A dynamic CNN for nonlinear dynamic feature learning in soft sensor modeling of industrial process data
Hierarchical local nonlinear dynamic feature learning is of great importance for soft sensor modeling in process industry. Convolutional neural network (CNN) is an excellent local feature extractor that is suitable for process data representation. In this paper, a dynamic CNN (DCNN) strategy is desi...
Uloženo v:
| Vydáno v: | Control engineering practice Ročník 104; s. 104614 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.11.2020
|
| Témata: | |
| ISSN: | 0967-0661 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Hierarchical local nonlinear dynamic feature learning is of great importance for soft sensor modeling in process industry. Convolutional neural network (CNN) is an excellent local feature extractor that is suitable for process data representation. In this paper, a dynamic CNN (DCNN) strategy is designed to learn hierarchical local nonlinear dynamic features for soft sensor modeling. In DCNN, each 1D process sample is dynamically augmented into 2D data sample with lagged unlabeled process variables, which contains both spatial cross-correlations and temporal auto-correlations. Then, the convolutional and pooling layers are alternately utilized to extract the local nonlinear spatial–temporal feature from the 2D sample data matrix. Moreover, the principle is analyzed for DCNN on how it can learn the local nonlinear spatial–temporal feature from the network. The effectiveness of proposed DCNN is verified on an industrial hydrocracking process. |
|---|---|
| AbstractList | Hierarchical local nonlinear dynamic feature learning is of great importance for soft sensor modeling in process industry. Convolutional neural network (CNN) is an excellent local feature extractor that is suitable for process data representation. In this paper, a dynamic CNN (DCNN) strategy is designed to learn hierarchical local nonlinear dynamic features for soft sensor modeling. In DCNN, each 1D process sample is dynamically augmented into 2D data sample with lagged unlabeled process variables, which contains both spatial cross-correlations and temporal auto-correlations. Then, the convolutional and pooling layers are alternately utilized to extract the local nonlinear spatial–temporal feature from the 2D sample data matrix. Moreover, the principle is analyzed for DCNN on how it can learn the local nonlinear spatial–temporal feature from the network. The effectiveness of proposed DCNN is verified on an industrial hydrocracking process. |
| ArticleNumber | 104614 |
| Author | Yuan, Xiaofeng Qi, Shuaibin Xia, Haibing Wang, Yalin |
| Author_xml | – sequence: 1 givenname: Xiaofeng surname: Yuan fullname: Yuan, Xiaofeng email: yuanxf@csu.edu.cn – sequence: 2 givenname: Shuaibin surname: Qi fullname: Qi, Shuaibin – sequence: 3 givenname: Yalin surname: Wang fullname: Wang, Yalin email: ylwang@csu.edu.cn – sequence: 4 givenname: Haibing surname: Xia fullname: Xia, Haibing |
| BookMark | eNqNkE9LAzEQxXOoYFv9DvkCrcl2m929CLX4D4pe9Bymk0lJ2SYlSYV-e1MqCl70NPDevB8zb8QGPnhijEsxlUKqm-0Ui-A3-wg4rUR1kmsl6wEbik41E6GUvGSjlLairHedHLLNgpujh51Dvnx54TZEXqC98wTx27EE-RCJ90X0zm-48zwFm3kin0piFwz1Jz3YYplDytFBz_cxIKXEDWS4YhcW-kTXX3PM3h_u35ZPk9Xr4_NysZrgTLZ5MlOmbhWodVUbZU2HQDVVQoh5Y2mNHdaqmau2VeV60YDtDNo5NA1ibakCORuz2zMXY0gpktXoMmQXfI7gei2FPlWlt_qnKn2qSp-rKoD2F2Af3Q7i8T_Ru3OUyoMfjqJO6MgjGRcJszbB_Q35BDb4kH4 |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2022_118835 crossref_primary_10_1109_JSEN_2021_3059860 crossref_primary_10_1109_JSEN_2025_3593855 crossref_primary_10_1016_j_chemolab_2023_105028 crossref_primary_10_1109_ACCESS_2020_3047648 crossref_primary_10_1016_j_conengprac_2024_105955 crossref_primary_10_1109_TIM_2022_3200088 crossref_primary_10_1109_LRA_2021_3091012 crossref_primary_10_1016_j_knosys_2025_113497 crossref_primary_10_1016_j_jprocont_2025_103401 crossref_primary_10_1109_JSEN_2021_3099638 crossref_primary_10_1109_TSMC_2021_3130232 crossref_primary_10_1109_TIM_2024_3427786 crossref_primary_10_1109_TIM_2024_3351236 crossref_primary_10_1016_j_chemolab_2024_105272 crossref_primary_10_1080_07373937_2025_2466481 crossref_primary_10_1155_2021_6842835 crossref_primary_10_1109_TIM_2023_3277978 crossref_primary_10_1016_j_conengprac_2023_105566 crossref_primary_10_1016_j_neunet_2023_06_023 crossref_primary_10_3390_pr12040676 crossref_primary_10_1016_j_jprocont_2022_08_003 crossref_primary_10_1021_acs_iecr_5c00283 