Central Kurdish Text-to-Speech Synthesis with Novel End-to-End Transformer Training
Recent advancements in text-to-speech (TTS) models have aimed to streamline the two-stage process into a single-stage training approach. However, many single-stage models still lag behind in audio quality, particularly when handling Kurdish text and speech. There is a critical need to enhance text-t...
Gespeichert in:
| Veröffentlicht in: | Algorithms Jg. 17; H. 7; S. 292 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.07.2024
|
| Schlagworte: | |
| ISSN: | 1999-4893, 1999-4893 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Recent advancements in text-to-speech (TTS) models have aimed to streamline the two-stage process into a single-stage training approach. However, many single-stage models still lag behind in audio quality, particularly when handling Kurdish text and speech. There is a critical need to enhance text-to-speech conversion for the Kurdish language, particularly for the Sorani dialect, which has been relatively neglected and is underrepresented in recent text-to-speech advancements. This study introduces an end-to-end TTS model for efficiently generating high-quality Kurdish audio. The proposed method leverages a variational autoencoder (VAE) that is pre-trained for audio waveform reconstruction and is augmented by adversarial training. This involves aligning the prior distribution established by the pre-trained encoder with the posterior distribution of the text encoder within latent variables. Additionally, a stochastic duration predictor is incorporated to imbue synthesized Kurdish speech with diverse rhythms. By aligning latent distributions and integrating the stochastic duration predictor, the proposed method facilitates the real-time generation of natural Kurdish speech audio, offering flexibility in pitches and rhythms. Empirical evaluation via the mean opinion score (MOS) on a custom dataset confirms the superior performance of our approach (MOS of 3.94) compared with that of a one-stage system and other two-staged systems as assessed through a subjective human evaluation. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1999-4893 1999-4893 |
| DOI: | 10.3390/a17070292 |