A dynamic CNN for nonlinear dynamic feature learning in soft sensor modeling of industrial process data

Hierarchical local nonlinear dynamic feature learning is of great importance for soft sensor modeling in process industry. Convolutional neural network (CNN) is an excellent local feature extractor that is suitable for process data representation. In this paper, a dynamic CNN (DCNN) strategy is desi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Control engineering practice Ročník 104; s. 104614
Hlavní autoři: Yuan, Xiaofeng, Qi, Shuaibin, Wang, Yalin, Xia, Haibing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.2020
Témata:
ISSN:0967-0661
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hierarchical local nonlinear dynamic feature learning is of great importance for soft sensor modeling in process industry. Convolutional neural network (CNN) is an excellent local feature extractor that is suitable for process data representation. In this paper, a dynamic CNN (DCNN) strategy is designed to learn hierarchical local nonlinear dynamic features for soft sensor modeling. In DCNN, each 1D process sample is dynamically augmented into 2D data sample with lagged unlabeled process variables, which contains both spatial cross-correlations and temporal auto-correlations. Then, the convolutional and pooling layers are alternately utilized to extract the local nonlinear spatial–temporal feature from the 2D sample data matrix. Moreover, the principle is analyzed for DCNN on how it can learn the local nonlinear spatial–temporal feature from the network. The effectiveness of proposed DCNN is verified on an industrial hydrocracking process.
AbstractList Hierarchical local nonlinear dynamic feature learning is of great importance for soft sensor modeling in process industry. Convolutional neural network (CNN) is an excellent local feature extractor that is suitable for process data representation. In this paper, a dynamic CNN (DCNN) strategy is designed to learn hierarchical local nonlinear dynamic features for soft sensor modeling. In DCNN, each 1D process sample is dynamically augmented into 2D data sample with lagged unlabeled process variables, which contains both spatial cross-correlations and temporal auto-correlations. Then, the convolutional and pooling layers are alternately utilized to extract the local nonlinear spatial–temporal feature from the 2D sample data matrix. Moreover, the principle is analyzed for DCNN on how it can learn the local nonlinear spatial–temporal feature from the network. The effectiveness of proposed DCNN is verified on an industrial hydrocracking process.
ArticleNumber 104614
Author Yuan, Xiaofeng
Qi, Shuaibin
Xia, Haibing
Wang, Yalin
Author_xml – sequence: 1
  givenname: Xiaofeng
  surname: Yuan
  fullname: Yuan, Xiaofeng
  email: yuanxf@csu.edu.cn
– sequence: 2
  givenname: Shuaibin
  surname: Qi
  fullname: Qi, Shuaibin
– sequence: 3
  givenname: Yalin
  surname: Wang
  fullname: Wang, Yalin
  email: ylwang@csu.edu.cn
– sequence: 4
  givenname: Haibing
  surname: Xia
  fullname: Xia, Haibing
BookMark eNqNkE9LAzEQxXOoYFv9DvkCrcl2m929CLX4D4pe9Bymk0lJ2SYlSYV-e1MqCl70NPDevB8zb8QGPnhijEsxlUKqm-0Ui-A3-wg4rUR1kmsl6wEbik41E6GUvGSjlLairHedHLLNgpujh51Dvnx54TZEXqC98wTx27EE-RCJ90X0zm-48zwFm3kin0piFwz1Jz3YYplDytFBz_cxIKXEDWS4YhcW-kTXX3PM3h_u35ZPk9Xr4_NysZrgTLZ5MlOmbhWodVUbZU2HQDVVQoh5Y2mNHdaqmau2VeV60YDtDNo5NA1ibakCORuz2zMXY0gpktXoMmQXfI7gei2FPlWlt_qnKn2qSp-rKoD2F2Af3Q7i8T_Ru3OUyoMfjqJO6MgjGRcJszbB_Q35BDb4kH4
CitedBy_id crossref_primary_10_1016_j_apenergy_2022_118835
crossref_primary_10_1109_JSEN_2021_3059860
crossref_primary_10_1109_JSEN_2025_3593855
crossref_primary_10_1016_j_chemolab_2023_105028
crossref_primary_10_1109_ACCESS_2020_3047648
crossref_primary_10_1016_j_conengprac_2024_105955
crossref_primary_10_1109_TIM_2022_3200088
crossref_primary_10_1109_LRA_2021_3091012
crossref_primary_10_1016_j_knosys_2025_113497
crossref_primary_10_1016_j_jprocont_2025_103401
crossref_primary_10_1109_JSEN_2021_3099638
crossref_primary_10_1109_TSMC_2021_3130232
crossref_primary_10_1109_TIM_2024_3427786
crossref_primary_10_1109_TIM_2024_3351236
crossref_primary_10_1016_j_chemolab_2024_105272
crossref_primary_10_1080_07373937_2025_2466481
crossref_primary_10_1155_2021_6842835
crossref_primary_10_1109_TIM_2023_3277978
crossref_primary_10_1016_j_conengprac_2023_105566
crossref_primary_10_1016_j_neunet_2023_06_023
crossref_primary_10_3390_pr12040676
crossref_primary_10_1016_j_jprocont_2022_08_003
crossref_primary_10_1021_acs_iecr_5c00283
crossref_primary_10_1109_TIM_2024_3428620
crossref_primary_10_1109_TASE_2023_3325565
crossref_primary_10_1016_j_conengprac_2024_106074
crossref_primary_10_1016_j_asoc_2023_110608
crossref_primary_10_1109_TAI_2023_3240114
crossref_primary_10_1002_cjce_25141
crossref_primary_10_1016_j_eswa_2024_125413
crossref_primary_10_1016_j_jtice_2023_105117
crossref_primary_10_1109_TASE_2021_3127995
crossref_primary_10_1109_TIM_2021_3068180
crossref_primary_10_1016_j_buildenv_2022_109060
crossref_primary_10_1016_j_chemolab_2022_104716
crossref_primary_10_1016_j_engappai_2022_105658
crossref_primary_10_1016_j_conengprac_2021_104913
crossref_primary_10_1109_JSEN_2025_3571200
crossref_primary_10_1016_j_isatra_2021_08_020
crossref_primary_10_1109_JSEN_2023_3266104
crossref_primary_10_1109_TIM_2025_3578182
crossref_primary_10_1109_TIM_2024_3428650
crossref_primary_10_1109_JSEN_2024_3445959
crossref_primary_10_1002_cpe_6941
crossref_primary_10_1016_j_engappai_2021_104496
crossref_primary_10_1109_TCYB_2024_3365068
crossref_primary_10_1109_TII_2021_3086798
crossref_primary_10_1016_j_microc_2024_110847
crossref_primary_10_1109_TII_2023_3280566
crossref_primary_10_1016_j_engappai_2025_111104
crossref_primary_10_1145_3563042
crossref_primary_10_1109_TIM_2022_3154831
crossref_primary_10_1109_TIE_2023_3279576
crossref_primary_10_1016_j_measurement_2025_116761
crossref_primary_10_1016_j_jprocont_2023_103053
crossref_primary_10_1016_j_jprocont_2025_103373
crossref_primary_10_1109_TIM_2024_3353844
crossref_primary_10_1016_j_engappai_2025_110535
crossref_primary_10_1109_JSEN_2024_3375072
crossref_primary_10_1109_TII_2021_3112487
crossref_primary_10_3390_act13010038
crossref_primary_10_1109_TIM_2023_3280538
crossref_primary_10_1155_2021_6653503
crossref_primary_10_1016_j_conengprac_2024_105910
crossref_primary_10_1016_j_chemolab_2023_104812
crossref_primary_10_1016_j_conengprac_2023_105479
crossref_primary_10_1109_TIM_2024_3472794
crossref_primary_10_1016_j_measurement_2022_111439
crossref_primary_10_3390_pr13010104
crossref_primary_10_1016_j_measurement_2025_117541
crossref_primary_10_1109_TIM_2023_3293567
crossref_primary_10_1109_JAS_2022_105821
crossref_primary_10_1109_TII_2022_3183211
crossref_primary_10_1016_j_engappai_2023_106610
crossref_primary_10_1109_TASE_2025_3529719
crossref_primary_10_1109_JSEN_2021_3105414
crossref_primary_10_1109_ACCESS_2023_3275762
crossref_primary_10_1109_ACCESS_2023_3347289
crossref_primary_10_1109_ACCESS_2021_3085338
crossref_primary_10_1016_j_conengprac_2022_105109
crossref_primary_10_1016_j_yofte_2025_104231
crossref_primary_10_1109_TII_2024_3444896
crossref_primary_10_1002_cjce_70008
crossref_primary_10_1016_j_compchemeng_2022_107695
crossref_primary_10_1109_TII_2023_3240923
crossref_primary_10_1109_JSEN_2021_3096215
crossref_primary_10_3390_s24061948
crossref_primary_10_1016_j_conengprac_2022_105292
crossref_primary_10_1093_ce_zkab059
crossref_primary_10_1109_JSEN_2021_3090524
crossref_primary_10_1109_JSEN_2024_3377234
crossref_primary_10_1109_TII_2022_3152578
crossref_primary_10_1109_TII_2021_3104008
crossref_primary_10_3390_s22124526
crossref_primary_10_1016_j_conengprac_2021_105012
crossref_primary_10_1109_TII_2021_3124578
crossref_primary_10_1088_1361_6501_ac7b6b
crossref_primary_10_1088_1361_6501_ac7b6c
crossref_primary_10_1109_TIM_2024_3373085
crossref_primary_10_1109_TNNLS_2024_3453288
crossref_primary_10_1016_j_conengprac_2025_106472
crossref_primary_10_1093_forestry_cpac023
crossref_primary_10_1016_j_conengprac_2020_104706
crossref_primary_10_1016_j_conengprac_2025_106517
crossref_primary_10_1088_1361_6501_ad4384
crossref_primary_10_1109_TII_2021_3110197
crossref_primary_10_3390_s25010083
crossref_primary_10_1109_JSEN_2021_3117981
crossref_primary_10_7717_peerj_cs_983
crossref_primary_10_1088_1361_6501_ad14e6
crossref_primary_10_1016_j_ces_2021_117299
crossref_primary_10_1016_j_conengprac_2020_104673
crossref_primary_10_1177_01423312231197363
crossref_primary_10_1109_JSEN_2025_3549596
Cites_doi 10.1109/CVPR.2015.7298594
10.1016/j.isatra.2019.07.001
10.1162/neco.2006.18.7.1527
10.1016/j.conengprac.2020.104330
10.1016/j.conengprac.2019.07.016
10.1016/j.jprocont.2013.03.008
10.1109/TIE.2017.2739691
10.1016/j.compchemeng.2018.04.009
10.1016/j.isatra.2019.08.023
10.1016/j.conengprac.2018.03.001
10.1021/acs.iecr.9b01325
10.1016/j.conengprac.2019.06.009
10.1109/TSMC.2019.2898204
10.1021/acs.iecr.8b02913
10.1016/j.conengprac.2020.104392
10.1016/j.cjche.2016.07.005
10.1162/neco.2008.04-07-510
10.1002/aic.14663
10.1016/j.chemolab.2015.05.007
10.1109/TII.2019.2938890
10.1016/j.neucom.2018.11.107
10.1109/CVPR.2016.90
10.1016/j.jprocont.2013.05.007
10.1109/TFUZZ.2020.2967295
10.1016/j.jprocont.2020.05.015
10.1109/35.41400
10.1002/cem.3040
10.1016/j.compchemeng.2008.12.012
10.1016/j.ins.2019.11.039
10.1016/j.chemolab.2020.104050
10.1109/TIM.2018.2810678
10.1109/HealthCom.2017.8210784
10.1016/j.jprocont.2014.01.012
10.1021/acs.iecr.9b02513
10.1016/j.conengprac.2019.104198
10.1109/TNNLS.2016.2582924
10.1016/j.jsv.2016.10.043
10.1109/TIE.2017.2733448
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conengprac.2020.104614
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_conengprac_2020_104614
S0967066120301854
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c318t-36d486a6b24d6fd9cae4e200057febc9c4675688669907af9dcf5a77cc4fe2a13
ISICitedReferencesCount 127
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579014700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0967-0661
IngestDate Tue Nov 18 22:23:52 EST 2025
Sat Nov 29 07:09:34 EST 2025
Sun Apr 06 06:54:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Soft sensor
Quality prediction
Convolutional Neural Network (CNN)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-36d486a6b24d6fd9cae4e200057febc9c4675688669907af9dcf5a77cc4fe2a13
ParticipantIDs crossref_citationtrail_10_1016_j_conengprac_2020_104614
crossref_primary_10_1016_j_conengprac_2020_104614
elsevier_sciencedirect_doi_10_1016_j_conengprac_2020_104614
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Control engineering practice
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yao, Ge (b36) 2017; 65
Hazama, Kano (b7) 2015; 146
Wang, Pan, Yuan, Yang, Gui (b29) 2020; 96
Wang, Zhao (b32) 2020; 98
Dai, Chen, Yuan, Gui, Luo (b4) 2020; 98
Huang, Qi, Murshed (b10) 2013
Yi, Chen (b37) 2013; 23
Yuan, Zhou, Huang, Wang, Yang, Gui (b43) 2020; 16
Ma, Khatibisepehr, Huang (b20) 2015; 61
Yuan, Li, Shardt, Wang, Yang (b39) 2020
Kalteh (b12) 2008
Li, D., Zhang, J., Zhang, Q., & Wei, X. (2017). In
Shao, Ge, Song, Wang (b23) 2019; 91
(pp. 1–6).
Chen, Dai, Yuan, Gui, Ren, Koivo (b3) 2018; 67
Le Cun, Jackel, Boser, Denker, Graf, Guyon (b16) 1989; 27
Le Roux, Bengio (b17) 2008; 20
Zhu, Ge, Song (b45) 2018; 74
Kadlec, Gabrys, Strandt (b11) 2009; 33
Shang, Yang, Huang, Lyu (b22) 2014; 24
(pp. 770–778).
Yan, Yan (b35) 2019; 58
Yuan, Ou, Wang, Yang, Gui (b40) 2019
Yuan, Zhou, Wang, Yang (b44) 2018; 32
Mei, Su, Liu, Ding, Liao (b21) 2017; 25
Khodabandehlou, Pekcan, Fadali (b14) 2019; 26
Wang, Shang, Liu, Jiang, Huang, Yang (b30) 2019; 58
Wang, Yang, Yuan, Shardt, Yang, Gui (b31) 2020; 92
Yan, Wang, Jiang (b34) 2020; 514
Sun, Qiu, Karimi, Gao (b27) 2019
Ge (b5) 2018; 57
Sun, Liu, Qiu, Feng (b26) 2020
Yu, Hong, Rui, Tao (b38) 2017; 65
Shen, Yao, Ge (b24) 2020; 94
Bao, Zhu, Du, Zhong, Qian (b2) 2019; 90
(pp. 1–9).
Yuan, Qi, Shardt, Wang, Yang, Gui (b42) 2020; 203
Hinton, Osindero, Teh (b9) 2006; 18
Krizhevsky, Sutskever, Hinton (b15) 2012
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., & Anguelov, D., et al. (2015). Going deeper with convolutions. In
Greff, Srivastava, Koutnik, Steunebrink, Schmidhuber (b6) 2015; 28
Yuan, Ou, Wang, Yang, Gui (b41) 2020; 396
Abdeljaber, Avci, Kiranyaz, Gabbouj, Inman (b1) 2017; 388
Loy-Benitez, Heo, Yoo (b19) 2020; 97
Sun, Jianbin, Karimi, Fu (b25) 2020
Khatibisepehr, Huang, Khare (b13) 2013; 23
Wu, Zhao (b33) 2018; 115
He, K., Zhang, X., Ren, S., & Sun, J. (2016). In
Shao (10.1016/j.conengprac.2020.104614_b23) 2019; 91
Sun (10.1016/j.conengprac.2020.104614_b25) 2020
Wang (10.1016/j.conengprac.2020.104614_b30) 2019; 58
Yan (10.1016/j.conengprac.2020.104614_b35) 2019; 58
Yao (10.1016/j.conengprac.2020.104614_b36) 2017; 65
Chen (10.1016/j.conengprac.2020.104614_b3) 2018; 67
Le Roux (10.1016/j.conengprac.2020.104614_b17) 2008; 20
Wang (10.1016/j.conengprac.2020.104614_b31) 2020; 92
Yuan (10.1016/j.conengprac.2020.104614_b39) 2020
Yuan (10.1016/j.conengprac.2020.104614_b42) 2020; 203
Wu (10.1016/j.conengprac.2020.104614_b33) 2018; 115
Yi (10.1016/j.conengprac.2020.104614_b37) 2013; 23
Yuan (10.1016/j.conengprac.2020.104614_b40) 2019
Yuan (10.1016/j.conengprac.2020.104614_b41) 2020; 396
10.1016/j.conengprac.2020.104614_b18
Loy-Benitez (10.1016/j.conengprac.2020.104614_b19) 2020; 97
Ma (10.1016/j.conengprac.2020.104614_b20) 2015; 61
Le Cun (10.1016/j.conengprac.2020.104614_b16) 1989; 27
Khatibisepehr (10.1016/j.conengprac.2020.104614_b13) 2013; 23
Shang (10.1016/j.conengprac.2020.104614_b22) 2014; 24
Dai (10.1016/j.conengprac.2020.104614_b4) 2020; 98
Krizhevsky (10.1016/j.conengprac.2020.104614_b15) 2012
Sun (10.1016/j.conengprac.2020.104614_b27) 2019
10.1016/j.conengprac.2020.104614_b8
Kalteh (10.1016/j.conengprac.2020.104614_b12) 2008
Khodabandehlou (10.1016/j.conengprac.2020.104614_b14) 2019; 26
Sun (10.1016/j.conengprac.2020.104614_b26) 2020
Zhu (10.1016/j.conengprac.2020.104614_b45) 2018; 74
Shen (10.1016/j.conengprac.2020.104614_b24) 2020; 94
Hazama (10.1016/j.conengprac.2020.104614_b7) 2015; 146
Hinton (10.1016/j.conengprac.2020.104614_b9) 2006; 18
Ge (10.1016/j.conengprac.2020.104614_b5) 2018; 57
Mei (10.1016/j.conengprac.2020.104614_b21) 2017; 25
Wang (10.1016/j.conengprac.2020.104614_b32) 2020; 98
10.1016/j.conengprac.2020.104614_b28
Yan (10.1016/j.conengprac.2020.104614_b34) 2020; 514
Abdeljaber (10.1016/j.conengprac.2020.104614_b1) 2017; 388
Greff (10.1016/j.conengprac.2020.104614_b6) 2015; 28
Yuan (10.1016/j.conengprac.2020.104614_b44) 2018; 32
Wang (10.1016/j.conengprac.2020.104614_b29) 2020; 96
Huang (10.1016/j.conengprac.2020.104614_b10) 2013
Bao (10.1016/j.conengprac.2020.104614_b2) 2019; 90
Kadlec (10.1016/j.conengprac.2020.104614_b11) 2009; 33
Yuan (10.1016/j.conengprac.2020.104614_b43) 2020; 16
Yu (10.1016/j.conengprac.2020.104614_b38) 2017; 65
References_xml – volume: 514
  start-page: 263
  year: 2020
  end-page: 274
  ident: b34
  article-title: Deep relevant representation learning for soft sensing
  publication-title: Information Sciences
– volume: 16
  start-page: 3721
  year: 2020
  end-page: 3730
  ident: b43
  article-title: Hierarchical quality-relevant feature representation for soft sensor modeling: a novel deep learning strategy
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 67
  start-page: 2001
  year: 2018
  end-page: 2010
  ident: b3
  article-title: Temperature prediction model for Roller Kiln by ALD-based double locally weighted kernel principal component regression
  publication-title: IEEE Transactions on Instrumentation And Measurement
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b9
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
– volume: 33
  start-page: 795
  year: 2009
  end-page: 814
  ident: b11
  article-title: Data-driven soft sensors in the process industry
  publication-title: Computers & Chemical Engineering
– volume: 388
  start-page: 154
  year: 2017
  end-page: 170
  ident: b1
  article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
  publication-title: Journal of Sound and Vibration
– reference: (pp. 1–6).
– volume: 28
  start-page: 2222
  year: 2015
  end-page: 2232
  ident: b6
  article-title: LSTM: A search space Odyssey
  publication-title: IEEE Transactions on Neural Networks & Learning Systems
– volume: 74
  start-page: 144
  year: 2018
  end-page: 152
  ident: b45
  article-title: Quantum statistic based semi-supervised learning approach for industrial soft sensor development
  publication-title: Control Engineering Practice
– volume: 97
  year: 2020
  ident: b19
  article-title: Soft sensor validation for monitoring and resilient control of sequential subway indoor air quality through memory-gated recurrent neural networks-based autoencoders
  publication-title: Control Engineering Practice
– year: 2019
  ident: b27
  article-title: A novel finite-time control for nonstrict feedback saturated nonlinear systems with tracking error constraint
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 115
  start-page: 185
  year: 2018
  end-page: 197
  ident: b33
  article-title: Deep convolutional neural network model based chemical process fault diagnosis
  publication-title: Computers & Chemical Engineering
– volume: 57
  start-page: 12646
  year: 2018
  end-page: 12661
  ident: b5
  article-title: Process data analytics via probabilistic latent variable models: A tutorial review
  publication-title: Industrial & Engineering Chemistry Research
– volume: 32
  year: 2018
  ident: b44
  article-title: Multi-similarity measurement driven ensemble just-in-time learning for soft sensing of industrial processes
  publication-title: Journal of Chemometrics
– volume: 65
  start-page: 1490
  year: 2017
  end-page: 1498
  ident: b36
  article-title: Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 98
  year: 2020
  ident: b32
  article-title: Mode-cloud data analytics based transfer learning for soft sensor of manufacturing industry with incremental learning ability
  publication-title: Control Engineering Practice
– reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). In
– volume: 98
  start-page: 403
  year: 2020
  end-page: 417
  ident: b4
  article-title: Temperature prediction for roller kiln based on hybrid first-principle model and data-driven MW-DLWKPCR model
  publication-title: ISA Transactions
– year: 2013
  ident: b10
  article-title: Dynamic modeling and predictive control in solid oxide fuel cells: First principle and data-based approaches
– volume: 90
  start-page: 38
  year: 2019
  end-page: 49
  ident: b2
  article-title: A distributed PCA-TSS based soft sensor for raw meal fineness in VRM system
  publication-title: Control Engineering Practice
– volume: 26
  year: 2019
  ident: b14
  article-title: Vibration-based structural condition assessment using convolution neural networks
  publication-title: Structural Control and Health Monitoring
– reference: (pp. 1–9).
– volume: 203
  year: 2020
  ident: b42
  article-title: Soft sensor model for dynamic processes based on multichannel convolutional neural network
  publication-title: Chemometrics and Intelligent Laboratory Systems
– year: 2020
  ident: b39
  article-title: Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 61
  start-page: 518
  year: 2015
  end-page: 529
  ident: b20
  article-title: A Bayesian framework for real-time identification of locally weighted partial least squares
  publication-title: AIChE Journal
– volume: 58
  start-page: 11521
  year: 2019
  end-page: 11531
  ident: b30
  article-title: Dynamic soft sensor development based on convolutional neural networks
  publication-title: Industrial and Engineering Chemistry Research
– volume: 23
  start-page: 793
  year: 2013
  end-page: 804
  ident: b37
  article-title: Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes
  publication-title: Journal of Process Control
– year: 2020
  ident: b25
  article-title: Event-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 92
  start-page: 79
  year: 2020
  end-page: 89
  ident: b31
  article-title: Deep learning for fault-relevant feature extraction and fault classification with stacked supervised auto-encoder
  publication-title: Journal of Process Control
– volume: 91
  year: 2019
  ident: b23
  article-title: Nonlinear industrial soft sensor development based on semi-supervised probabilistic mixture of extreme learning machines
  publication-title: Control Engineering Practice
– volume: 96
  start-page: 457
  year: 2020
  end-page: 467
  ident: b29
  article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network
  publication-title: ISA Transactions
– reference: (pp. 770–778).
– reference: Li, D., Zhang, J., Zhang, Q., & Wei, X. (2017). In
– volume: 23
  start-page: 1575
  year: 2013
  end-page: 1596
  ident: b13
  article-title: Design of inferential sensors in the process industry: A review of Bayesian methods
  publication-title: Journal of Process Control
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b15
  article-title: Advances in neural information processing systems
– year: 2020
  ident: b26
  article-title: Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems
  publication-title: IEEE Transactions on Fuzzy Systems
– reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., & Anguelov, D., et al. (2015). Going deeper with convolutions. In
– volume: 20
  start-page: 1631
  year: 2008
  end-page: 1649
  ident: b17
  article-title: Representational power of restricted Boltzmann machines and deep belief networks
  publication-title: Neural Computation
– volume: 58
  start-page: 9952
  year: 2019
  end-page: 9958
  ident: b35
  article-title: Using labeled autoencoder to supervise neural network combined with k-nearest neighbor for visual industrial process monitoring
  publication-title: Industrial and Engineering Chemistry Research
– volume: 27
  start-page: 41
  year: 1989
  end-page: 46
  ident: b16
  article-title: Handwritten digit recognition: Applications of neural network chips and automatic learning
  publication-title: IEEE Communications Magazine
– volume: 396
  start-page: 375
  year: 2020
  end-page: 382
  ident: b41
  article-title: Deep quality-related feature extraction for soft sensing modeling: A deep learning approach with hybrid VW-SAE
  publication-title: Neurocomputing
– volume: 25
  start-page: 116
  year: 2017
  end-page: 122
  ident: b21
  article-title: Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes
  publication-title: Chinese Journal of Chemical Engineering
– volume: 65
  start-page: 5060
  year: 2017
  end-page: 5068
  ident: b38
  article-title: Multitask autoencoder model for recovering human poses
  publication-title: IEEE Transactions on Industrial Electronics
– year: 2008
  ident: b12
  article-title: Rainfall-runoff modelling using artificial neural networks (ANNs): Modelling and understanding
– year: 2019
  ident: b40
  article-title: A layer-wise data augmentation strategy for deep learning networks and its soft sensor application in an industrial hydrocracking process
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 24
  start-page: 223
  year: 2014
  end-page: 233
  ident: b22
  article-title: Data-driven soft sensor development based on deep learning technique
  publication-title: Journal of Process Control
– volume: 146
  start-page: 55
  year: 2015
  end-page: 62
  ident: b7
  article-title: Covariance-based locally weighted partial least squares for high-performance adaptive modeling
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 94
  year: 2020
  ident: b24
  article-title: Nonlinear probabilistic latent variable regression models for soft sensor application: From shallow to deep structure
  publication-title: Control Engineering Practice
– year: 2019
  ident: 10.1016/j.conengprac.2020.104614_b40
  article-title: A layer-wise data augmentation strategy for deep learning networks and its soft sensor application in an industrial hydrocracking process
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– ident: 10.1016/j.conengprac.2020.104614_b28
  doi: 10.1109/CVPR.2015.7298594
– volume: 96
  start-page: 457
  year: 2020
  ident: 10.1016/j.conengprac.2020.104614_b29
  article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2019.07.001
– start-page: 1097
  year: 2012
  ident: 10.1016/j.conengprac.2020.104614_b15
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.conengprac.2020.104614_b9
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– volume: 97
  year: 2020
  ident: 10.1016/j.conengprac.2020.104614_b19
  article-title: Soft sensor validation for monitoring and resilient control of sequential subway indoor air quality through memory-gated recurrent neural networks-based autoencoders
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2020.104330
– volume: 91
  year: 2019
  ident: 10.1016/j.conengprac.2020.104614_b23
  article-title: Nonlinear industrial soft sensor development based on semi-supervised probabilistic mixture of extreme learning machines
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2019.07.016
– volume: 23
  start-page: 793
  issue: 6
  year: 2013
  ident: 10.1016/j.conengprac.2020.104614_b37
  article-title: Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2013.03.008
– volume: 65
  start-page: 5060
  issue: 6
  year: 2017
  ident: 10.1016/j.conengprac.2020.104614_b38
  article-title: Multitask autoencoder model for recovering human poses
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2017.2739691
– year: 2008
  ident: 10.1016/j.conengprac.2020.104614_b12
– volume: 115
  start-page: 185
  year: 2018
  ident: 10.1016/j.conengprac.2020.104614_b33
  article-title: Deep convolutional neural network model based chemical process fault diagnosis
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2018.04.009
– volume: 98
  start-page: 403
  year: 2020
  ident: 10.1016/j.conengprac.2020.104614_b4
  article-title: Temperature prediction for roller kiln based on hybrid first-principle model and data-driven MW-DLWKPCR model
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2019.08.023
– year: 2020
  ident: 10.1016/j.conengprac.2020.104614_b39
  article-title: Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 74
  start-page: 144
  year: 2018
  ident: 10.1016/j.conengprac.2020.104614_b45
  article-title: Quantum statistic based semi-supervised learning approach for industrial soft sensor development
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2018.03.001
– volume: 58
  start-page: 9952
  issue: 23
  year: 2019
  ident: 10.1016/j.conengprac.2020.104614_b35
  article-title: Using labeled autoencoder to supervise neural network combined with k-nearest neighbor for visual industrial process monitoring
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/acs.iecr.9b01325
– volume: 90
  start-page: 38
  year: 2019
  ident: 10.1016/j.conengprac.2020.104614_b2
  article-title: A distributed PCA-TSS based soft sensor for raw meal fineness in VRM system
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2019.06.009
– year: 2019
  ident: 10.1016/j.conengprac.2020.104614_b27
  article-title: A novel finite-time control for nonstrict feedback saturated nonlinear systems with tracking error constraint
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2019.2898204
– volume: 57
  start-page: 12646
  issue: 38
  year: 2018
  ident: 10.1016/j.conengprac.2020.104614_b5
  article-title: Process data analytics via probabilistic latent variable models: A tutorial review
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/acs.iecr.8b02913
– volume: 98
  year: 2020
  ident: 10.1016/j.conengprac.2020.104614_b32
  article-title: Mode-cloud data analytics based transfer learning for soft sensor of manufacturing industry with incremental learning ability
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2020.104392
– volume: 25
  start-page: 116
  issue: 1
  year: 2017
  ident: 10.1016/j.conengprac.2020.104614_b21
  article-title: Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes
  publication-title: Chinese Journal of Chemical Engineering
  doi: 10.1016/j.cjche.2016.07.005
– volume: 20
  start-page: 1631
  issue: 6
  year: 2008
  ident: 10.1016/j.conengprac.2020.104614_b17
  article-title: Representational power of restricted Boltzmann machines and deep belief networks
  publication-title: Neural Computation
  doi: 10.1162/neco.2008.04-07-510
– volume: 61
  start-page: 518
  issue: 2
  year: 2015
  ident: 10.1016/j.conengprac.2020.104614_b20
  article-title: A Bayesian framework for real-time identification of locally weighted partial least squares
  publication-title: AIChE Journal
  doi: 10.1002/aic.14663
– year: 2013
  ident: 10.1016/j.conengprac.2020.104614_b10
– volume: 146
  start-page: 55
  year: 2015
  ident: 10.1016/j.conengprac.2020.104614_b7
  article-title: Covariance-based locally weighted partial least squares for high-performance adaptive modeling
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2015.05.007
– volume: 16
  start-page: 3721
  issue: 6
  year: 2020
  ident: 10.1016/j.conengprac.2020.104614_b43
  article-title: Hierarchical quality-relevant feature representation for soft sensor modeling: a novel deep learning strategy
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2938890
– volume: 396
  start-page: 375
  year: 2020
  ident: 10.1016/j.conengprac.2020.104614_b41
  article-title: Deep quality-related feature extraction for soft sensing modeling: A deep learning approach with hybrid VW-SAE
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.107
– ident: 10.1016/j.conengprac.2020.104614_b8
  doi: 10.1109/CVPR.2016.90
– volume: 23
  start-page: 1575
  issue: 10
  year: 2013
  ident: 10.1016/j.conengprac.2020.104614_b13
  article-title: Design of inferential sensors in the process industry: A review of Bayesian methods
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2013.05.007
– year: 2020
  ident: 10.1016/j.conengprac.2020.104614_b26
  article-title: Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2020.2967295
– volume: 92
  start-page: 79
  year: 2020
  ident: 10.1016/j.conengprac.2020.104614_b31
  article-title: Deep learning for fault-relevant feature extraction and fault classification with stacked supervised auto-encoder
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2020.05.015
– volume: 27
  start-page: 41
  issue: 11
  year: 1989
  ident: 10.1016/j.conengprac.2020.104614_b16
  article-title: Handwritten digit recognition: Applications of neural network chips and automatic learning
  publication-title: IEEE Communications Magazine
  doi: 10.1109/35.41400
– volume: 32
  issue: 9
  year: 2018
  ident: 10.1016/j.conengprac.2020.104614_b44
  article-title: Multi-similarity measurement driven ensemble just-in-time learning for soft sensing of industrial processes
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.3040
– volume: 33
  start-page: 795
  issue: 4
  year: 2009
  ident: 10.1016/j.conengprac.2020.104614_b11
  article-title: Data-driven soft sensors in the process industry
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2008.12.012
– volume: 26
  issue: 2
  year: 2019
  ident: 10.1016/j.conengprac.2020.104614_b14
  article-title: Vibration-based structural condition assessment using convolution neural networks
  publication-title: Structural Control and Health Monitoring
– volume: 514
  start-page: 263
  year: 2020
  ident: 10.1016/j.conengprac.2020.104614_b34
  article-title: Deep relevant representation learning for soft sensing
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.11.039
– volume: 203
  year: 2020
  ident: 10.1016/j.conengprac.2020.104614_b42
  article-title: Soft sensor model for dynamic processes based on multichannel convolutional neural network
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2020.104050
– volume: 67
  start-page: 2001
  issue: 8
  year: 2018
  ident: 10.1016/j.conengprac.2020.104614_b3
  article-title: Temperature prediction model for Roller Kiln by ALD-based double locally weighted kernel principal component regression
  publication-title: IEEE Transactions on Instrumentation And Measurement
  doi: 10.1109/TIM.2018.2810678
– ident: 10.1016/j.conengprac.2020.104614_b18
  doi: 10.1109/HealthCom.2017.8210784
– volume: 24
  start-page: 223
  issue: 3
  year: 2014
  ident: 10.1016/j.conengprac.2020.104614_b22
  article-title: Data-driven soft sensor development based on deep learning technique
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2014.01.012
– year: 2020
  ident: 10.1016/j.conengprac.2020.104614_b25
  article-title: Event-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2020.2967295
– volume: 58
  start-page: 11521
  issue: 26
  year: 2019
  ident: 10.1016/j.conengprac.2020.104614_b30
  article-title: Dynamic soft sensor development based on convolutional neural networks
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/acs.iecr.9b02513
– volume: 94
  year: 2020
  ident: 10.1016/j.conengprac.2020.104614_b24
  article-title: Nonlinear probabilistic latent variable regression models for soft sensor application: From shallow to deep structure
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2019.104198
– volume: 28
  start-page: 2222
  issue: 10
  year: 2015
  ident: 10.1016/j.conengprac.2020.104614_b6
  article-title: LSTM: A search space Odyssey
  publication-title: IEEE Transactions on Neural Networks & Learning Systems
  doi: 10.1109/TNNLS.2016.2582924
– volume: 388
  start-page: 154
  year: 2017
  ident: 10.1016/j.conengprac.2020.104614_b1
  article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2016.10.043
– volume: 65
  start-page: 1490
  issue: 2
  year: 2017
  ident: 10.1016/j.conengprac.2020.104614_b36
  article-title: Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2017.2733448
SSID ssj0016991
Score 2.6079757
Snippet Hierarchical local nonlinear dynamic feature learning is of great importance for soft sensor modeling in process industry. Convolutional neural network (CNN)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104614
SubjectTerms Convolutional Neural Network (CNN)
Deep learning
Quality prediction
Soft sensor
Title A dynamic CNN for nonlinear dynamic feature learning in soft sensor modeling of industrial process data
URI https://dx.doi.org/10.1016/j.conengprac.2020.104614
Volume 104
WOSCitedRecordID wos000579014700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0967-0661
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016991
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIf2EPqkSdqiQ2-Lg73Wk5yWkJL2sBSaUvdkZFlKHYKz7CPkZ-QnZ2TJ8rYNJC30YhZ5Jcuez6PR-JsZhD7QzORg2dYJozlJCNUiEZOKwYunpaEVJ8rqrtgEn81EUcgvo9FNHwtzdcHbVlxfy_l_FTW0gbBd6OxfiDsOCg3wG4QORxA7HB8k-Om49lXmx0ezWccibH06DLWIZ6zp8nn2NSO6qJYlKOTxEna10KOrjxP40M1Q3GPuowrGIaBtSHEQ-O5mSG4Yw6-iWll7V2vRqEtrwnrpPK4dneDrz7VqqiYi9XtwY_-AbUJsLDyx96T759mmvwI2p1n0VwTHI3OEO5-CPerglGxoUffd2YeW_qHgva_hHOTTwlTdrRy4ixwMXX7Nqf3bWhcZiD257bwcRirdSKUf6RHannAqQU9uTz8dF5_jlykmfRXG_i4CO8xzBu-e1d0mz4YZc_oM7YT9B5563DxHI9O-QE83slK-RGdTHHCCAUEYEIQjguKZgCDcIwg3LXYIwh5BuEcQvrR4QBAOCMIOQa_Qt4_Hp0cnSajHkWjQ_KskZzURTLFqQmpma6mVIcaFelFuTaWlhkWXMiEYPKOUKytrbaniXGtizURl-Wu0BfM1bxBWNFXMmeZ5DvZ4lanUMKZEqipBpNBmF_H-kZU6JKt3NVMuyvsEt4uy2HPuE7Y8oM9hL5UyGJ7eoCwBdvf23vuHK-6jJ8O78RZtrRZr8w491lerZrl4HzB3C7rJrQk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+CNN+for+nonlinear+dynamic+feature+learning+in+soft+sensor+modeling+of+industrial+process+data&rft.jtitle=Control+engineering+practice&rft.au=Yuan%2C+Xiaofeng&rft.au=Qi%2C+Shuaibin&rft.au=Wang%2C+Yalin&rft.au=Xia%2C+Haibing&rft.date=2020-11-01&rft.issn=0967-0661&rft.volume=104&rft.spage=104614&rft_id=info:doi/10.1016%2Fj.conengprac.2020.104614&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2020_104614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon