephK-0tsidOyyus9iX4F_xkxo88WK0ErdRLlFixE2e-jMfjmc-EfOWaYk96wIRIOONJETApeM6KPA_xd5IgYpMo_CO-ukqGw_Rnp_Nc5cLM7-KyTB4f09F_FTWWobB16uxfiLtuFAvwHIWORxQ7Ht8l-L7J5mPKcEOYlf6RcmJGUxMe3OW8CVO3Gw6ZzSImNlPdhBkyodOujsbKkKuC8SNWu0z8rsnI29btuWtQNSSHdRpWs_pkHK5_ZuK6ceZbhTOcqdumdOBKB-Jh8UbEtRtwnb_C91ziXsvxGOmAO0vBXutgr61FPb0c6S1V8NbXcIPyKbEvugvH-iHHTZXXnNoLY10dgVgFt91kTUuZbimzLX0gq34cpqgnV3vf-sPv9cpUlNpdGKteuOgwGzO4_K2WmzwtM2awSTbc_IP2LG4-kY4qt8h6i5Vym9wvIojWCKLyibYQRB2CqEEQtQg6pT3awg99hR9a4YdW-Nkhvy76g_NL5nblYID6f8qCAiIhceIQilhPN2KcMQMUfpQHXHLf9wooAl-IPAAfb1VoDkk_EornIAvlyeAzWSnxO-1qvoCQ45hRhDmEHE64DFWqQAYJBALQ8O-SuPpwGTjKet2Vu-wt8XWJV9ccWdqWd9Q5q2STOfPTmpUZgu_N2nv_8MR98rH5Qw7IynQ8U4dkDebT68n4i0PeC3Clsvw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-efficient+operation+by+cooperative+control+among+trains%3A+A+multi-agent+reinforcement+learning+approach&rft.jtitle=Control+engineering+practice&rft.au=Su%2C+Shuai&rft.au=Wang%2C+Xuekai&rft.au=Tang%2C+Tao&rft.au=Wang%2C+Guang&rft.date=2021-11-01&rft.issn=0967-0661&rft.volume=116&rft.spage=104901&rft_id=info:doi/10.1016%2Fj.conengprac.2021.104901&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2021_104901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon