Energy-efficient operation by cooperative control among trains: A multi-agent reinforcement learning approach
With the ever-increasing operating mileage of urban rail transit systems, a large amount of energy is consumed for train operation, and the energy-saving for train operation has become an attractive topic in the research community in recent years. In order to minimize the net energy consumption (i.e...
Uložené v:
| Vydané v: | Control engineering practice Ročník 116; s. 104901 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.11.2021
|
| Predmet: | |
| ISSN: | 0967-0661, 1873-6939 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | With the ever-increasing operating mileage of urban rail transit systems, a large amount of energy is consumed for train operation, and the energy-saving for train operation has become an attractive topic in the research community in recent years. In order to minimize the net energy consumption (i.e., the difference between the traction energy and the reused regenerative energy), an energy-efficient train operation method using the cooperative control approach is proposed in this paper. Firstly, a set of mathematical models for the cooperative control are formulated with considering the transmission mechanism of regenerative energy. Then, a multi-agent reinforcement learning algorithm is designed to obtain the cooperative driving strategy for trains. In this algorithm, the global Q-function is decomposed into several local Q-functions by using value function factorization method. A proposed update method is applied to update the local Q-functions according to the transmission mechanism of regenerative energy. Finally, the case studies built upon a metro line is performed to illustrate the effectiveness of the proposed method. According to the simulation results, the net energy consumption is reduced by more than 11.1% compared to the method in which the driving strategy of each train is independently optimized.
•An innovative framework of the energy-efficient operation by cooperative control among trains.•An improved multi-agent reinforcement learning algorithm based on the weighted decomposition of individual reward.•The energy-efficient ratio can reach more than 11.1%. |
|---|---|
| AbstractList | With the ever-increasing operating mileage of urban rail transit systems, a large amount of energy is consumed for train operation, and the energy-saving for train operation has become an attractive topic in the research community in recent years. In order to minimize the net energy consumption (i.e., the difference between the traction energy and the reused regenerative energy), an energy-efficient train operation method using the cooperative control approach is proposed in this paper. Firstly, a set of mathematical models for the cooperative control are formulated with considering the transmission mechanism of regenerative energy. Then, a multi-agent reinforcement learning algorithm is designed to obtain the cooperative driving strategy for trains. In this algorithm, the global Q-function is decomposed into several local Q-functions by using value function factorization method. A proposed update method is applied to update the local Q-functions according to the transmission mechanism of regenerative energy. Finally, the case studies built upon a metro line is performed to illustrate the effectiveness of the proposed method. According to the simulation results, the net energy consumption is reduced by more than 11.1% compared to the method in which the driving strategy of each train is independently optimized.
•An innovative framework of the energy-efficient operation by cooperative control among trains.•An improved multi-agent reinforcement learning algorithm based on the weighted decomposition of individual reward.•The energy-efficient ratio can reach more than 11.1%. |
| ArticleNumber | 104901 |
| Author | Tang, Tao Su, Shuai Wang, Guang Wang, Xuekai Cao, Yuan |
| Author_xml | – sequence: 1 givenname: Shuai surname: Su fullname: Su, Shuai organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China – sequence: 2 givenname: Xuekai surname: Wang fullname: Wang, Xuekai organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Tao surname: Tang fullname: Tang, Tao organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China – sequence: 4 givenname: Guang surname: Wang fullname: Wang, Guang organization: Department of Computer Science, Rutgers University, Piscataway, NJ, USA – sequence: 5 givenname: Yuan surname: Cao fullname: Cao, Yuan email: ycao@bjtu.edu.cn organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China |
| BookMark | eNqNkN1KxDAQhYOs4K76Dn2BrklT08YLYV3WH1jwRq9DOp3ULG1S0rqwb2_qLgje6NXMHOYcZr4FmTnvkJCE0SWjTNzslhAF1_RBwzKjGYtyLik7I3NWFjwVkssZmVMpipQKwS7IYhh2NFqlZHPSbRyG5pCiMRYsujHxPQY9Wu-S6pCAP417jL0bg28T3XnXJGPQ1g13ySrpPtvRprqZzAGtMz4AdtPUog7OxmXd98Fr-Lgi50a3A16f6iV5f9y8rZ_T7evTy3q1TYGzcky5AaErxuWtLmhJaSGlADCZqHle5VnGDBieaV1zyOIqUlFUmdCY11AZZBW_JPfHXAh-GAIaBXb8fmo6u1WMqgme2qkfeGqCp47wYkD5K6APttPh8B_rw9GK8cG9xaCGCSxgbQPCqGpv_w75ArqUlhA |
| CitedBy_id | crossref_primary_10_1002_acs_3602 crossref_primary_10_1016_j_arcontrol_2025_100993 crossref_primary_10_1002_acs_3604 crossref_primary_10_1109_TVT_2023_3305603 crossref_primary_10_1016_j_cam_2023_115297 crossref_primary_10_1016_j_tre_2023_103212 crossref_primary_10_1016_j_jfranklin_2022_08_045 crossref_primary_10_1016_j_sysconle_2024_105762 crossref_primary_10_1016_j_cie_2025_111244 crossref_primary_10_1109_TITS_2023_3347409 crossref_primary_10_1002_rnc_6951 crossref_primary_10_1049_cth2_12331 crossref_primary_10_1109_TVT_2022_3211979 crossref_primary_10_1002_rnc_6796 crossref_primary_10_1002_rnc_7323 crossref_primary_10_1007_s00034_022_02285_z crossref_primary_10_3390_act11090247 crossref_primary_10_1109_TITS_2025_3582585 crossref_primary_10_1016_j_conengprac_2023_105480 crossref_primary_10_1002_acs_3699 crossref_primary_10_1002_rnc_7705 crossref_primary_10_1016_j_cam_2023_115107 crossref_primary_10_1002_rnc_6657 crossref_primary_10_1109_TTE_2024_3389960 crossref_primary_10_1016_j_conengprac_2024_105865 crossref_primary_10_1088_1361_6501_ad6784 crossref_primary_10_1007_s00034_024_02730_1 crossref_primary_10_1016_j_conengprac_2023_105768 crossref_primary_10_1111_mice_13138 crossref_primary_10_1016_j_cam_2023_115104 crossref_primary_10_1088_1361_6501_ad3a05 crossref_primary_10_1016_j_engappai_2023_107393 crossref_primary_10_1109_MITS_2024_3449803 crossref_primary_10_1109_TTE_2024_3364232 crossref_primary_10_1002_acs_3669 crossref_primary_10_1109_MITS_2023_3295376 crossref_primary_10_1002_acs_3865 crossref_primary_10_1016_j_conengprac_2023_105452 crossref_primary_10_1002_acs_3904 crossref_primary_10_3390_app112412155 crossref_primary_10_1109_TVT_2024_3371676 crossref_primary_10_1177_03611981221109175 crossref_primary_10_3390_s23010378 crossref_primary_10_1002_oca_3158 crossref_primary_10_1109_TVT_2024_3355230 crossref_primary_10_1007_s10489_025_06542_x crossref_primary_10_1016_j_trb_2025_103233 crossref_primary_10_1007_s00034_025_03068_y crossref_primary_10_1016_j_trb_2023_02_015 crossref_primary_10_1016_j_isatra_2024_01_035 crossref_primary_10_1016_j_isatra_2024_11_048 crossref_primary_10_1002_rnc_7344 crossref_primary_10_1016_j_apm_2023_10_038 crossref_primary_10_1002_acs_3712 crossref_primary_10_1016_j_cam_2023_115724 crossref_primary_10_1109_TTE_2023_3288622 crossref_primary_10_1049_itr2_12509 crossref_primary_10_1007_s00034_025_03156_z crossref_primary_10_1016_j_conengprac_2023_105784 crossref_primary_10_1016_j_seta_2023_103360 crossref_primary_10_3390_math13132119 crossref_primary_10_1002_acs_3550 crossref_primary_10_1016_j_sysconle_2025_106094 crossref_primary_10_1002_acs_3593 crossref_primary_10_1002_acs_3753 crossref_primary_10_1080_21680566_2025_2515487 crossref_primary_10_1002_acs_3871 crossref_primary_10_1002_rnc_6917 crossref_primary_10_1007_s00034_024_02627_z crossref_primary_10_1109_TIM_2023_3334370 crossref_primary_10_1016_j_arcontrol_2024_100942 crossref_primary_10_1016_j_trc_2024_104893 crossref_primary_10_1016_j_trc_2024_104970 crossref_primary_10_1016_j_aap_2024_107617 crossref_primary_10_1002_rnc_7014 |
| Cites_doi | 10.1109/TITS.2019.2912038 10.1016/j.trb.2017.01.002 10.1016/j.trb.2017.05.012 10.1016/j.tre.2016.10.012 10.1016/j.aej.2020.12.010 10.1109/9.867018 10.1109/ChiCC.2014.6896526 10.1109/TITS.2013.2285737 10.1016/0967-0661(94)90198-8 10.1109/TITS.2013.2244885 10.1109/TITS.2019.2897279 10.1177/0954409713515648 10.1049/iet-its.2010.0144 10.1109/TITS.2016.2598425 10.1109/TITS.2017.2682270 10.1007/978-3-642-17569-5 10.1109/TVT.2019.2914936 10.1007/s11071-015-2472-8 10.1016/j.tre.2021.102323 10.1016/j.trb.2015.07.023 10.1023/A:1019235819716 10.1155/2017/6173795 10.1016/j.tra.2003.07.001 10.1109/TSMCC.2007.913919 10.3390/en9020105 10.1049/ip-epa:19970797 10.1016/j.conengprac.2013.09.011 10.1109/TITS.2014.2334061 10.1109/TPWRS.2005.851939 10.1016/j.trb.2016.05.009 10.1016/j.future.2021.02.014 10.1109/TITS.2018.2873145 10.1299/jsme1958.11.857 10.1109/TITS.2019.2939358 10.1109/TITS.2016.2518649 10.1109/ChiCC.2014.6895507 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.conengprac.2021.104901 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-6939 |
| ExternalDocumentID | 10_1016_j_conengprac_2021_104901 S0967066121001787 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c318t-3fc6ab1395a708007996ccf26d34b4221fcf32aad3c2fc6e067b26ae4dcbfe1b3 |
| ISICitedReferencesCount | 95 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000762073500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0967-0661 |
| IngestDate | Tue Nov 18 20:49:28 EST 2025 Sat Nov 29 07:03:30 EST 2025 Fri Feb 23 02:44:29 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-agent reinforcement learning Energy saving Regenerative energy Cooperative control |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c318t-3fc6ab1395a708007996ccf26d34b4221fcf32aad3c2fc6e067b26ae4dcbfe1b3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_conengprac_2021_104901 crossref_primary_10_1016_j_conengprac_2021_104901 elsevier_sciencedirect_doi_10_1016_j_conengprac_2021_104901 |
| PublicationCentury | 2000 |
| PublicationDate | November 2021 2021-11-00 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Control engineering practice |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Yang, Gao (b25) 2016; 83 Su, Tang, Wang (b36) 2016; 9 Tian, Zhao, Hillmansen, Roberts, Dowens, Kerr (b40) 2019; 20 Albrecht, Howlett, Pudney, Vu, Zhou (b2) 2016; 94 Howlett (b15) 2000; 98 Xu, Y., Zhao, X., Wang, L., Liu, X., & Zhang, Q. (2014). Optimal control of automatic train operation based on multi-scale dynamic programming. In Howlett, Milroy, Pudney (b18) 1995 Dong, Gao, Ning (b12) 2016; 17 Su, Tang, Chen, Liu (b33) 2015; 229 Su, Wang, Cao, Yin (b38) 2020; 21 Sun, Lu, Dong (b39) 2017; 18 Keskin, Karamancioglu (b21) 2017; 2017 Su, Li, Tang, Gao (b32) 2013; 14 Zhu, Su, Tang, Liu, Zhang, Tian (b49) 2021 Ichikawa (b19) 1968; 11 . Wang, De Schutter, van den Boom, Ning (b41) 2014; 22 Dong, H., Zhang, L., Chen, Y., Ning, B., & Bai, W. (2014). Multi-objective train trajectory design based on dynamic programming. In Galán, A. R., Peña, M., Fernández, A., & Cucala, P. (2007). Mathematical programming approach to underground timetabling problem for maximizing time synchronization. In Su, Tang, Xun, Cao, Wang (b37) 2019 Su, Tang, Roberts (b35) 2015; 16 Albrecht (b1) 2004; 769 Kim, Suk-Mun, Han (b23) 2010; 2182 Bai, Cao, Yu, Ho, Roberts, Mao (b3) 2019; 21 Su, Tang, Li, Gao (b34) 2014; 15 Ke, Lin, Yang (b20) 2012; 6 Khmelnitsky (b22) 2000; 45 Yang, Chen, Ning, Tang (b45) 2017; 97 Nasri, Moghadam, Mokhtari (b30) 2010 San, Masirin (b31) 2016 Kok, Vlassis, Littman (b24) 2006; 7 Cao, Wen, Ma (b8) 2021; 60 Cao, Wen, Ma (b7) 2021; 120 Howlett, Milroy, Pudney (b17) 1994; 2 Zhou, Tong, Chen, Tang, Zhou (b48) 2017; 97 Cao, Wang, Liu, Li, Xie (b6) 2019; 68 Cheng, Howlett (b11) 1993; 28 Watkins, Dayan (b43) 1992; 8 Chen, Lin, Liu (b10) 2005; 20 Yang, Li, Yang (b46) 2017 Chang, Sim (b9) 1997; 144 Canca, Zarzo (b5) 2017; 102 Liu, Zhou, Su, Xun, Tang (b29) 2021 (pp. 1395–1406). Liu, Golovitcher (b26) 2003; 37 Wang, Tang, Su, Yin, Gao, Lv (b42) 2021; 150 Busoniu, Babuska, De Schutter (b4) 2008; 38 Liu, Zhou, Guo, Zhang, Ning, Tang (b28) 2018; 20 Howlett, Cheng, Pudney (b16) 1995 Liu, Guo, Yu (b27) 2017; 18 Yin, Tang, Yang, Gao, Ran (b47) 2016; 91 Li (10.1016/j.conengprac.2021.104901_b25) 2016; 83 Yang (10.1016/j.conengprac.2021.104901_b46) 2017 Zhu (10.1016/j.conengprac.2021.104901_b49) 2021 Busoniu (10.1016/j.conengprac.2021.104901_b4) 2008; 38 Ichikawa (10.1016/j.conengprac.2021.104901_b19) 1968; 11 Howlett (10.1016/j.conengprac.2021.104901_b18) 1995 Su (10.1016/j.conengprac.2021.104901_b38) 2020; 21 Howlett (10.1016/j.conengprac.2021.104901_b15) 2000; 98 Wang (10.1016/j.conengprac.2021.104901_b41) 2014; 22 Cao (10.1016/j.conengprac.2021.104901_b7) 2021; 120 Su (10.1016/j.conengprac.2021.104901_b37) 2019 Dong (10.1016/j.conengprac.2021.104901_b12) 2016; 17 Su (10.1016/j.conengprac.2021.104901_b36) 2016; 9 Wang (10.1016/j.conengprac.2021.104901_b42) 2021; 150 Su (10.1016/j.conengprac.2021.104901_b34) 2014; 15 Kim (10.1016/j.conengprac.2021.104901_b23) 2010; 2182 Yin (10.1016/j.conengprac.2021.104901_b47) 2016; 91 Albrecht (10.1016/j.conengprac.2021.104901_b1) 2004; 769 Canca (10.1016/j.conengprac.2021.104901_b5) 2017; 102 Sun (10.1016/j.conengprac.2021.104901_b39) 2017; 18 Chang (10.1016/j.conengprac.2021.104901_b9) 1997; 144 Liu (10.1016/j.conengprac.2021.104901_b26) 2003; 37 Cao (10.1016/j.conengprac.2021.104901_b8) 2021; 60 10.1016/j.conengprac.2021.104901_b14 Bai (10.1016/j.conengprac.2021.104901_b3) 2019; 21 10.1016/j.conengprac.2021.104901_b13 Yang (10.1016/j.conengprac.2021.104901_b45) 2017; 97 Howlett (10.1016/j.conengprac.2021.104901_b17) 1994; 2 Kok (10.1016/j.conengprac.2021.104901_b24) 2006; 7 Chen (10.1016/j.conengprac.2021.104901_b10) 2005; 20 Liu (10.1016/j.conengprac.2021.104901_b27) 2017; 18 Khmelnitsky (10.1016/j.conengprac.2021.104901_b22) 2000; 45 Su (10.1016/j.conengprac.2021.104901_b32) 2013; 14 Watkins (10.1016/j.conengprac.2021.104901_b43) 1992; 8 Tian (10.1016/j.conengprac.2021.104901_b40) 2019; 20 Su (10.1016/j.conengprac.2021.104901_b33) 2015; 229 Albrecht (10.1016/j.conengprac.2021.104901_b2) 2016; 94 Ke (10.1016/j.conengprac.2021.104901_b20) 2012; 6 Cao (10.1016/j.conengprac.2021.104901_b6) 2019; 68 Cheng (10.1016/j.conengprac.2021.104901_b11) 1993; 28 Howlett (10.1016/j.conengprac.2021.104901_b16) 1995 10.1016/j.conengprac.2021.104901_b44 Keskin (10.1016/j.conengprac.2021.104901_b21) 2017; 2017 San (10.1016/j.conengprac.2021.104901_b31) 2016 Zhou (10.1016/j.conengprac.2021.104901_b48) 2017; 97 Nasri (10.1016/j.conengprac.2021.104901_b30) 2010 Liu (10.1016/j.conengprac.2021.104901_b29) 2021 Su (10.1016/j.conengprac.2021.104901_b35) 2015; 16 Liu (10.1016/j.conengprac.2021.104901_b28) 2018; 20 |
| References_xml | – volume: 22 start-page: 44 year: 2014 end-page: 56 ident: b41 article-title: Optimal trajectory planning for trains under fixed and moving signaling systems using mixed integer linear programming publication-title: Control Engineering Practice – year: 2021 ident: b49 article-title: An eco-driving algorithm for trains through distributing energy: A Q-Learning approach publication-title: ISA Transactions – reference: (pp. 1395–1406). – year: 2017 ident: b46 article-title: Mean-variance model for optimization of the timetable in urban rail transit systems publication-title: Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit – reference: Xu, Y., Zhao, X., Wang, L., Liu, X., & Zhang, Q. (2014). Optimal control of automatic train operation based on multi-scale dynamic programming. In – volume: 120 start-page: 76 year: 2021 end-page: 90 ident: b7 article-title: Tracking and collision avoidance of virtual coupling train control system publication-title: Future Generation Computer Systems – volume: 94 start-page: 482 year: 2016 end-page: 508 ident: b2 article-title: The key principles of optimal train control-Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points publication-title: Transportation Research, Part B (Methodological) – volume: 17 start-page: 2730 year: 2016 end-page: 2738 ident: b12 article-title: Cooperative control synthesis and stability analysis of multiple trains under moving signaling systems publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 91 start-page: 178 year: 2016 end-page: 210 ident: b47 article-title: Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach publication-title: Transportation Research, Part B (Methodological) – year: 2016 ident: b31 article-title: Train dwell time models for rail passenger service publication-title: MATEC web of conferences (Vol. 47) – year: 1995 ident: b16 article-title: Optimal Strategies for energy-efficient train control – year: 2010 ident: b30 article-title: Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems publication-title: International symposium on power electronics electrical drives automation & motion – volume: 83 start-page: 2157 year: 2016 end-page: 2169 ident: b25 article-title: Adaptive coordinated control of multiple high-speed trains with input saturation publication-title: Nonlinear Dynamics – volume: 21 start-page: 4252 year: 2020 end-page: 4268 ident: b38 article-title: An energy-efficient train operation approach by integrating the metro timetabling and eco-driving publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 1995 ident: b18 article-title: Energy-efficient train control – volume: 14 start-page: 883 year: 2013 end-page: 893 ident: b32 article-title: A subway train timetable optimization approach based on energy-efficient operation strategy publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 98 start-page: 65 year: 2000 end-page: 87 ident: b15 article-title: The optimal control of a train publication-title: Annals of Operations Research – volume: 2017 start-page: 1 year: 2017 end-page: 12 ident: b21 article-title: Energy-efficient train operation using nature-inspired algorithms publication-title: Journal of Advanced Transportation – volume: 21 start-page: 2063 year: 2019 end-page: 2077 ident: b3 article-title: Cooperative control of metro trains to minimize net energy consumption publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 60 start-page: 2115 year: 2021 end-page: 2125 ident: b8 article-title: Tracking and collision avoidance of virtual coupling train control system publication-title: Alexandria Engineering Journal – volume: 6 start-page: 58 year: 2012 end-page: 66 ident: b20 article-title: Optimisation of train energy-efficient operation for mass rapid transit systems publication-title: IET Intelligent Transport Systems – volume: 102 start-page: 142 year: 2017 end-page: 161 ident: b5 article-title: Design of energy-efficient timetables in two-way railway rapid transit lines publication-title: Transportation Research, Part B (Methodological) – year: 2021 ident: b29 article-title: An analytical optimal control approach for virtually coupled high-speed trains with local and string stability publication-title: Transportation Research Part C (Emerging Technologies) – volume: 68 start-page: 6331 year: 2019 end-page: 6342 ident: b6 article-title: Bio-inspired speed curve optimization and sliding mode tracking control for subway trains publication-title: IEEE Transactions on Vehicular Technology – volume: 2 start-page: 193 year: 1994 end-page: 200 ident: b17 article-title: Energy-efficient train control publication-title: Control Engineering Practice – volume: 38 start-page: 156 year: 2008 end-page: 172 ident: b4 article-title: A comprehensive survey of multiagent reinforcement learning publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) – volume: 11 start-page: 857 year: 1968 end-page: 865 ident: b19 article-title: Application of optimization theory for boufnded state variable problems to the operation of train publication-title: Bulletin of JSME – volume: 2182 year: 2010 ident: b23 article-title: A mathematical approach for reducing the maximum traction energy: The case of Korean MRT trains publication-title: Lecture Notes in Engineering & Computer Science – volume: 97 start-page: 22 year: 2017 end-page: 37 ident: b45 article-title: Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty publication-title: Transportation Research Part E: Logistics and Transportation Review – volume: 20 start-page: 1366 year: 2005 end-page: 1372 ident: b10 article-title: Optimization of an MRT train schedule: Reducing maximum traction power by using genetic algorithms publication-title: IEEE Transactions on Power Systems – volume: 769 start-page: 100 year: 2004 end-page: 107 ident: b1 article-title: Reducing power peaks and energy consumption in rail transit systems by simultaneous train running time control publication-title: Computers in Railways – volume: 28 start-page: 165 year: 1993 end-page: 169 ident: b11 article-title: Application of critical velocities to the minimisation of fuel consumption in the control of trains publication-title: Automatica – reference: Galán, A. R., Peña, M., Fernández, A., & Cucala, P. (2007). Mathematical programming approach to underground timetabling problem for maximizing time synchronization. In – volume: 150 start-page: 102323 year: 2021 ident: b42 article-title: An integrated energy-efficient train operation approach based on the space-time-speed network methodology publication-title: Transportation Research Part E: Logistics and Transportation Review – volume: 8 start-page: 279 year: 1992 end-page: 292 ident: b43 article-title: Q-learning publication-title: Machine Learning – volume: 18 start-page: 3114 year: 2017 end-page: 3121 ident: b39 article-title: Energy-efficient train control by multi-train dynamic cooperation publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 7 start-page: 1789 year: 2006 end-page: 1828 ident: b24 article-title: Collaborative multiagent reinforcement learning by payoff propagation publication-title: Journal of Machine Learning Research – volume: 18 start-page: 1134 year: 2017 end-page: 1142 ident: b27 article-title: Research on the cooperative train control strategy to reduce energy consumption publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 97 start-page: 157 year: 2017 end-page: 181 ident: b48 article-title: Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks publication-title: Transportation Research, Part B (Methodological) – volume: 15 start-page: 673 year: 2014 end-page: 684 ident: b34 article-title: Optimization of multitrain operations in a subway system publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 45 start-page: 1257 year: 2000 end-page: 1266 ident: b22 article-title: On an optimal control problem of train operation publication-title: IEEE Transactions on Automatic Control – reference: Dong, H., Zhang, L., Chen, Y., Ning, B., & Bai, W. (2014). Multi-objective train trajectory design based on dynamic programming. In – reference: . – volume: 9 start-page: 105 year: 2016 ident: b36 article-title: Evaluation of strategies to reducing traction energy consumption of metro systems using an optimal train control simulation model publication-title: Energies – volume: 37 start-page: 917 year: 2003 end-page: 932 ident: b26 article-title: Energy-efficient operation of rail vehicles publication-title: Transportation Research Part A Policy and Practice – volume: 144 start-page: 65 year: 1997 end-page: 73 ident: b9 article-title: Optimising train movements through coast control using genetic algorithms publication-title: Electric Power Applications, IEE Proceedings – volume: 20 start-page: 2764 year: 2019 end-page: 2773 ident: b40 article-title: Smartdrive: Traction energy optimization and applications in rail systems publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 229 start-page: 446 year: 2015 end-page: 454 ident: b33 article-title: Energy-efficient train control in urban rail transit systems publication-title: Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit – volume: 16 start-page: 622 year: 2015 end-page: 631 ident: b35 article-title: A cooperative train control model for energy saving publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 1 year: 2019 ident: b37 article-title: Design of running grades for energy-efficient train regulation: A case study for Beijing yizhuang line publication-title: IEEE Intelligent Transportation Systems Magazine – volume: 20 start-page: 3247 year: 2018 end-page: 3257 ident: b28 article-title: Timetable optimization for regenerative energy utilization in subway systems publication-title: IEEE Transactions on Intelligent Transportation Systems – ident: 10.1016/j.conengprac.2021.104901_b14 – volume: 21 start-page: 2063 issue: 5 year: 2019 ident: 10.1016/j.conengprac.2021.104901_b3 article-title: Cooperative control of metro trains to minimize net energy consumption publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2019.2912038 – volume: 97 start-page: 157 year: 2017 ident: 10.1016/j.conengprac.2021.104901_b48 article-title: Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks publication-title: Transportation Research, Part B (Methodological) doi: 10.1016/j.trb.2017.01.002 – volume: 102 start-page: 142 year: 2017 ident: 10.1016/j.conengprac.2021.104901_b5 article-title: Design of energy-efficient timetables in two-way railway rapid transit lines publication-title: Transportation Research, Part B (Methodological) doi: 10.1016/j.trb.2017.05.012 – volume: 97 start-page: 22 year: 2017 ident: 10.1016/j.conengprac.2021.104901_b45 article-title: Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty publication-title: Transportation Research Part E: Logistics and Transportation Review doi: 10.1016/j.tre.2016.10.012 – year: 2017 ident: 10.1016/j.conengprac.2021.104901_b46 article-title: Mean-variance model for optimization of the timetable in urban rail transit systems publication-title: Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit – volume: 60 start-page: 2115 issue: 2 year: 2021 ident: 10.1016/j.conengprac.2021.104901_b8 article-title: Tracking and collision avoidance of virtual coupling train control system publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2020.12.010 – volume: 45 start-page: 1257 issue: 7 year: 2000 ident: 10.1016/j.conengprac.2021.104901_b22 article-title: On an optimal control problem of train operation publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.867018 – ident: 10.1016/j.conengprac.2021.104901_b13 doi: 10.1109/ChiCC.2014.6896526 – volume: 15 start-page: 673 issue: 2 year: 2014 ident: 10.1016/j.conengprac.2021.104901_b34 article-title: Optimization of multitrain operations in a subway system publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2013.2285737 – volume: 2 start-page: 193 issue: 2 year: 1994 ident: 10.1016/j.conengprac.2021.104901_b17 article-title: Energy-efficient train control publication-title: Control Engineering Practice doi: 10.1016/0967-0661(94)90198-8 – volume: 14 start-page: 883 issue: 2 year: 2013 ident: 10.1016/j.conengprac.2021.104901_b32 article-title: A subway train timetable optimization approach based on energy-efficient operation strategy publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2013.2244885 – volume: 20 start-page: 2764 issue: 7 year: 2019 ident: 10.1016/j.conengprac.2021.104901_b40 article-title: Smartdrive: Traction energy optimization and applications in rail systems publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2019.2897279 – volume: 229 start-page: 446 issue: 4 year: 2015 ident: 10.1016/j.conengprac.2021.104901_b33 article-title: Energy-efficient train control in urban rail transit systems publication-title: Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit doi: 10.1177/0954409713515648 – year: 1995 ident: 10.1016/j.conengprac.2021.104901_b18 – year: 1995 ident: 10.1016/j.conengprac.2021.104901_b16 – volume: 769 start-page: 100 issue: 769 year: 2004 ident: 10.1016/j.conengprac.2021.104901_b1 article-title: Reducing power peaks and energy consumption in rail transit systems by simultaneous train running time control publication-title: Computers in Railways – volume: 6 start-page: 58 issue: 1 year: 2012 ident: 10.1016/j.conengprac.2021.104901_b20 article-title: Optimisation of train energy-efficient operation for mass rapid transit systems publication-title: IET Intelligent Transport Systems doi: 10.1049/iet-its.2010.0144 – volume: 18 start-page: 1134 issue: 5 year: 2017 ident: 10.1016/j.conengprac.2021.104901_b27 article-title: Research on the cooperative train control strategy to reduce energy consumption publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2016.2598425 – volume: 18 start-page: 3114 issue: 11 year: 2017 ident: 10.1016/j.conengprac.2021.104901_b39 article-title: Energy-efficient train control by multi-train dynamic cooperation publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2017.2682270 – volume: 2182 issue: 1 year: 2010 ident: 10.1016/j.conengprac.2021.104901_b23 article-title: A mathematical approach for reducing the maximum traction energy: The case of Korean MRT trains publication-title: Lecture Notes in Engineering & Computer Science doi: 10.1007/978-3-642-17569-5 – volume: 68 start-page: 6331 issue: 7 year: 2019 ident: 10.1016/j.conengprac.2021.104901_b6 article-title: Bio-inspired speed curve optimization and sliding mode tracking control for subway trains publication-title: IEEE Transactions on Vehicular Technology doi: 10.1109/TVT.2019.2914936 – volume: 8 start-page: 279 issue: 3–4 year: 1992 ident: 10.1016/j.conengprac.2021.104901_b43 article-title: Q-learning publication-title: Machine Learning – volume: 83 start-page: 2157 issue: 4 year: 2016 ident: 10.1016/j.conengprac.2021.104901_b25 article-title: Adaptive coordinated control of multiple high-speed trains with input saturation publication-title: Nonlinear Dynamics doi: 10.1007/s11071-015-2472-8 – volume: 150 start-page: 102323 year: 2021 ident: 10.1016/j.conengprac.2021.104901_b42 article-title: An integrated energy-efficient train operation approach based on the space-time-speed network methodology publication-title: Transportation Research Part E: Logistics and Transportation Review doi: 10.1016/j.tre.2021.102323 – year: 2021 ident: 10.1016/j.conengprac.2021.104901_b49 article-title: An eco-driving algorithm for trains through distributing energy: A Q-Learning approach publication-title: ISA Transactions – volume: 94 start-page: 482 year: 2016 ident: 10.1016/j.conengprac.2021.104901_b2 article-title: The key principles of optimal train control-Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points publication-title: Transportation Research, Part B (Methodological) doi: 10.1016/j.trb.2015.07.023 – volume: 28 start-page: 165 issue: 1 year: 1993 ident: 10.1016/j.conengprac.2021.104901_b11 article-title: Application of critical velocities to the minimisation of fuel consumption in the control of trains publication-title: Automatica – volume: 98 start-page: 65 issue: 1 year: 2000 ident: 10.1016/j.conengprac.2021.104901_b15 article-title: The optimal control of a train publication-title: Annals of Operations Research doi: 10.1023/A:1019235819716 – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.conengprac.2021.104901_b21 article-title: Energy-efficient train operation using nature-inspired algorithms publication-title: Journal of Advanced Transportation doi: 10.1155/2017/6173795 – volume: 37 start-page: 917 issue: 10 year: 2003 ident: 10.1016/j.conengprac.2021.104901_b26 article-title: Energy-efficient operation of rail vehicles publication-title: Transportation Research Part A Policy and Practice doi: 10.1016/j.tra.2003.07.001 – year: 2010 ident: 10.1016/j.conengprac.2021.104901_b30 article-title: Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems – start-page: 1 year: 2019 ident: 10.1016/j.conengprac.2021.104901_b37 article-title: Design of running grades for energy-efficient train regulation: A case study for Beijing yizhuang line publication-title: IEEE Intelligent Transportation Systems Magazine – volume: 38 start-page: 156 issue: 2 year: 2008 ident: 10.1016/j.conengprac.2021.104901_b4 article-title: A comprehensive survey of multiagent reinforcement learning publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) doi: 10.1109/TSMCC.2007.913919 – volume: 9 start-page: 105 issue: 2 year: 2016 ident: 10.1016/j.conengprac.2021.104901_b36 article-title: Evaluation of strategies to reducing traction energy consumption of metro systems using an optimal train control simulation model publication-title: Energies doi: 10.3390/en9020105 – volume: 144 start-page: 65 issue: 1 year: 1997 ident: 10.1016/j.conengprac.2021.104901_b9 article-title: Optimising train movements through coast control using genetic algorithms publication-title: Electric Power Applications, IEE Proceedings doi: 10.1049/ip-epa:19970797 – volume: 22 start-page: 44 year: 2014 ident: 10.1016/j.conengprac.2021.104901_b41 article-title: Optimal trajectory planning for trains under fixed and moving signaling systems using mixed integer linear programming publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2013.09.011 – volume: 16 start-page: 622 issue: 2 year: 2015 ident: 10.1016/j.conengprac.2021.104901_b35 article-title: A cooperative train control model for energy saving publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2014.2334061 – year: 2021 ident: 10.1016/j.conengprac.2021.104901_b29 article-title: An analytical optimal control approach for virtually coupled high-speed trains with local and string stability publication-title: Transportation Research Part C (Emerging Technologies) – volume: 20 start-page: 1366 issue: 3 year: 2005 ident: 10.1016/j.conengprac.2021.104901_b10 article-title: Optimization of an MRT train schedule: Reducing maximum traction power by using genetic algorithms publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2005.851939 – volume: 91 start-page: 178 year: 2016 ident: 10.1016/j.conengprac.2021.104901_b47 article-title: Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach publication-title: Transportation Research, Part B (Methodological) doi: 10.1016/j.trb.2016.05.009 – volume: 120 start-page: 76 year: 2021 ident: 10.1016/j.conengprac.2021.104901_b7 article-title: Tracking and collision avoidance of virtual coupling train control system publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2021.02.014 – volume: 20 start-page: 3247 issue: 9 year: 2018 ident: 10.1016/j.conengprac.2021.104901_b28 article-title: Timetable optimization for regenerative energy utilization in subway systems publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2018.2873145 – year: 2016 ident: 10.1016/j.conengprac.2021.104901_b31 article-title: Train dwell time models for rail passenger service – volume: 11 start-page: 857 issue: 47 year: 1968 ident: 10.1016/j.conengprac.2021.104901_b19 article-title: Application of optimization theory for boufnded state variable problems to the operation of train publication-title: Bulletin of JSME doi: 10.1299/jsme1958.11.857 – volume: 21 start-page: 4252 issue: 10 year: 2020 ident: 10.1016/j.conengprac.2021.104901_b38 article-title: An energy-efficient train operation approach by integrating the metro timetabling and eco-driving publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2019.2939358 – volume: 17 start-page: 2730 issue: 10 year: 2016 ident: 10.1016/j.conengprac.2021.104901_b12 article-title: Cooperative control synthesis and stability analysis of multiple trains under moving signaling systems publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2016.2518649 – volume: 7 start-page: 1789 issue: 1 year: 2006 ident: 10.1016/j.conengprac.2021.104901_b24 article-title: Collaborative multiagent reinforcement learning by payoff propagation publication-title: Journal of Machine Learning Research – ident: 10.1016/j.conengprac.2021.104901_b44 doi: 10.1109/ChiCC.2014.6895507 |
| SSID | ssj0016991 |
| Score | 2.5983365 |
| Snippet | With the ever-increasing operating mileage of urban rail transit systems, a large amount of energy is consumed for train operation, and the energy-saving for... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104901 |
| SubjectTerms | Cooperative control Energy saving Multi-agent reinforcement learning Regenerative energy |
| Title | Energy-efficient operation by cooperative control among trains: A multi-agent reinforcement learning approach |
| URI | https://dx.doi.org/10.1016/j.conengprac.2021.104901 |
| Volume | 116 |
| WOSCitedRecordID | wos000762073500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa2wKEcEAUqlkflQ2_IiCTOC04rtIhWFephK-0tsidOyyus9iX4F_xkxo88WK0ErdRLlFixE2e-jMfjmc-EfOWaYk96wIRIOONJETApeM6KPA_xd5IgYpMo_CO-ukqGw_Rnp_Nc5cLM7-KyTB4f09F_FTWWobB16uxfiLtuFAvwHIWORxQ7Ht8l-L7J5mPKcEOYlf6RcmJGUxMe3OW8CVO3Gw6ZzSImNlPdhBkyodOujsbKkKuC8SNWu0z8rsnI29btuWtQNSSHdRpWs_pkHK5_ZuK6ceZbhTOcqdumdOBKB-Jh8UbEtRtwnb_C91ziXsvxGOmAO0vBXutgr61FPb0c6S1V8NbXcIPyKbEvugvH-iHHTZXXnNoLY10dgVgFt91kTUuZbimzLX0gq34cpqgnV3vf-sPv9cpUlNpdGKteuOgwGzO4_K2WmzwtM2awSTbc_IP2LG4-kY4qt8h6i5Vym9wvIojWCKLyibYQRB2CqEEQtQg6pT3awg99hR9a4YdW-Nkhvy76g_NL5nblYID6f8qCAiIhceIQilhPN2KcMQMUfpQHXHLf9wooAl-IPAAfb1VoDkk_EornIAvlyeAzWSnxO-1qvoCQ45hRhDmEHE64DFWqQAYJBALQ8O-SuPpwGTjKet2Vu-wt8XWJV9ccWdqWd9Q5q2STOfPTmpUZgu_N2nv_8MR98rH5Qw7IynQ8U4dkDebT68n4i0PeC3Clsvw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-efficient+operation+by+cooperative+control+among+trains%3A+A+multi-agent+reinforcement+learning+approach&rft.jtitle=Control+engineering+practice&rft.au=Su%2C+Shuai&rft.au=Wang%2C+Xuekai&rft.au=Tang%2C+Tao&rft.au=Wang%2C+Guang&rft.date=2021-11-01&rft.issn=0967-0661&rft.volume=116&rft.spage=104901&rft_id=info:doi/10.1016%2Fj.conengprac.2021.104901&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2021_104901 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |