Deep Learning-Based Hybrid Precoder and Combiner Approach for MIMO-OFDM Systems

As one of the important technologies for the forthcoming 6G millimeter-wave massive multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) communication systems, hybrid precoding/combining (HPC) can realize the tradeoff between high spectral efficiency (SE) and computa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal Vol. 25; no. 5; pp. 8942 - 8949
Main Authors: Liu, Fulai, Li, Chongyuan, Wu, Yuchen, Suo, Luyao, Du, Ruiyan
Format: Journal Article
Language:English
Published: New York IEEE 01.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1530-437X, 1558-1748
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As one of the important technologies for the forthcoming 6G millimeter-wave massive multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) communication systems, hybrid precoding/combining (HPC) can realize the tradeoff between high spectral efficiency (SE) and computation efficiency. In this article, an innovative spectral-efficient end-to-end (E2E) HPC algorithm is proposed which jointly optimizes the pilot transmission, the channel state information (CSI) feedback, and HPC by three sub-networks. Specially, to achieve the accurate reconstruction of implicit channel, the pilot transmission sub-network (PTN) and the CSI feedback sub-network (CFN) are used to accurately and rapidly get phase information of the pilot and CSI feedback from the channel matrix, respectively. On this basis, the frequency division duplex HPC sub-network is developed to predict HPC matrices with the reconstructed channel matrix. Finally, via a newly defined loss function of SE, the presented approach jointly optimizes three sub-networks to achieve HPC rapidly and effectively. Simulations indicate the presented E2E HPC approach realizes better compromise in terms of SE and computation efficiency than other related approaches.
AbstractList As one of the important technologies for the forthcoming 6G millimeter-wave massive multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) communication systems, hybrid precoding/combining (HPC) can realize the tradeoff between high spectral efficiency (SE) and computation efficiency. In this article, an innovative spectral-efficient end-to-end (E2E) HPC algorithm is proposed which jointly optimizes the pilot transmission, the channel state information (CSI) feedback, and HPC by three sub-networks. Specially, to achieve the accurate reconstruction of implicit channel, the pilot transmission sub-network (PTN) and the CSI feedback sub-network (CFN) are used to accurately and rapidly get phase information of the pilot and CSI feedback from the channel matrix, respectively. On this basis, the frequency division duplex HPC sub-network is developed to predict HPC matrices with the reconstructed channel matrix. Finally, via a newly defined loss function of SE, the presented approach jointly optimizes three sub-networks to achieve HPC rapidly and effectively. Simulations indicate the presented E2E HPC approach realizes better compromise in terms of SE and computation efficiency than other related approaches.
Author Suo, Luyao
Wu, Yuchen
Li, Chongyuan
Du, Ruiyan
Liu, Fulai
Author_xml – sequence: 1
  givenname: Fulai
  orcidid: 0000-0001-7888-2750
  surname: Liu
  fullname: Liu, Fulai
  email: fulailiu@126.com
  organization: Laboratory of Key Technology of Millimeter-Wave Large-Scale MIMO System and Hebei Key Laboratory of Marine Perception Network and Data Processing, Northeastern University at Qinhuangdao, Qinhuangdao, China
– sequence: 2
  givenname: Chongyuan
  orcidid: 0009-0008-3544-1339
  surname: Li
  fullname: Li, Chongyuan
  email: lcyy15032425666@163.com
  organization: School of Computer Science and Engineering, Northeastern University, Shenyang, China
– sequence: 3
  givenname: Yuchen
  surname: Wu
  fullname: Wu, Yuchen
  email: wko996417@163.com
  organization: School of Computer Science and Engineering, Northeastern University, Shenyang, China
– sequence: 4
  givenname: Luyao
  surname: Suo
  fullname: Suo, Luyao
  email: luyaosuo_12@163.com
  organization: School of Computer Science and Engineering, Northeastern University, Shenyang, China
– sequence: 5
  givenname: Ruiyan
  orcidid: 0000-0002-1946-9170
  surname: Du
  fullname: Du, Ruiyan
  email: ruiyandu@126.com
  organization: Laboratory of Key Technology of Millimeter-Wave Large-Scale MIMO System and Hebei Key Laboratory of Marine Perception Network and Data Processing, Northeastern University at Qinhuangdao, Qinhuangdao, China
BookMark eNpNkMtOwzAQRS1UJErhA5BYWGLt4mftLEsftKglSAWJneU4E0hFk2C3i_49idoFq5mR7p25c65Rr6orQOiO0SFjNHl82cxeh5xyNRSKjxKtL1CfKWUI09L0ul5QIoX-vELXMW4pZYlWuo_SKUCDV-BCVVZf5MlFyPHimIUyx28BfJ1DwK7K8aTeZWXVDuOmCbXz37ioA14v1ylJ59M13hzjHnbxBl0W7ifC7bkO0Md89j5ZkFX6vJyMV8QLZvZEOM-VSDz3ykNinKbOG55lXAvjjdQjWVBTcG1kJhkH7Ue5dlLpzOeykEaKAXo47W3D_B4g7u22PoSqPWlF-zLTiirdqthJ5UMdY4DCNqHcuXC0jNqOm-242Y6bPXNrPfcnTwkA__RGskRw8QcRoWlc
CODEN ISJEAZ
Cites_doi 10.1109/TSP.2014.2324991
10.1109/TVT.2019.2951501
10.1109/TCOMM.2015.2434384
10.1109/TSP.2004.840816
10.1016/j.dcan.2022.10.012
10.1109/PIMRC.2019.8904332
10.1109/JSAC.2016.2549418
10.1109/LWC.2018.2886882
10.1109/TCOMM.2020.2993626
10.1109/TWC.2021.3073309
10.1109/LWC.2023.3329143
10.1109/JSTSP.2018.2819130
10.1109/TWC.2020.3043502
10.1049/iet-com.2018.6061
10.1109/TWC.2021.3055202
10.1109/JSAC.2021.3087269
10.1109/TCOMM.2016.2549517
10.1109/JSAC.2022.3196064
10.1109/JSEN.2024.3367041
10.1109/GCWkshps50303.2020.9367486
10.1109/LCOMM.2022.3211514
10.1109/TVT.2020.2980905
10.1109/JSAC.2017.2698958
10.1109/TVT.2021.3076691
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2025.3526977
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 8949
ExternalDocumentID 10_1109_JSEN_2025_3526977
10841932
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hebei Province
  grantid: F2024501005
  funderid: 10.13039/501100003787
– fundername: National Natural Science Foundation of China
  grantid: 61971117
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c318t-3ac2539c2c5ce98a70ac82bb2738c84764f08f2784b412e7c6d7a457bcd4f4843
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001438192900034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Tue Jul 22 18:41:03 EDT 2025
Sat Nov 29 08:13:10 EST 2025
Wed Aug 27 01:48:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-3ac2539c2c5ce98a70ac82bb2738c84764f08f2784b412e7c6d7a457bcd4f4843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7888-2750
0009-0008-3544-1339
0000-0002-1946-9170
PQID 3174175057
PQPubID 75733
PageCount 8
ParticipantIDs proquest_journals_3174175057
crossref_primary_10_1109_JSEN_2025_3526977
ieee_primary_10841932
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref12
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1109/TSP.2014.2324991
– ident: ref12
  doi: 10.1109/TVT.2019.2951501
– ident: ref18
  doi: 10.1109/TCOMM.2015.2434384
– ident: ref22
  doi: 10.1109/TSP.2004.840816
– ident: ref9
  doi: 10.1016/j.dcan.2022.10.012
– ident: ref4
  doi: 10.1109/PIMRC.2019.8904332
– ident: ref20
  doi: 10.1109/JSAC.2016.2549418
– ident: ref24
  doi: 10.1109/LWC.2018.2886882
– ident: ref8
  doi: 10.1109/TCOMM.2020.2993626
– ident: ref11
  doi: 10.1109/TWC.2021.3073309
– ident: ref2
  doi: 10.1109/LWC.2023.3329143
– ident: ref5
  doi: 10.1109/JSTSP.2018.2819130
– ident: ref7
  doi: 10.1109/TWC.2020.3043502
– ident: ref23
  doi: 10.1049/iet-com.2018.6061
– ident: ref15
  doi: 10.1109/TWC.2021.3055202
– ident: ref21
  doi: 10.1109/JSAC.2021.3087269
– ident: ref19
  doi: 10.1109/TCOMM.2016.2549517
– ident: ref14
  doi: 10.1109/JSAC.2022.3196064
– ident: ref1
  doi: 10.1109/JSEN.2024.3367041
– ident: ref16
  doi: 10.1109/GCWkshps50303.2020.9367486
– ident: ref13
  doi: 10.1109/LCOMM.2022.3211514
– ident: ref10
  doi: 10.1109/TVT.2020.2980905
– ident: ref17
  doi: 10.1109/JSAC.2017.2698958
– ident: ref6
  doi: 10.1109/TVT.2021.3076691
SSID ssj0019757
Score 2.42315
Snippet As one of the important technologies for the forthcoming 6G millimeter-wave massive multiple-input multiple-output orthogonal frequency division multiplexing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 8942
SubjectTerms Algorithms
Channel estimation
Channel state information (CSI) feedback
Communications systems
Computation
Computational efficiency
Computational modeling
Deep learning
deep learning (DL)
Efficiency
Feedback
Feedback control systems
Frequency division duplexing
hybrid precoding/combining (HPC)
Information systems
Millimeter waves
MIMO
MIMO communication
multiple-input-multiple-output (MIMO)
OFDM
Optimization
Orthogonal Frequency Division Multiplexing
pilot transmission
Precoding
Radio frequency
Sensor arrays
Sensors
Title Deep Learning-Based Hybrid Precoder and Combiner Approach for MIMO-OFDM Systems
URI https://ieeexplore.ieee.org/document/10841932
https://www.proquest.com/docview/3174175057
Volume 25
WOSCitedRecordID wos001438192900034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BQgIGnkUUCvLAhGRwEyeORx6tCqIPCZC6RY59AZYWlRap_x7bMagIMbBlyEu-3N13OX_fAZwqgzzRUlIe84RyHXGqsGSUKY4pkxlD46eW3IteLxsO5SCQ1T0XBhH95jM8d4e-l2_GeuZ-lVkPz7gDHMuwLERakbW-WwZSeFlP68HMPlgMQwuzyeTF3UOrZ0vBKDl3avAW8fxIQn6qyq9Q7PNLe-ufb7YNmwFIksvK8juwhKNd2FiQF9yFtTDh_GW-B_0bxDcS1FSf6ZVNXoZ05o6vRQauKjY4IWpkiA0QhSMEksugNk4srCXd226f9ts3XRIkzmvw1G49XndoGKZAtXXbKY2VjpJY6kgnGmWmBFM6i4rCUXO0TVEpL1lWujZkwZsRCp0aoXgiCm14yTMe78PKaDzCAyAs0jGWpY0NosmNipXvp0rFUPM41awOZ1-rm79Vmhm5rzWYzJ0pcmeKPJiiDjW3nAsnVitZh8aXQfLgVu-5BTvc4h2LMQ__uOwI1t3dq11iDViZTmZ4DKv6Y_r6PjnxX8wnd1m75g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIGHgVEoYAHJiSDmzhNPPJoVaAviSJ1ixz7Aiwt6gOp_x7bdVERYmDLkMiRL3f3Xc7fdwAXUiOPlBCUhzyiXAWcSswZZZJjlYmEoXZTS5pxu530-6LryeqOC4OI7vAZXtlL18vXQzW1v8qMhyfcAo5VWLOjszxd67tpIGIn7Gl8mJml475vYlaYuH58rrVNMRhEV1YP3mCeH2nIzVX5FYxdhqnv_PPddmHbQ0lyM7f9HqzgoAhbSwKDRdjwM87fZvvQuUf8IF5P9ZXemvSlSWNmGVuka-tijSMiB5qYEJFZSiC58XrjxABb0npodWinft8iXuT8AF7qtd5dg_pxClQZx53QUKogCoUKVKRQJDJmUiVBlllyjjJJqspzluS2EZnxSoCxqupY8ijOlOY5T3h4CIXBcIBHQFigQsxzEx3iCtcylK6jKiRDxcOqYiW4XOxu-jFXzUhdtcFEak2RWlOk3hQlOLDbuXTjfCdLUF4YJPWONU4N3OEG8RiUefzHY-ew0ei1mmnzof10Apt2pfmZsTIUJqMpnsK6-py8j0dn7uv5AnICvy8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Hybrid+Precoder+and+Combiner+Approach+for+MIMO-OFDM+Systems&rft.jtitle=IEEE+sensors+journal&rft.au=Liu%2C+Fulai&rft.au=Li%2C+Chongyuan&rft.au=Wu%2C+Yuchen&rft.au=Suo%2C+Luyao&rft.date=2025-03-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=25&rft.issue=5&rft.spage=8942&rft.epage=8949&rft_id=info:doi/10.1109%2FJSEN.2025.3526977&rft.externalDocID=10841932
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon