Optimization Production Scheduling of Underground Backfilling Mining Based on NSGA-II

In the green backfilling mining of underground coal mines, gangue in a coal seam is used to replace and fill goafs. However, the gas drainage time changes in the amount of gangue output and order in the extraction sequence of stope blocks, thereby changing the production output. A multi-objective in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mining, metallurgy & exploration Ročník 39; číslo 4; s. 1521 - 1536
Hlavní autori: Bao, Yu, Wang, Yutao, Zhao, Liang, Zhang, Aijuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.08.2022
Predmet:
ISSN:2524-3462, 2524-3470
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the green backfilling mining of underground coal mines, gangue in a coal seam is used to replace and fill goafs. However, the gas drainage time changes in the amount of gangue output and order in the extraction sequence of stope blocks, thereby changing the production output. A multi-objective integer programming model was proposed to solve this based on an improved non-dominated sorting genetic algorithm. The results show a feasible gangue filling rate can be found and the extraction sequence for a long-term planning time is optimized. It increases the planned annual output by 26% and reduces equipment idle time. Highlights Solving the change of production scheduling caused by "under three", gas drainage, etc. Establishing a method to find suitable gangue filling rate in backfilling mining. Improving the mixed population coding in the NGSA-II for solving production scheduling. Adding an upper layer with greedy strategy to control the Pareto equilibrium frontier. Establishing a constraint to limit deadlocks in production scheduling solutions.
AbstractList In the green backfilling mining of underground coal mines, gangue in a coal seam is used to replace and fill goafs. However, the gas drainage time changes in the amount of gangue output and order in the extraction sequence of stope blocks, thereby changing the production output. A multi-objective integer programming model was proposed to solve this based on an improved non-dominated sorting genetic algorithm. The results show a feasible gangue filling rate can be found and the extraction sequence for a long-term planning time is optimized. It increases the planned annual output by 26% and reduces equipment idle time. Highlights Solving the change of production scheduling caused by "under three", gas drainage, etc. Establishing a method to find suitable gangue filling rate in backfilling mining. Improving the mixed population coding in the NGSA-II for solving production scheduling. Adding an upper layer with greedy strategy to control the Pareto equilibrium frontier. Establishing a constraint to limit deadlocks in production scheduling solutions.
Author Wang, Yutao
Bao, Yu
Zhang, Aijuan
Zhao, Liang
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0002-5276-7532
  surname: Bao
  fullname: Bao, Yu
  email: baoyu@cumt.edu.cn
  organization: Department of Computer Science and Technology, China University of Mining and Technology, Mine Digitization Engineering Research Center of Ministry of Education of the People’s Republic of China, China University of Mining and Technology
– sequence: 2
  givenname: Yutao
  surname: Wang
  fullname: Wang, Yutao
  organization: Department of Computer Science and Technology, China University of Mining and Technology
– sequence: 3
  givenname: Liang
  surname: Zhao
  fullname: Zhao, Liang
  organization: School of Mine, China University of Mining and Technology
– sequence: 4
  givenname: Aijuan
  surname: Zhang
  fullname: Zhang, Aijuan
  organization: Department of Computer Science and Technology, China University of Mining and Technology, Mine Digitization Engineering Research Center of Ministry of Education of the People’s Republic of China, China University of Mining and Technology
BookMark eNp9kM1OAjEURhuDiYi8gKt5gWr_ph2WQBRJUEyQdVPaDlaHlrQzC3l6hsG4cMHq-5Kbc2_uuQU9H7wF4B6jB4yQeEyMMI4hIgQixBGHhyvQJzlhkDKBen-dkxswTMltECMYI8FoH6yX-9rt3EHVLvjsPQbT6K6u9Kc1TeX8NgtltvbGxm0MjTfZROnv0lXd6NX5U0xUsiZrqbfVbAzn8ztwXaoq2eFvDsD6-elj-gIXy9l8Ol5ATXFRQ8q14VwpZgnDDCuhzIgWAjNhLRc6NyXJNVflxuQEmU2hLWnTaiMw0iNj6ACQ814dQ0rRlnIf3U7FH4mRPLmRZzeydSM7N_LQQsU_SLu6-7-OylWXUXpGU3vHb22UX6GJvn3xEnUE-258mw
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125412
crossref_primary_10_1007_s10489_023_05189_w
crossref_primary_10_1109_ACCESS_2024_3457526
crossref_primary_10_1007_s12046_025_02824_9
Cites_doi 10.3390/en10091309
10.1287/inte.2013.0730
10.1016/j.ejor.2016.12.023
10.1287/inte.1090.0492
10.1016/j.ejor.2015.08.051
10.1007/s10589-017-9946-1
10.1109/ACCESS.2020.2972018
10.3390/min9020107
10.24425/gsm.2019.128518
10.1007/s42461-020-00285-8
10.1179/1743286315Y.0000000026
10.1007/s00291-021-00618-z
10.1016/j.asoc.2021.107406
10.17159/2411-9717/2018/v118n12a5
10.1287/INTE.2020.1063
10.1016/j.resourpol.2019.101408
10.1287/inte.2020.1027
10.1016/j.cor.2020.105036
10.1109/ISAP.2005.1599245
10.1016/j.ejor.2014.08.020
10.1016/j.resourpol.2020.101809
10.1007/s12206-012-0411-x
10.1016/j.ejor.2021.01.011
10.1080/17480930.2021.1888395
10.1080/17480930.2019.1576576
10.24425/gsm.2020.133948
10.3390/met11111848
10.1016/j.ijmst.2016.11.014
10.1287/opre.2019.1965
10.3390/pr6110228
10.1080/17480930.2019.1584952
ContentType Journal Article
Copyright Society for Mining, Metallurgy & Exploration Inc. 2022
Copyright_xml – notice: Society for Mining, Metallurgy & Exploration Inc. 2022
DBID AAYXX
CITATION
DOI 10.1007/s42461-022-00606-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2524-3470
EndPage 1536
ExternalDocumentID 10_1007_s42461_022_00606_z
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51204185; 51974295
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -EM
0R~
406
7RQ
7WY
883
88I
8AF
8FE
8FG
8FL
8FW
AACDK
AAEWM
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABFTV
ABJCF
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACDTI
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFKRA
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
AZQEC
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CCPQU
CSCUP
D1I
DPUIP
DWQXO
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FRNLG
FSGXE
GGCAI
GNUQQ
HCIFZ
IKXTQ
IWAJR
JZLTJ
K60
K6~
KB.
KOV
LLZTM
M0F
M2P
M2Q
M4Y
NPVJJ
NQJWS
NU0
PDBOC
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
ROL
RSV
S0X
SCLPG
SCV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABRTQ
AEUYN
AFDZB
AFFHD
AFOHR
AHPBZ
ATHPR
AYFIA
BHPHI
BKSAR
CITATION
M0C
PCBAR
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c318t-36cd66aa4e24141a7ad9387147ee67c5df25c6afbd520db8ce220decd710c9dd3
IEDL.DBID RSV
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000800966500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2524-3462
IngestDate Sat Nov 29 06:18:59 EST 2025
Tue Nov 18 22:32:07 EST 2025
Fri Feb 21 02:45:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Non-dominated sorting genetic algorithm II (NSGA-II)
Underground backfilling mine
Multi-objective integer programming
Underground mine production scheduling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-36cd66aa4e24141a7ad9387147ee67c5df25c6afbd520db8ce220decd710c9dd3
ORCID 0000-0002-5276-7532
PageCount 16
ParticipantIDs crossref_primary_10_1007_s42461_022_00606_z
crossref_citationtrail_10_1007_s42461_022_00606_z
springer_journals_10_1007_s42461_022_00606_z
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle An Official International Peer-reviewed Journal of the Society
PublicationTitle Mining, metallurgy & exploration
PublicationTitleAbbrev Mining, Metallurgy & Exploration
PublicationYear 2022
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Shabani-NaeeniFGhasemy YaghinRIntegrating data visibility decision in a multi-objective procurement transport planning under risk: A modified NSGA-IIAppl Soft Comput202110710.1016/j.asoc.2021.107406
Zhang X, Lin J (2017) Investigation of hydraulic-mechanical properties of paste backfill containing coal gangue-fly ash and its application in an underground coal mine. Energies 9(10). https://doi.org/10.3390/en10091309
AndreaBAkshayCAlexandraNMarcosGRaphaelGBarrick s turquoise ridge gold mine optimizes underground production scheduling operationsInterfaces202151210611810.1287/INTE.2020.1063
Ngatchou P, Zarei A, A El-Sharkawi M (2005) Pareto multi objective optimization. In: Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems, p 84–91. https://doi.org/10.1109/ISAP.2005.1599245
GuXWangXLiuZZhaWXuXZhengMA Multi-Objective Optimization Model Using Improved NSGA-II for Optimizing Metal Mines Production ProcessIEEE Access20208288472885810.1109/ACCESS.2020.2972018
BhartiPSMaheshwariSSharmaCMulti-objective optimization of electric-discharge machining process using controlled elitist nsga-iiJ Mech Sci Technol20122661875188310.1007/s12206-012-0411-x
LamghariADimitrakopoulosRNetwork-flow based algorithms for scheduling production in multi-processor open-pit mines accounting for metal uncertaintyEur J Oper Res20162501273290343213510.1016/j.ejor.2015.08.0511346.90362
Wang X, Gu X, Liu Z, Wang Q, Xu X, Zheng M (2018) Production process optimization of metal mines considering economic benefit and resource efficiency using an nsga-ii model. Processes 6(11). https://doi.org/10.3390/pr6110228
MunozGEspinozaDGoycooleaMMorenoEQueyranneMLetelierORA study of the bienstock-zuckerberg algorithm: applications in mining and resource constrained project schedulingComput Optim Appl201869501534376895210.1007/s10589-017-9946-11403.90353
ForoughiSHamidiJKMonjeziMNehringMThe integrated optimization of underground stope layout designing and production scheduling incorporating a non-dominated sorting genetic algorithm (NSGA-II)Resour Policy201963May10.1016/j.resourpol.2019.101408
CinnaSMarcoSJuergenZSolution procedures for block selection and sequencing in flat-bedded potash underground minesOR Spectr202143240944010.1007/s00291-021-00618-z1476.90132
HouJLiGWangHHuNGenetic algorithm to simultaneously optimise stope sequencing and equipment dispatching in underground short-term mine planning under time uncertaintyInt J Min Reclam Environ202034530732510.1080/17480930.2019.1584952
NewmanAMRubioECaroRWeintraubAEurekKA review of operations research in mine planningInterfaces201040322224510.1287/inte.1090.0492
HuangSLiGBen-AwuahEAfumBOHuNA robust mixed integer linear programming framework for underground cut-and-fill mining production schedulingInt J Min Reclam Environ202034639741410.1080/17480930.2019.1576576
WangHTenorioVLiGHouJHuNOptimization of trackless equipment scheduling in underground mines using genetic algorithmsMin Metall Explor20203751531154410.1007/s42461-020-00285-8
LetelierOREspinozaDGoycooleaMMorenoEMuñozGProduction scheduling for strategic open pit mine planning: A mixed-integer programming approachOper Res202068514251444416630510.1287/opre.2019.19651455.90069
Kopacz M, Malinowski L, Kaczmarzewski S, Kamiński P (2020) Optimizing mining production plan as a trade-off betweeresources utilization and economic targets in underground coal mines. Gospodarka Surowcami Mineralnymi Miner Resour Manag 36(4):49–74. https://doi.org/10.24425/gsm.2020.133948
SullivanDONewmanAExtraction and backfill scheduling in a complex underground mineInterfaces201444October20422110.1287/inte.2013.0730
Whittle G (2009) Misguided objectives that destroy value. In: Proceedings orebody modelling and strategic mine planning, p 97–101
CarpentierSGamacheMDimitrakopoulosRUnderground long-term mine production scheduling with integrated geological risk managementTrans Inst Min Metall Sect A Min Technol201612529310210.1179/1743286315Y.0000000026
YinYZhaoTZhangYTanYQiuYTaheriAJingYAn innovative method for placement of gangue backfilling material in steep underground coal minesMinerals20199210710.3390/min9020107
NesbittPBlakeLRLamasPGoycooleaMPagnoncelliBKNewmanABrickeyAUnderground mine scheduling under uncertaintyEur J Oper Res2021294134035210.1016/j.ejor.2021.01.011
Hou J, Li G, Hu N, Wang H (2019) Simultaneous integrated optimization for underground mine planning: Application and risk analysis of geological uncertainty in a gold deposit. Gospodarka Surowcami Mineralnymi Miner Resour Manag 35(2):153–174. https://doi.org/10.24425/gsm.2019.128518
Li N, Feng S, Ye H, Wang Q, Jia M, Wang L, Zhao S, Chen D (2021) Dispatch optimization model for haulage equipment between stopes based on mine short term resource planning. Metals 11(11). https://doi.org/10.3390/met11111848
AndreaBAkshayCAlexandraNMarcosGBarrick’s turquoise ridge gold mine optimizes underground production scheduling operationsINFORMS J Appl Anal202151210611810.1287/inte.2020.1027
Åstrand M, Johansson M, Zanarini A (2020) Underground mine scheduling of mobile machines using Constraint Programming and Large Neighborhood Search. Comput Oper Res 123. https://doi.org/10.1016/j.cor.2020.105036
SotoudehFNehringMKizilMKnightsPMousaviAProduction scheduling optimisation for sublevel stoping mines using mathematical programming: A review of literature and future directionsResour Policy202068July10.1016/j.resourpol.2020.101809
Sullivan DO, Newman A (2015) Optimization-based heuristics for underground mine scheduling. Eur J Oper Res 241(1):248–259. https://doi.org/10.1016/j.ejor.2014.08.020
FathollahzadehKAsadMWAMardanehECiglaMReview of solution methodologies for open pit mine production scheduling problemInt J Min Reclam Environ202135856459910.1080/17480930.2021.1888395
Zhang J, Zhang Q, Spearing AS, Miao X, Guo S, Sun Q (2017) Green coal mining technique integrating mining-dressing-gas draining-backfilling-mining. Int J Min Sci Technol 27(1):17–27. https://doi.org/10.1016/j.ijmst.2016.11.014 (sI: Special Issue on Ground Control in Mining in 2016)
YuSZhengSGaoSYangJA multi-objective decision model for investment in energy savings and emission reductions in coal miningEur J Oper Res20172601335347361265910.1016/j.ejor.2016.12.0231402.90173
ÅstrandMJohanssonMGrebergJUnderground mine scheduling modelled as a flow shop: a review of relevant work and future challengesJ South Afr Inst Min Metall2018118121265127610.17159/2411-9717/2018/v118n12a5
606_CR1
B Andrea (606_CR10) 2021; 51
G Munoz (606_CR14) 2018; 69
606_CR30
S Carpentier (606_CR20) 2016; 125
AM Newman (606_CR4) 2010; 40
K Fathollahzadeh (606_CR8) 2021; 35
606_CR17
J Hou (606_CR23) 2020; 34
S Foroughi (606_CR27) 2019; 63
S Huang (606_CR19) 2020; 34
DO Sullivan (606_CR16) 2014; 44
606_CR32
S Cinna (606_CR11) 2021; 43
F Sotoudeh (606_CR3) 2020; 68
M Åstrand (606_CR18) 2018; 118
S Yu (606_CR28) 2017; 260
A Lamghari (606_CR6) 2016; 250
H Wang (606_CR25) 2020; 37
PS Bharti (606_CR26) 2012; 26
B Andrea (606_CR13) 2021; 51
606_CR29
X Gu (606_CR31) 2020; 8
P Nesbitt (606_CR15) 2021; 294
606_CR22
606_CR9
606_CR21
Y Yin (606_CR5) 2019; 9
F Shabani-Naeeni (606_CR12) 2021; 107
606_CR2
606_CR24
OR Letelier (606_CR7) 2020; 68
References_xml – reference: HuangSLiGBen-AwuahEAfumBOHuNA robust mixed integer linear programming framework for underground cut-and-fill mining production schedulingInt J Min Reclam Environ202034639741410.1080/17480930.2019.1576576
– reference: Kopacz M, Malinowski L, Kaczmarzewski S, Kamiński P (2020) Optimizing mining production plan as a trade-off betweeresources utilization and economic targets in underground coal mines. Gospodarka Surowcami Mineralnymi Miner Resour Manag 36(4):49–74. https://doi.org/10.24425/gsm.2020.133948
– reference: FathollahzadehKAsadMWAMardanehECiglaMReview of solution methodologies for open pit mine production scheduling problemInt J Min Reclam Environ202135856459910.1080/17480930.2021.1888395
– reference: CinnaSMarcoSJuergenZSolution procedures for block selection and sequencing in flat-bedded potash underground minesOR Spectr202143240944010.1007/s00291-021-00618-z1476.90132
– reference: Sullivan DO, Newman A (2015) Optimization-based heuristics for underground mine scheduling. Eur J Oper Res 241(1):248–259. https://doi.org/10.1016/j.ejor.2014.08.020
– reference: Zhang J, Zhang Q, Spearing AS, Miao X, Guo S, Sun Q (2017) Green coal mining technique integrating mining-dressing-gas draining-backfilling-mining. Int J Min Sci Technol 27(1):17–27. https://doi.org/10.1016/j.ijmst.2016.11.014 (sI: Special Issue on Ground Control in Mining in 2016)
– reference: GuXWangXLiuZZhaWXuXZhengMA Multi-Objective Optimization Model Using Improved NSGA-II for Optimizing Metal Mines Production ProcessIEEE Access20208288472885810.1109/ACCESS.2020.2972018
– reference: WangHTenorioVLiGHouJHuNOptimization of trackless equipment scheduling in underground mines using genetic algorithmsMin Metall Explor20203751531154410.1007/s42461-020-00285-8
– reference: LetelierOREspinozaDGoycooleaMMorenoEMuñozGProduction scheduling for strategic open pit mine planning: A mixed-integer programming approachOper Res202068514251444416630510.1287/opre.2019.19651455.90069
– reference: Ngatchou P, Zarei A, A El-Sharkawi M (2005) Pareto multi objective optimization. In: Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems, p 84–91. https://doi.org/10.1109/ISAP.2005.1599245
– reference: SullivanDONewmanAExtraction and backfill scheduling in a complex underground mineInterfaces201444October20422110.1287/inte.2013.0730
– reference: MunozGEspinozaDGoycooleaMMorenoEQueyranneMLetelierORA study of the bienstock-zuckerberg algorithm: applications in mining and resource constrained project schedulingComput Optim Appl201869501534376895210.1007/s10589-017-9946-11403.90353
– reference: NesbittPBlakeLRLamasPGoycooleaMPagnoncelliBKNewmanABrickeyAUnderground mine scheduling under uncertaintyEur J Oper Res2021294134035210.1016/j.ejor.2021.01.011
– reference: Li N, Feng S, Ye H, Wang Q, Jia M, Wang L, Zhao S, Chen D (2021) Dispatch optimization model for haulage equipment between stopes based on mine short term resource planning. Metals 11(11). https://doi.org/10.3390/met11111848
– reference: Wang X, Gu X, Liu Z, Wang Q, Xu X, Zheng M (2018) Production process optimization of metal mines considering economic benefit and resource efficiency using an nsga-ii model. Processes 6(11). https://doi.org/10.3390/pr6110228
– reference: AndreaBAkshayCAlexandraNMarcosGRaphaelGBarrick s turquoise ridge gold mine optimizes underground production scheduling operationsInterfaces202151210611810.1287/INTE.2020.1063
– reference: HouJLiGWangHHuNGenetic algorithm to simultaneously optimise stope sequencing and equipment dispatching in underground short-term mine planning under time uncertaintyInt J Min Reclam Environ202034530732510.1080/17480930.2019.1584952
– reference: CarpentierSGamacheMDimitrakopoulosRUnderground long-term mine production scheduling with integrated geological risk managementTrans Inst Min Metall Sect A Min Technol201612529310210.1179/1743286315Y.0000000026
– reference: Hou J, Li G, Hu N, Wang H (2019) Simultaneous integrated optimization for underground mine planning: Application and risk analysis of geological uncertainty in a gold deposit. Gospodarka Surowcami Mineralnymi Miner Resour Manag 35(2):153–174. https://doi.org/10.24425/gsm.2019.128518
– reference: LamghariADimitrakopoulosRNetwork-flow based algorithms for scheduling production in multi-processor open-pit mines accounting for metal uncertaintyEur J Oper Res20162501273290343213510.1016/j.ejor.2015.08.0511346.90362
– reference: Shabani-NaeeniFGhasemy YaghinRIntegrating data visibility decision in a multi-objective procurement transport planning under risk: A modified NSGA-IIAppl Soft Comput202110710.1016/j.asoc.2021.107406
– reference: Zhang X, Lin J (2017) Investigation of hydraulic-mechanical properties of paste backfill containing coal gangue-fly ash and its application in an underground coal mine. Energies 9(10). https://doi.org/10.3390/en10091309
– reference: Whittle G (2009) Misguided objectives that destroy value. In: Proceedings orebody modelling and strategic mine planning, p 97–101
– reference: AndreaBAkshayCAlexandraNMarcosGBarrick’s turquoise ridge gold mine optimizes underground production scheduling operationsINFORMS J Appl Anal202151210611810.1287/inte.2020.1027
– reference: SotoudehFNehringMKizilMKnightsPMousaviAProduction scheduling optimisation for sublevel stoping mines using mathematical programming: A review of literature and future directionsResour Policy202068July10.1016/j.resourpol.2020.101809
– reference: BhartiPSMaheshwariSSharmaCMulti-objective optimization of electric-discharge machining process using controlled elitist nsga-iiJ Mech Sci Technol20122661875188310.1007/s12206-012-0411-x
– reference: ÅstrandMJohanssonMGrebergJUnderground mine scheduling modelled as a flow shop: a review of relevant work and future challengesJ South Afr Inst Min Metall2018118121265127610.17159/2411-9717/2018/v118n12a5
– reference: YinYZhaoTZhangYTanYQiuYTaheriAJingYAn innovative method for placement of gangue backfilling material in steep underground coal minesMinerals20199210710.3390/min9020107
– reference: NewmanAMRubioECaroRWeintraubAEurekKA review of operations research in mine planningInterfaces201040322224510.1287/inte.1090.0492
– reference: ForoughiSHamidiJKMonjeziMNehringMThe integrated optimization of underground stope layout designing and production scheduling incorporating a non-dominated sorting genetic algorithm (NSGA-II)Resour Policy201963May10.1016/j.resourpol.2019.101408
– reference: Åstrand M, Johansson M, Zanarini A (2020) Underground mine scheduling of mobile machines using Constraint Programming and Large Neighborhood Search. Comput Oper Res 123. https://doi.org/10.1016/j.cor.2020.105036
– reference: YuSZhengSGaoSYangJA multi-objective decision model for investment in energy savings and emission reductions in coal miningEur J Oper Res20172601335347361265910.1016/j.ejor.2016.12.0231402.90173
– ident: 606_CR2
  doi: 10.3390/en10091309
– volume: 44
  start-page: 204
  issue: October
  year: 2014
  ident: 606_CR16
  publication-title: Interfaces
  doi: 10.1287/inte.2013.0730
– volume: 260
  start-page: 335
  issue: 1
  year: 2017
  ident: 606_CR28
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2016.12.023
– volume: 40
  start-page: 222
  issue: 3
  year: 2010
  ident: 606_CR4
  publication-title: Interfaces
  doi: 10.1287/inte.1090.0492
– volume: 250
  start-page: 273
  issue: 1
  year: 2016
  ident: 606_CR6
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.08.051
– volume: 69
  start-page: 501
  year: 2018
  ident: 606_CR14
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-017-9946-1
– volume: 8
  start-page: 28847
  year: 2020
  ident: 606_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972018
– volume: 9
  start-page: 107
  issue: 2
  year: 2019
  ident: 606_CR5
  publication-title: Minerals
  doi: 10.3390/min9020107
– ident: 606_CR22
  doi: 10.24425/gsm.2019.128518
– volume: 37
  start-page: 1531
  issue: 5
  year: 2020
  ident: 606_CR25
  publication-title: Min Metall Explor
  doi: 10.1007/s42461-020-00285-8
– volume: 125
  start-page: 93
  issue: 2
  year: 2016
  ident: 606_CR20
  publication-title: Trans Inst Min Metall Sect A Min Technol
  doi: 10.1179/1743286315Y.0000000026
– volume: 43
  start-page: 409
  issue: 2
  year: 2021
  ident: 606_CR11
  publication-title: OR Spectr
  doi: 10.1007/s00291-021-00618-z
– volume: 107
  year: 2021
  ident: 606_CR12
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107406
– volume: 118
  start-page: 1265
  issue: 12
  year: 2018
  ident: 606_CR18
  publication-title: J South Afr Inst Min Metall
  doi: 10.17159/2411-9717/2018/v118n12a5
– volume: 51
  start-page: 106
  issue: 2
  year: 2021
  ident: 606_CR13
  publication-title: Interfaces
  doi: 10.1287/INTE.2020.1063
– volume: 63
  issue: May
  year: 2019
  ident: 606_CR27
  publication-title: Resour Policy
  doi: 10.1016/j.resourpol.2019.101408
– volume: 51
  start-page: 106
  issue: 2
  year: 2021
  ident: 606_CR10
  publication-title: INFORMS J Appl Anal
  doi: 10.1287/inte.2020.1027
– ident: 606_CR17
  doi: 10.1016/j.cor.2020.105036
– ident: 606_CR24
  doi: 10.1109/ISAP.2005.1599245
– ident: 606_CR9
  doi: 10.1016/j.ejor.2014.08.020
– volume: 68
  issue: July
  year: 2020
  ident: 606_CR3
  publication-title: Resour Policy
  doi: 10.1016/j.resourpol.2020.101809
– volume: 26
  start-page: 1875
  issue: 6
  year: 2012
  ident: 606_CR26
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-012-0411-x
– volume: 294
  start-page: 340
  issue: 1
  year: 2021
  ident: 606_CR15
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2021.01.011
– volume: 35
  start-page: 564
  issue: 8
  year: 2021
  ident: 606_CR8
  publication-title: Int J Min Reclam Environ
  doi: 10.1080/17480930.2021.1888395
– volume: 34
  start-page: 397
  issue: 6
  year: 2020
  ident: 606_CR19
  publication-title: Int J Min Reclam Environ
  doi: 10.1080/17480930.2019.1576576
– ident: 606_CR21
  doi: 10.24425/gsm.2020.133948
– ident: 606_CR30
  doi: 10.3390/met11111848
– ident: 606_CR1
  doi: 10.1016/j.ijmst.2016.11.014
– volume: 68
  start-page: 1425
  issue: 5
  year: 2020
  ident: 606_CR7
  publication-title: Oper Res
  doi: 10.1287/opre.2019.1965
– ident: 606_CR29
  doi: 10.3390/pr6110228
– volume: 34
  start-page: 307
  issue: 5
  year: 2020
  ident: 606_CR23
  publication-title: Int J Min Reclam Environ
  doi: 10.1080/17480930.2019.1584952
– ident: 606_CR32
SSID ssib042110743
ssj0002144478
Score 2.257058
Snippet In the green backfilling mining of underground coal mines, gangue in a coal seam is used to replace and fill goafs. However, the gas drainage time changes in...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1521
SubjectTerms Engineering
Materials Engineering
Metallic Materials
Mineral Resources
Title Optimization Production Scheduling of Underground Backfilling Mining Based on NSGA-II
URI https://link.springer.com/article/10.1007/s42461-022-00606-z
Volume 39
WOSCitedRecordID wos000800966500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2524-3470
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002144478
  issn: 2524-3462
  databaseCode: RSV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejBb3F-kYM3DXRJmq7HKU4HOgdzY7eS5KUy1E7W6WF_vUnWDgcy0FNLeCnlfeaR934PoYtQhdyNKSIBUEm45kCUMIowHSuwtiUDP4ug_xC12_XBIO4UTWF5We1eXkl6Tz1vduMO-oy46nMHIiLIdBWthQ5txuXo3X6pRdynNAXIlPPHDhSMe5dMQ8oJ44IW3TO_f3YxQi1ej_qo09z-3__uoK3ilIkbM7XYRSsm20ObP7AH91HvyTqL96ILE3dmwK_utWvFCK4-_QWPUuznIrnWjwzwtdSv6dCDeONHP1jCLuUGsN3V7t41SKt1gHrN2-ebe1LMWCDaWvOEMKFBCCm5saGc12QkIWY2ieKRMSLSIaQ01EKmCkIagKprQ-3TaLAnEx0DsENUyUaZOUI4YiqQYczsasA5pDFPRQQ1HckUmKKmimolXxNdAJC7ORhvyRw62bMssSxLPMuSaRVdzvd8zOA3llJflaJIClPMl5Af_438BG1QL01X_XeKKpPxpzlD6_prMszH514HvwGkN9Uv
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzivffBNA12SpuvjFOeGWx3swt5KmpPKUDtZpw_79SZZOxyIoE8tISnl5FxyyDnfh9CVF3vM0BRhF4jATDLAMVcxpjKIQduWcC0XwaDlh2F1OAw6eVNYVlS7F1eS1lMvmt2YgT7DpvrcgIhwPFtFa8zQ7JgcvTsotIjZlCYHmTL-2ICCMeuSiUcYpoyTvHvm588uR6jl61Ebdeo7__vfXbSdnzKd2lwt9tCKSvfR1jfswQPUf9LO4i3vwnQ6c-BX89rV2wimPv3ZGSeO5UUyrR8pOLdCviQjC-LttC2xhB7KFDh6Vdh9qOFm8xD16_e9uwbOORaw1NY8xZRL4FwIpnQoZxXhCwioTqKYrxT3pQcJ8SQXSQwecSGuSkX0U0nQJxMZANAjVErHqTpGjk9jV3gB1aMuY5AELOE-VKQvEqAxUWVUKeQayRyA3PBgvEYL6GQrskiLLLIii2ZldL1Y8z6H3_h19k2xFVFuitkv00_-Nv0SbTR67VbUaoaPp2iT2J01lYBnqDSdfKhztC4_p6NscmH18QurqtgT
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UjdGD30b83MGbNoyu69gRP1AiIhEh3JaurzNEHQSmB_56224jkBgS42lL87os77Mvfe_3ELpwQ5fqMUXYBsIxFRRwyGSIHeGHoGyL22YWQbfhNZuVXs9vzXTxm2r3_Eoy7WnQKE1xUhpCVJo2vlENg4Z1JboGFGF4soxWqMpkdFHXS7ubaxQ16U0GOKV9swYIo8Y9E5dQ7FBGsk6a3z87H63mr0pNBKpt_f_ft9Fmdvq0qqm67KAlGe-ijRlMwj3UeVZO5DPrzrRaKSCsfm0r8YKuW3-zBpFl5iXplpAYrGsu3qO-Afe2nszACbU0lmCpXc32fRXX6_uoU7t7vXnA2ewFLJSVJ9hhAhjjnEoV4mmZexx8RyVX1JOSecKFiLiC8SgEl9gQVoQk6ikFqBOL8AGcA1SIB7E8RJbnhDZ3fUet2pRC5NOIeVAWHo_ACYksonLO40BkwOR6PsZHMIVUNiwLFMsCw7JgUkSX0z3DFJZjIfVVLpYgM9HxAvKjv5Gfo7XWbS1o1JuPx2idGMHqAsETVEhGX_IUrYrvpD8enRnV_AE2YeD3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+Production+Scheduling+of+Underground+Backfilling+Mining+Based+on+NSGA-II&rft.jtitle=Mining%2C+metallurgy+%26+exploration&rft.au=Bao%2C+Yu&rft.au=Wang%2C+Yutao&rft.au=Zhao%2C+Liang&rft.au=Zhang%2C+Aijuan&rft.date=2022-08-01&rft.issn=2524-3462&rft.eissn=2524-3470&rft.volume=39&rft.issue=4&rft.spage=1521&rft.epage=1536&rft_id=info:doi/10.1007%2Fs42461-022-00606-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42461_022_00606_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-3462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-3462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-3462&client=summon