crossref_primary_10_1109_TIM_2024_3428620 crossref_primary_10_1109_TASE_2023_3325565 crossref_primary_10_1016_j_conengprac_2024_106074 crossref_primary_10_1016_j_asoc_2023_110608 crossref_primary_10_1109_TAI_2023_3240114 crossref_primary_10_1002_cjce_25141 crossref_primary_10_1016_j_eswa_2024_125413 crossref_primary_10_1016_j_jtice_2023_105117 crossref_primary_10_1109_TASE_2021_3127995 crossref_primary_10_1109_TIM_2021_3068180 crossref_primary_10_1016_j_buildenv_2022_109060 crossref_primary_10_1016_j_chemolab_2022_104716 crossref_primary_10_1016_j_engappai_2022_105658 crossref_primary_10_1016_j_conengprac_2021_104913 crossref_primary_10_1109_JSEN_2025_3571200 crossref_primary_10_1016_j_isatra_2021_08_020 crossref_primary_10_1109_JSEN_2023_3266104 crossref_primary_10_1109_TIM_2025_3578182 crossref_primary_10_1109_TIM_2024_3428650 crossref_primary_10_1109_JSEN_2024_3445959 crossref_primary_10_1002_cpe_6941 crossref_primary_10_1016_j_engappai_2021_104496 crossref_primary_10_1109_TCYB_2024_3365068 crossref_primary_10_1109_TII_2021_3086798 crossref_primary_10_1016_j_microc_2024_110847 crossref_primary_10_1109_TII_2023_3280566 crossref_primary_10_1016_j_engappai_2025_111104 crossref_primary_10_1145_3563042 crossref_primary_10_1109_TIM_2022_3154831 crossref_primary_10_1109_TIE_2023_3279576 crossref_primary_10_1016_j_measurement_2025_116761 crossref_primary_10_1016_j_jprocont_2023_103053 crossref_primary_10_1016_j_jprocont_2025_103373 crossref_primary_10_1109_TIM_2024_3353844 crossref_primary_10_1016_j_engappai_2025_110535 crossref_primary_10_1109_JSEN_2024_3375072 crossref_primary_10_1109_TII_2021_3112487 crossref_primary_10_3390_act13010038 crossref_primary_10_1109_TIM_2023_3280538 crossref_primary_10_1155_2021_6653503 crossref_primary_10_1016_j_conengprac_2024_105910 crossref_primary_10_1016_j_chemolab_2023_104812 crossref_primary_10_1016_j_conengprac_2023_105479 crossref_primary_10_1109_TIM_2024_3472794 crossref_primary_10_1016_j_measurement_2022_111439 crossref_primary_10_3390_pr13010104 crossref_primary_10_1016_j_measurement_2025_117541 crossref_primary_10_1109_TIM_2023_3293567 crossref_primary_10_1109_JAS_2022_105821 crossref_primary_10_1109_TII_2022_3183211 crossref_primary_10_1016_j_engappai_2023_106610 crossref_primary_10_1109_TASE_2025_3529719 crossref_primary_10_1109_JSEN_2021_3105414 crossref_primary_10_1109_ACCESS_2023_3275762 crossref_primary_10_1109_ACCESS_2023_3347289 crossref_primary_10_1109_ACCESS_2021_3085338 crossref_primary_10_1016_j_conengprac_2022_105109 crossref_primary_10_1016_j_yofte_2025_104231 crossref_primary_10_1109_TII_2024_3444896 crossref_primary_10_1002_cjce_70008 crossref_primary_10_1016_j_compchemeng_2022_107695 crossref_primary_10_1109_TII_2023_3240923 crossref_primary_10_1109_JSEN_2021_3096215 crossref_primary_10_3390_s24061948 crossref_primary_10_1016_j_conengprac_2022_105292 crossref_primary_10_1093_ce_zkab059 crossref_primary_10_1109_JSEN_2021_3090524 crossref_primary_10_1109_JSEN_2024_3377234 crossref_primary_10_1109_TII_2022_3152578 crossref_primary_10_1109_TII_2021_3104008 crossref_primary_10_3390_s22124526 crossref_primary_10_1016_j_conengprac_2021_105012 crossref_primary_10_1109_TII_2021_3124578 crossref_primary_10_1088_1361_6501_ac7b6b crossref_primary_10_1088_1361_6501_ac7b6c crossref_primary_10_1109_TIM_2024_3373085 crossref_primary_10_1109_TNNLS_2024_3453288 crossref_primary_10_1016_j_conengprac_2025_106472 crossref_primary_10_1093_forestry_cpac023 crossref_primary_10_1016_j_conengprac_2020_104706 crossref_primary_10_1016_j_conengprac_2025_106517 crossref_primary_10_1088_1361_6501_ad4384 crossref_primary_10_1109_TII_2021_3110197 crossref_primary_10_3390_s25010083 crossref_primary_10_1109_JSEN_2021_3117981 crossref_primary_10_7717_peerj_cs_983 crossref_primary_10_1088_1361_6501_ad14e6 crossref_primary_10_1016_j_ces_2021_117299 crossref_primary_10_1016_j_conengprac_2020_104673 crossref_primary_10_1177_01423312231197363 crossref_primary_10_1109_JSEN_2025_3549596 |
| Cites_doi | 10.1109/CVPR.2015.7298594 10.1016/j.isatra.2019.07.001 10.1162/neco.2006.18.7.1527 10.1016/j.conengprac.2020.104330 10.1016/j.conengprac.2019.07.016 10.1016/j.jprocont.2013.03.008 10.1109/TIE.2017.2739691 10.1016/j.compchemeng.2018.04.009 10.1016/j.isatra.2019.08.023 10.1016/j.conengprac.2018.03.001 10.1021/acs.iecr.9b01325 10.1016/j.conengprac.2019.06.009 10.1109/TSMC.2019.2898204 10.1021/acs.iecr.8b02913 10.1016/j.conengprac.2020.104392 10.1016/j.cjche.2016.07.005 10.1162/neco.2008.04-07-510 10.1002/aic.14663 10.1016/j.chemolab.2015.05.007 10.1109/TII.2019.2938890 10.1016/j.neucom.2018.11.107 10.1109/CVPR.2016.90 10.1016/j.jprocont.2013.05.007 10.1109/TFUZZ.2020.2967295 10.1016/j.jprocont.2020.05.015 10.1109/35.41400 10.1002/cem.3040 10.1016/j.compchemeng.2008.12.012 10.1016/j.ins.2019.11.039 10.1016/j.chemolab.2020.104050 10.1109/TIM.2018.2810678 10.1109/HealthCom.2017.8210784 10.1016/j.jprocont.2014.01.012 10.1021/acs.iecr.9b02513 10.1016/j.conengprac.2019.104198 10.1109/TNNLS.2016.2582924 10.1016/j.jsv.2016.10.043 10.1109/TIE.2017.2733448 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.conengprac.2020.104614 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_conengprac_2020_104614 S0967066120301854 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSH SST SSZ T5K UNMZH WUQ XPP ZMT ZY4 ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c318t-36d486a6b24d6fd9cae4e200057febc9c4675688669907af9dcf5a77cc4fe2a13 |
| ISICitedReferencesCount | 127 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579014700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0967-0661 |
| IngestDate | Tue Nov 18 22:23:52 EST 2025 Sat Nov 29 07:09:34 EST 2025 Sun Apr 06 06:54:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Soft sensor Quality prediction Convolutional Neural Network (CNN) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c318t-36d486a6b24d6fd9cae4e200057febc9c4675688669907af9dcf5a77cc4fe2a13 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_conengprac_2020_104614 crossref_primary_10_1016_j_conengprac_2020_104614 elsevier_sciencedirect_doi_10_1016_j_conengprac_2020_104614 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Control engineering practice |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Yao, Ge (b36) 2017; 65 Hazama, Kano (b7) 2015; 146 Wang, Pan, Yuan, Yang, Gui (b29) 2020; 96 Wang, Zhao (b32) 2020; 98 Dai, Chen, Yuan, Gui, Luo (b4) 2020; 98 Huang, Qi, Murshed (b10) 2013 Yi, Chen (b37) 2013; 23 Yuan, Zhou, Huang, Wang, Yang, Gui (b43) 2020; 16 Ma, Khatibisepehr, Huang (b20) 2015; 61 Yuan, Li, Shardt, Wang, Yang (b39) 2020 Kalteh (b12) 2008 Li, D., Zhang, J., Zhang, Q., & Wei, X. (2017). In Shao, Ge, Song, Wang (b23) 2019; 91 (pp. 1–6). Chen, Dai, Yuan, Gui, Ren, Koivo (b3) 2018; 67 Le Cun, Jackel, Boser, Denker, Graf, Guyon (b16) 1989; 27 Le Roux, Bengio (b17) 2008; 20 Zhu, Ge, Song (b45) 2018; 74 Kadlec, Gabrys, Strandt (b11) 2009; 33 Shang, Yang, Huang, Lyu (b22) 2014; 24 (pp. 770–778). Yan, Yan (b35) 2019; 58 Yuan, Ou, Wang, Yang, Gui (b40) 2019 Yuan, Zhou, Wang, Yang (b44) 2018; 32 Mei, Su, Liu, Ding, Liao (b21) 2017; 25 Khodabandehlou, Pekcan, Fadali (b14) 2019; 26 Wang, Shang, Liu, Jiang, Huang, Yang (b30) 2019; 58 Wang, Yang, Yuan, Shardt, Yang, Gui (b31) 2020; 92 Yan, Wang, Jiang (b34) 2020; 514 Sun, Qiu, Karimi, Gao (b27) 2019 Ge (b5) 2018; 57 Sun, Liu, Qiu, Feng (b26) 2020 Yu, Hong, Rui, Tao (b38) 2017; 65 Shen, Yao, Ge (b24) 2020; 94 Bao, Zhu, Du, Zhong, Qian (b2) 2019; 90 (pp. 1–9). Yuan, Qi, Shardt, Wang, Yang, Gui (b42) 2020; 203 Hinton, Osindero, Teh (b9) 2006; 18 Krizhevsky, Sutskever, Hinton (b15) 2012 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., & Anguelov, D., et al. (2015). Going deeper with convolutions. In Greff, Srivastava, Koutnik, Steunebrink, Schmidhuber (b6) 2015; 28 Yuan, Ou, Wang, Yang, Gui (b41) 2020; 396 Abdeljaber, Avci, Kiranyaz, Gabbouj, Inman (b1) 2017; 388 Loy-Benitez, Heo, Yoo (b19) 2020; 97 Sun, Jianbin, Karimi, Fu (b25) 2020 Khatibisepehr, Huang, Khare (b13) 2013; 23 Wu, Zhao (b33) 2018; 115 He, K., Zhang, X., Ren, S., & Sun, J. (2016). In Shao (10.1016/j.conengprac.2020.104614_b23) 2019; 91 Sun (10.1016/j.conengprac.2020.104614_b25) 2020 Wang (10.1016/j.conengprac.2020.104614_b30) 2019; 58 Yan (10.1016/j.conengprac.2020.104614_b35) 2019; 58 Yao (10.1016/j.conengprac.2020.104614_b36) 2017; 65 Chen (10.1016/j.conengprac.2020.104614_b3) 2018; 67 Le Roux (10.1016/j.conengprac.2020.104614_b17) 2008; 20 Wang (10.1016/j.conengprac.2020.104614_b31) 2020; 92 Yuan (10.1016/j.conengprac.2020.104614_b39) 2020 Yuan (10.1016/j.conengprac.2020.104614_b42) 2020; 203 Wu (10.1016/j.conengprac.2020.104614_b33) 2018; 115 Yi (10.1016/j.conengprac.2020.104614_b37) 2013; 23 Yuan (10.1016/j.conengprac.2020.104614_b40) 2019 Yuan (10.1016/j.conengprac.2020.104614_b41) 2020; 396 10.1016/j.conengprac.2020.104614_b18 Loy-Benitez (10.1016/j.conengprac.2020.104614_b19) 2020; 97 Ma (10.1016/j.conengprac.2020.104614_b20) 2015; 61 Le Cun (10.1016/j.conengprac.2020.104614_b16) 1989; 27 Khatibisepehr (10.1016/j.conengprac.2020.104614_b13) 2013; 23 Shang (10.1016/j.conengprac.2020.104614_b22) 2014; 24 Dai (10.1016/j.conengprac.2020.104614_b4) 2020; 98 Krizhevsky (10.1016/j.conengprac.2020.104614_b15) 2012 Sun (10.1016/j.conengprac.2020.104614_b27) 2019 10.1016/j.conengprac.2020.104614_b8 Kalteh (10.1016/j.conengprac.2020.104614_b12) 2008 Khodabandehlou (10.1016/j.conengprac.2020.104614_b14) 2019; 26 Sun (10.1016/j.conengprac.2020.104614_b26) 2020 Zhu (10.1016/j.conengprac.2020.104614_b45) 2018; 74 Shen (10.1016/j.conengprac.2020.104614_b24) 2020; 94 Hazama (10.1016/j.conengprac.2020.104614_b7) 2015; 146 Hinton (10.1016/j.conengprac.2020.104614_b9) 2006; 18 Ge (10.1016/j.conengprac.2020.104614_b5) 2018; 57 Mei (10.1016/j.conengprac.2020.104614_b21) 2017; 25 Wang (10.1016/j.conengprac.2020.104614_b32) 2020; 98 10.1016/j.conengprac.2020.104614_b28 Yan (10.1016/j.conengprac.2020.104614_b34) 2020; 514 Abdeljaber (10.1016/j.conengprac.2020.104614_b1) 2017; 388 Greff (10.1016/j.conengprac.2020.104614_b6) 2015; 28 Yuan (10.1016/j.conengprac.2020.104614_b44) 2018; 32 Wang (10.1016/j.conengprac.2020.104614_b29) 2020; 96 Huang (10.1016/j.conengprac.2020.104614_b10) 2013 Bao (10.1016/j.conengprac.2020.104614_b2) 2019; 90 Kadlec (10.1016/j.conengprac.2020.104614_b11) 2009; 33 Yuan (10.1016/j.conengprac.2020.104614_b43) 2020; 16 Yu (10.1016/j.conengprac.2020.104614_b38) 2017; 65 |
| References_xml | – volume: 514 start-page: 263 year: 2020 end-page: 274 ident: b34 article-title: Deep relevant representation learning for soft sensing publication-title: Information Sciences – volume: 16 start-page: 3721 year: 2020 end-page: 3730 ident: b43 article-title: Hierarchical quality-relevant feature representation for soft sensor modeling: a novel deep learning strategy publication-title: IEEE Transactions on Industrial Informatics – volume: 67 start-page: 2001 year: 2018 end-page: 2010 ident: b3 article-title: Temperature prediction model for Roller Kiln by ALD-based double locally weighted kernel principal component regression publication-title: IEEE Transactions on Instrumentation And Measurement – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: b9 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation – volume: 33 start-page: 795 year: 2009 end-page: 814 ident: b11 article-title: Data-driven soft sensors in the process industry publication-title: Computers & Chemical Engineering – volume: 388 start-page: 154 year: 2017 end-page: 170 ident: b1 article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks publication-title: Journal of Sound and Vibration – reference: (pp. 1–6). – volume: 28 start-page: 2222 year: 2015 end-page: 2232 ident: b6 article-title: LSTM: A search space Odyssey publication-title: IEEE Transactions on Neural Networks & Learning Systems – volume: 74 start-page: 144 year: 2018 end-page: 152 ident: b45 article-title: Quantum statistic based semi-supervised learning approach for industrial soft sensor development publication-title: Control Engineering Practice – volume: 97 year: 2020 ident: b19 article-title: Soft sensor validation for monitoring and resilient control of sequential subway indoor air quality through memory-gated recurrent neural networks-based autoencoders publication-title: Control Engineering Practice – year: 2019 ident: b27 article-title: A novel finite-time control for nonstrict feedback saturated nonlinear systems with tracking error constraint publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 115 start-page: 185 year: 2018 end-page: 197 ident: b33 article-title: Deep convolutional neural network model based chemical process fault diagnosis publication-title: Computers & Chemical Engineering – volume: 57 start-page: 12646 year: 2018 end-page: 12661 ident: b5 article-title: Process data analytics via probabilistic latent variable models: A tutorial review publication-title: Industrial & Engineering Chemistry Research – volume: 32 year: 2018 ident: b44 article-title: Multi-similarity measurement driven ensemble just-in-time learning for soft sensing of industrial processes publication-title: Journal of Chemometrics – volume: 65 start-page: 1490 year: 2017 end-page: 1498 ident: b36 article-title: Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application publication-title: IEEE Transactions on Industrial Electronics – volume: 98 year: 2020 ident: b32 article-title: Mode-cloud data analytics based transfer learning for soft sensor of manufacturing industry with incremental learning ability publication-title: Control Engineering Practice – reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). In – volume: 98 start-page: 403 year: 2020 end-page: 417 ident: b4 article-title: Temperature prediction for roller kiln based on hybrid first-principle model and data-driven MW-DLWKPCR model publication-title: ISA Transactions – year: 2013 ident: b10 article-title: Dynamic modeling and predictive control in solid oxide fuel cells: First principle and data-based approaches – volume: 90 start-page: 38 year: 2019 end-page: 49 ident: b2 article-title: A distributed PCA-TSS based soft sensor for raw meal fineness in VRM system publication-title: Control Engineering Practice – volume: 26 year: 2019 ident: b14 article-title: Vibration-based structural condition assessment using convolution neural networks publication-title: Structural Control and Health Monitoring – reference: (pp. 1–9). – volume: 203 year: 2020 ident: b42 article-title: Soft sensor model for dynamic processes based on multichannel convolutional neural network publication-title: Chemometrics and Intelligent Laboratory Systems – year: 2020 ident: b39 article-title: Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development publication-title: IEEE Transactions on Industrial Electronics – volume: 61 start-page: 518 year: 2015 end-page: 529 ident: b20 article-title: A Bayesian framework for real-time identification of locally weighted partial least squares publication-title: AIChE Journal – volume: 58 start-page: 11521 year: 2019 end-page: 11531 ident: b30 article-title: Dynamic soft sensor development based on convolutional neural networks publication-title: Industrial and Engineering Chemistry Research – volume: 23 start-page: 793 year: 2013 end-page: 804 ident: b37 article-title: Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes publication-title: Journal of Process Control – year: 2020 ident: b25 article-title: Event-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance publication-title: IEEE Transactions on Fuzzy Systems – volume: 92 start-page: 79 year: 2020 end-page: 89 ident: b31 article-title: Deep learning for fault-relevant feature extraction and fault classification with stacked supervised auto-encoder publication-title: Journal of Process Control – volume: 91 year: 2019 ident: b23 article-title: Nonlinear industrial soft sensor development based on semi-supervised probabilistic mixture of extreme learning machines publication-title: Control Engineering Practice – volume: 96 start-page: 457 year: 2020 end-page: 467 ident: b29 article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network publication-title: ISA Transactions – reference: (pp. 770–778). – reference: Li, D., Zhang, J., Zhang, Q., & Wei, X. (2017). In – volume: 23 start-page: 1575 year: 2013 end-page: 1596 ident: b13 article-title: Design of inferential sensors in the process industry: A review of Bayesian methods publication-title: Journal of Process Control – start-page: 1097 year: 2012 end-page: 1105 ident: b15 article-title: Advances in neural information processing systems – year: 2020 ident: b26 article-title: Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems publication-title: IEEE Transactions on Fuzzy Systems – reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., & Anguelov, D., et al. (2015). Going deeper with convolutions. In – volume: 20 start-page: 1631 year: 2008 end-page: 1649 ident: b17 article-title: Representational power of restricted Boltzmann machines and deep belief networks publication-title: Neural Computation – volume: 58 start-page: 9952 year: 2019 end-page: 9958 ident: b35 article-title: Using labeled autoencoder to supervise neural network combined with k-nearest neighbor for visual industrial process monitoring publication-title: Industrial and Engineering Chemistry Research – volume: 27 start-page: 41 year: 1989 end-page: 46 ident: b16 article-title: Handwritten digit recognition: Applications of neural network chips and automatic learning publication-title: IEEE Communications Magazine – volume: 396 start-page: 375 year: 2020 end-page: 382 ident: b41 article-title: Deep quality-related feature extraction for soft sensing modeling: A deep learning approach with hybrid VW-SAE publication-title: Neurocomputing – volume: 25 start-page: 116 year: 2017 end-page: 122 ident: b21 article-title: Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes publication-title: Chinese Journal of Chemical Engineering – volume: 65 start-page: 5060 year: 2017 end-page: 5068 ident: b38 article-title: Multitask autoencoder model for recovering human poses publication-title: IEEE Transactions on Industrial Electronics – year: 2008 ident: b12 article-title: Rainfall-runoff modelling using artificial neural networks (ANNs): Modelling and understanding – year: 2019 ident: b40 article-title: A layer-wise data augmentation strategy for deep learning networks and its soft sensor application in an industrial hydrocracking process publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 24 start-page: 223 year: 2014 end-page: 233 ident: b22 article-title: Data-driven soft sensor development based on deep learning technique publication-title: Journal of Process Control – volume: 146 start-page: 55 year: 2015 end-page: 62 ident: b7 article-title: Covariance-based locally weighted partial least squares for high-performance adaptive modeling publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 94 year: 2020 ident: b24 article-title: Nonlinear probabilistic latent variable regression models for soft sensor application: From shallow to deep structure publication-title: Control Engineering Practice – year: 2019 ident: 10.1016/j.conengprac.2020.104614_b40 article-title: A layer-wise data augmentation strategy for deep learning networks and its soft sensor application in an industrial hydrocracking process publication-title: IEEE Transactions on Neural Networks and Learning Systems – ident: 10.1016/j.conengprac.2020.104614_b28 doi: 10.1109/CVPR.2015.7298594 – volume: 96 start-page: 457 year: 2020 ident: 10.1016/j.conengprac.2020.104614_b29 article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network publication-title: ISA Transactions doi: 10.1016/j.isatra.2019.07.001 – start-page: 1097 year: 2012 ident: 10.1016/j.conengprac.2020.104614_b15 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.conengprac.2020.104614_b9 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation doi: 10.1162/neco.2006.18.7.1527 – volume: 97 year: 2020 ident: 10.1016/j.conengprac.2020.104614_b19 article-title: Soft sensor validation for monitoring and resilient control of sequential subway indoor air quality through memory-gated recurrent neural networks-based autoencoders publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2020.104330 – volume: 91 year: 2019 ident: 10.1016/j.conengprac.2020.104614_b23 article-title: Nonlinear industrial soft sensor development based on semi-supervised probabilistic mixture of extreme learning machines publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2019.07.016 – volume: 23 start-page: 793 issue: 6 year: 2013 ident: 10.1016/j.conengprac.2020.104614_b37 article-title: Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2013.03.008 – volume: 65 start-page: 5060 issue: 6 year: 2017 ident: 10.1016/j.conengprac.2020.104614_b38 article-title: Multitask autoencoder model for recovering human poses publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2017.2739691 – year: 2008 ident: 10.1016/j.conengprac.2020.104614_b12 – volume: 115 start-page: 185 year: 2018 ident: 10.1016/j.conengprac.2020.104614_b33 article-title: Deep convolutional neural network model based chemical process fault diagnosis publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2018.04.009 – volume: 98 start-page: 403 year: 2020 ident: 10.1016/j.conengprac.2020.104614_b4 article-title: Temperature prediction for roller kiln based on hybrid first-principle model and data-driven MW-DLWKPCR model publication-title: ISA Transactions doi: 10.1016/j.isatra.2019.08.023 – year: 2020 ident: 10.1016/j.conengprac.2020.104614_b39 article-title: Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development publication-title: IEEE Transactions on Industrial Electronics – volume: 74 start-page: 144 year: 2018 ident: 10.1016/j.conengprac.2020.104614_b45 article-title: Quantum statistic based semi-supervised learning approach for industrial soft sensor development publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2018.03.001 – volume: 58 start-page: 9952 issue: 23 year: 2019 ident: 10.1016/j.conengprac.2020.104614_b35 article-title: Using labeled autoencoder to supervise neural network combined with k-nearest neighbor for visual industrial process monitoring publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/acs.iecr.9b01325 – volume: 90 start-page: 38 year: 2019 ident: 10.1016/j.conengprac.2020.104614_b2 article-title: A distributed PCA-TSS based soft sensor for raw meal fineness in VRM system publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2019.06.009 – year: 2019 ident: 10.1016/j.conengprac.2020.104614_b27 article-title: A novel finite-time control for nonstrict feedback saturated nonlinear systems with tracking error constraint publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2019.2898204 – volume: 57 start-page: 12646 issue: 38 year: 2018 ident: 10.1016/j.conengprac.2020.104614_b5 article-title: Process data analytics via probabilistic latent variable models: A tutorial review publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.8b02913 – volume: 98 year: 2020 ident: 10.1016/j.conengprac.2020.104614_b32 article-title: Mode-cloud data analytics based transfer learning for soft sensor of manufacturing industry with incremental learning ability publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2020.104392 – volume: 25 start-page: 116 issue: 1 year: 2017 ident: 10.1016/j.conengprac.2020.104614_b21 article-title: Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes publication-title: Chinese Journal of Chemical Engineering doi: 10.1016/j.cjche.2016.07.005 – volume: 20 start-page: 1631 issue: 6 year: 2008 ident: 10.1016/j.conengprac.2020.104614_b17 article-title: Representational power of restricted Boltzmann machines and deep belief networks publication-title: Neural Computation doi: 10.1162/neco.2008.04-07-510 – volume: 61 start-page: 518 issue: 2 year: 2015 ident: 10.1016/j.conengprac.2020.104614_b20 article-title: A Bayesian framework for real-time identification of locally weighted partial least squares publication-title: AIChE Journal doi: 10.1002/aic.14663 – year: 2013 ident: 10.1016/j.conengprac.2020.104614_b10 – volume: 146 start-page: 55 year: 2015 ident: 10.1016/j.conengprac.2020.104614_b7 article-title: Covariance-based locally weighted partial least squares for high-performance adaptive modeling publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2015.05.007 – volume: 16 start-page: 3721 issue: 6 year: 2020 ident: 10.1016/j.conengprac.2020.104614_b43 article-title: Hierarchical quality-relevant feature representation for soft sensor modeling: a novel deep learning strategy publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2938890 – volume: 396 start-page: 375 year: 2020 ident: 10.1016/j.conengprac.2020.104614_b41 article-title: Deep quality-related feature extraction for soft sensing modeling: A deep learning approach with hybrid VW-SAE publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.11.107 – ident: 10.1016/j.conengprac.2020.104614_b8 doi: 10.1109/CVPR.2016.90 – volume: 23 start-page: 1575 issue: 10 year: 2013 ident: 10.1016/j.conengprac.2020.104614_b13 article-title: Design of inferential sensors in the process industry: A review of Bayesian methods publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2013.05.007 – year: 2020 ident: 10.1016/j.conengprac.2020.104614_b26 article-title: Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2020.2967295 – volume: 92 start-page: 79 year: 2020 ident: 10.1016/j.conengprac.2020.104614_b31 article-title: Deep learning for fault-relevant feature extraction and fault classification with stacked supervised auto-encoder publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2020.05.015 – volume: 27 start-page: 41 issue: 11 year: 1989 ident: 10.1016/j.conengprac.2020.104614_b16 article-title: Handwritten digit recognition: Applications of neural network chips and automatic learning publication-title: IEEE Communications Magazine doi: 10.1109/35.41400 – volume: 32 issue: 9 year: 2018 ident: 10.1016/j.conengprac.2020.104614_b44 article-title: Multi-similarity measurement driven ensemble just-in-time learning for soft sensing of industrial processes publication-title: Journal of Chemometrics doi: 10.1002/cem.3040 – volume: 33 start-page: 795 issue: 4 year: 2009 ident: 10.1016/j.conengprac.2020.104614_b11 article-title: Data-driven soft sensors in the process industry publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2008.12.012 – volume: 26 issue: 2 year: 2019 ident: 10.1016/j.conengprac.2020.104614_b14 article-title: Vibration-based structural condition assessment using convolution neural networks publication-title: Structural Control and Health Monitoring – volume: 514 start-page: 263 year: 2020 ident: 10.1016/j.conengprac.2020.104614_b34 article-title: Deep relevant representation learning for soft sensing publication-title: Information Sciences doi: 10.1016/j.ins.2019.11.039 – volume: 203 year: 2020 ident: 10.1016/j.conengprac.2020.104614_b42 article-title: Soft sensor model for dynamic processes based on multichannel convolutional neural network publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2020.104050 – volume: 67 start-page: 2001 issue: 8 year: 2018 ident: 10.1016/j.conengprac.2020.104614_b3 article-title: Temperature prediction model for Roller Kiln by ALD-based double locally weighted kernel principal component regression publication-title: IEEE Transactions on Instrumentation And Measurement doi: 10.1109/TIM.2018.2810678 – ident: 10.1016/j.conengprac.2020.104614_b18 doi: 10.1109/HealthCom.2017.8210784 – volume: 24 start-page: 223 issue: 3 year: 2014 ident: 10.1016/j.conengprac.2020.104614_b22 article-title: Data-driven soft sensor development based on deep learning technique publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2014.01.012 – year: 2020 ident: 10.1016/j.conengprac.2020.104614_b25 article-title: Event-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2020.2967295 – volume: 58 start-page: 11521 issue: 26 year: 2019 ident: 10.1016/j.conengprac.2020.104614_b30 article-title: Dynamic soft sensor development based on convolutional neural networks publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/acs.iecr.9b02513 – volume: 94 year: 2020 ident: 10.1016/j.conengprac.2020.104614_b24 article-title: Nonlinear probabilistic latent variable regression models for soft sensor application: From shallow to deep structure publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2019.104198 – volume: 28 start-page: 2222 issue: 10 year: 2015 ident: 10.1016/j.conengprac.2020.104614_b6 article-title: LSTM: A search space Odyssey publication-title: IEEE Transactions on Neural Networks & Learning Systems doi: 10.1109/TNNLS.2016.2582924 – volume: 388 start-page: 154 year: 2017 ident: 10.1016/j.conengprac.2020.104614_b1 article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2016.10.043 – volume: 65 start-page: 1490 issue: 2 year: 2017 ident: 10.1016/j.conengprac.2020.104614_b36 article-title: Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2017.2733448 |
| SSID | ssj0016991 |
| Score | 2.6079757 |
| Snippet | Hierarchical local nonlinear dynamic feature learning is of great importance for soft sensor modeling in process industry. Convolutional neural network (CNN)... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104614 |
| SubjectTerms | Convolutional Neural Network (CNN) Deep learning Quality prediction Soft sensor |
| Title | A dynamic CNN for nonlinear dynamic feature learning in soft sensor modeling of industrial process data |
| URI | https://dx.doi.org/10.1016/j.conengprac.2020.104614 |
| Volume | 104 |
| WOSCitedRecordID | wos000579014700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 0967-0661 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0016991 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIf2EPqkSdqiQ2-Lg73Wk5yWkJL2sBSaUvdkZFlKHYKz7CPkZ-QnZ2TJ8rYNJC30YhZ5Jcuez6PR-JsZhD7QzORg2dYJozlJCNUiEZOKwYunpaEVJ8rqrtgEn81EUcgvo9FNHwtzdcHbVlxfy_l_FTW0gbBd6OxfiDsOCg3wG4QORxA7HB8k-Om49lXmx0ezWccibH06DLWIZ6zp8nn2NSO6qJYlKOTxEna10KOrjxP40M1Q3GPuowrGIaBtSHEQ-O5mSG4Yw6-iWll7V2vRqEtrwnrpPK4dneDrz7VqqiYi9XtwY_-AbUJsLDyx96T759mmvwI2p1n0VwTHI3OEO5-CPerglGxoUffd2YeW_qHgva_hHOTTwlTdrRy4ixwMXX7Nqf3bWhcZiD257bwcRirdSKUf6RHannAqQU9uTz8dF5_jlykmfRXG_i4CO8xzBu-e1d0mz4YZc_oM7YT9B5563DxHI9O-QE83slK-RGdTHHCCAUEYEIQjguKZgCDcIwg3LXYIwh5BuEcQvrR4QBAOCMIOQa_Qt4_Hp0cnSajHkWjQ_KskZzURTLFqQmpma6mVIcaFelFuTaWlhkWXMiEYPKOUKytrbaniXGtizURl-Wu0BfM1bxBWNFXMmeZ5DvZ4lanUMKZEqipBpNBmF_H-kZU6JKt3NVMuyvsEt4uy2HPuE7Y8oM9hL5UyGJ7eoCwBdvf23vuHK-6jJ8O78RZtrRZr8w491lerZrl4HzB3C7rJrQk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+CNN+for+nonlinear+dynamic+feature+learning+in+soft+sensor+modeling+of+industrial+process+data&rft.jtitle=Control+engineering+practice&rft.au=Yuan%2C+Xiaofeng&rft.au=Qi%2C+Shuaibin&rft.au=Wang%2C+Yalin&rft.au=Xia%2C+Haibing&rft.date=2020-11-01&rft.issn=0967-0661&rft.volume=104&rft.spage=104614&rft_id=info:doi/10.1016%2Fj.conengprac.2020.104614&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2020_104614 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |