An improved formalism for quantum computation based on geometric algebra—case study: Grover’s search algorithm

The Grover search algorithm is one of the two key algorithms in the field of quantum computing, and hence it is desirable to represent it in the simplest and most intuitive formalism possible. We show firstly, that Clifford’s geometric algebra, provides a significantly simpler representation than th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing Jg. 12; H. 4; S. 1719 - 1735
Hauptverfasser: Chappell, James M., Iqbal, Azhar, Lohe, M. A., von Smekal, Lorenz, Abbott, Derek
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.04.2013
Springer
Schlagworte:
ISSN:1570-0755, 1573-1332
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Grover search algorithm is one of the two key algorithms in the field of quantum computing, and hence it is desirable to represent it in the simplest and most intuitive formalism possible. We show firstly, that Clifford’s geometric algebra, provides a significantly simpler representation than the conventional bra-ket notation, and secondly, that the basis defined by the states of maximum and minimum weight in the Grover search space, allows a simple visualization of the Grover search analogous to the precession of a spin- particle. Using this formalism we efficiently solve the exact search problem, as well as easily representing more general search situations. We do not claim the development of an improved algorithm, but show in a tutorial paper that geometric algebra provides extremely compact and elegant expressions with improved clarity for the Grover search algorithm. Being a key algorithm in quantum computing and one of the most studied, it forms an ideal basis for a tutorial on how to elucidate quantum operations in terms of geometric algebra—this is then of interest in extending the applicability of geometric algebra to more complicated problems in fields of quantum computing, quantum decision theory, and quantum information.
AbstractList The Grover search algorithm is one of the two key algorithms in the field of quantum computing, and hence it is desirable to represent it in the simplest and most intuitive formalism possible. We show firstly, that Clifford’s geometric algebra, provides a significantly simpler representation than the conventional bra-ket notation, and secondly, that the basis defined by the states of maximum and minimum weight in the Grover search space, allows a simple visualization of the Grover search analogous to the precession of a spin- particle. Using this formalism we efficiently solve the exact search problem, as well as easily representing more general search situations. We do not claim the development of an improved algorithm, but show in a tutorial paper that geometric algebra provides extremely compact and elegant expressions with improved clarity for the Grover search algorithm. Being a key algorithm in quantum computing and one of the most studied, it forms an ideal basis for a tutorial on how to elucidate quantum operations in terms of geometric algebra—this is then of interest in extending the applicability of geometric algebra to more complicated problems in fields of quantum computing, quantum decision theory, and quantum information.
Author Iqbal, Azhar
Lohe, M. A.
von Smekal, Lorenz
Chappell, James M.
Abbott, Derek
Author_xml – sequence: 1
  givenname: James M.
  surname: Chappell
  fullname: Chappell, James M.
  email: james.m.chappell@adelaide.edu.au
  organization: School of Electrical and Electronic Engineering, University of Adelaide
– sequence: 2
  givenname: Azhar
  surname: Iqbal
  fullname: Iqbal, Azhar
  organization: School of Electrical and Electronic Engineering, University of Adelaide
– sequence: 3
  givenname: M. A.
  surname: Lohe
  fullname: Lohe, M. A.
  organization: School of Chemistry and Physics, University of Adelaide
– sequence: 4
  givenname: Lorenz
  surname: von Smekal
  fullname: von Smekal, Lorenz
  organization: Institut für Kernphysik, Technische Universität Darmstadt
– sequence: 5
  givenname: Derek
  surname: Abbott
  fullname: Abbott, Derek
  organization: School of Electrical and Electronic Engineering, University of Adelaide
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27571785$$DView record in Pascal Francis
BookMark eNp9kLFOwzAQhi1UJNrCA7B5YQz44jpO2aoKClIlFpijq-O0rpK42AlStz4EC6_XJ8EhiIGh0_0nf_9Z-kZkUNtaE3IN7BYYk3ceAOI0YhBHbJLySJ6RIQjJI-A8HvxkFjEpxAUZeb9lLIYkTYbEzWpqqp2zHzqnhXUVlsZXXaLvLdZNW1Flq13bYGNsTVfoAxfCWttKN84oiuVarxweD58qPFLftPn-ni66i-54-PLUa3Rq03HWmWZTXZLzAkuvr37nmLw9PrzOn6Lly-J5PltGikPaRMAKpXmerNJcCywU5BxXPOdSp4lUXMJUMJ5MCqGlRgSlQSRMTGVahF2rKR-Tm_7uDr3CsnBYK-OznTMVun0WSyFBpiJw0HPKWe-dLv4QYFknN-vlZkFu1snNZOjIfx1lekWNQ1OebMZ904df6rV22da2rg4iTpS-AQ_2lMQ
CitedBy_id crossref_primary_10_3390_app151810245
crossref_primary_10_3390_sym16060734
crossref_primary_10_1109_ACCESS_2016_2538262
crossref_primary_10_1007_s11128_021_03125_w
crossref_primary_10_1016_j_physa_2016_11_117
Cites_doi 10.1103/PhysRevA.60.2746
10.1103/PhysRevA.63.054302
10.1103/PhysRevA.60.2742
10.1103/PhysRevLett.79.325
10.1371/journal.pone.0036404
10.1143/PTP.116.783
10.1088/0305-4470/34/4/312
10.1007/s10773-008-9826-7
10.1088/1751-8113/40/13/F01
10.1103/PhysRevA.66.062301
10.1017/CBO9780511807497
10.1016/S0375-9601(98)00010-3
10.1016/S0026-2692(01)00116-1
10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
10.1103/PhysRevA.71.042320
10.1088/1751-8113/42/13/135307
10.1103/PhysRevA.62.052304
10.1007/978-94-009-6292-7
10.1109/ISTCS.1997.595153
10.1007/s00006-010-0206-z
10.1103/PhysRevLett.95.150501
10.1103/PhysRevA.77.012316
10.1145/276698.276712
10.1103/PhysRevA.63.012310
10.1119/1.1359518
10.1103/PhysRevLett.80.4329
10.1103/PhysRevA.65.052322
10.1143/JPSJ.78.054801
10.1103/PhysRevA.65.034305
10.1007/978-94-009-4728-3_27
10.1016/S0375-9601(99)00631-3
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2012
2014 INIST-CNRS
Copyright_xml – notice: Springer Science+Business Media, LLC 2012
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1007/s11128-012-0483-7
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
Mathematics
Applied Sciences
EISSN 1573-1332
EndPage 1735
ExternalDocumentID 27571785
10_1007_s11128_012_0483_7
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9O
PF0
PT4
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
IQODW
ID FETCH-LOGICAL-c318t-10fce3d6b8de5afc1d3ab3d37e867c371950364f5e7eaa1ce15605978f7eaec93
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315089300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1570-0755
IngestDate Mon Jul 21 09:16:52 EDT 2025
Tue Nov 18 22:10:21 EST 2025
Sat Nov 29 03:11:52 EST 2025
Fri Feb 21 02:38:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Geometric algebra
Grover search algorithm
Quantum algorithms
Quantum computing
Courseware
Visualization
Quantum algorithm
Decision making
Ideal
Quantum computer
Grover algorithm
Search algorithm
Clifford algebra
Quantum information
Algebraic geometry
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-10fce3d6b8de5afc1d3ab3d37e867c371950364f5e7eaa1ce15605978f7eaec93
PageCount 17
ParticipantIDs pascalfrancis_primary_27571785
crossref_primary_10_1007_s11128_012_0483_7
crossref_citationtrail_10_1007_s11128_012_0483_7
springer_journals_10_1007_s11128_012_0483_7
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York, NY
PublicationTitle Quantum information processing
PublicationTitleAbbrev Quantum Inf Process
PublicationYear 2013
Publisher Springer US
Springer
Publisher_xml – name: Springer US
– name: Springer
References LongG.LiY.ZhangW.NiuL.Phase matching in quantum searchingPhys. Lett. A19992621273417320771999PhLA..262...27L1059.8151810.1016/S0375-9601(99)00631-3
Brassard, G., Hoyer, P.: An exact quantum polynomial-time algorithm for simon’s problem. In: Proceedings of the 5th Israeli Symposium on Theory of Computing and Systems ISTCS, pp. 12–23 (1997)
HestenesD.SobczykG.Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, vol. 51984BerlinSpringer10.1007/978-94-009-6292-7
AertsD.CzachorM.OrlowskiL.Teleportation of geometric structures in 3DJ. Phys. A Math. Theor.200942131353072009JPhA...42m5307A10.1088/1751-8113/42/13/135307
BihamE.KenigsbergD.Grover’s quantum search algorithm for an arbitrary initial mixed statePhys. Rev. A2002660623012002PhRvA..66f2301B10.1103/PhysRevA.66.062301
GregoričM.Mankoč BorštnikN.Quantum gates and quantum algorithms with clifford algebra techniquesInt. J. Theor. Phys.20094825075151162.8134210.1007/s10773-008-9826-7
ShapiraD.ShimoniY.BihamO.Algebraic analysis of quantum search with pure and mixed statesPhys. Rev. A20057104232021437692005PhRvA..71d2320S10.1103/PhysRevA.71.042320
KorepinV.E.ValliloB.C.Group theoretical formulation of a quantum partial search algorithmProg. Theor. Phys.200611678379322984112006PThPh.116..783K1115.8132610.1143/PTP.116.783
Grover, L.: A framework for fast quantum mechanical algorithms. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, ACM, pp. 53–62 (1998)
ParkerR.DoranC.Analysis of One and Two Particle Quantum Systems Using Geometric Algebra2002Boston, MABirkhäuser213226
HøyerP.Arbitrary phases in quantum amplitude amplificationPhys. Rev. A20006250523040523092000PhRvA..62e2302Y10.1103/PhysRevA.62.052304
AlvesR.LavorC.Clifford algebra applied to Grover’s algorithmAdv. Appl. Clifford Algebras20102047748827376011210.8101710.1007/s00006-010-0206-z
ChappellJ.IqbalA.LoheM.Von SmekalL.An analysis of the quantum penny flip game using geometric algebraJ. Phys. Soc. Jpn.200978554801548042009JPSJ...78E4801C10.1143/JPSJ.78.054801
SomarooS.CoryD.HavelT.Expressing the operations of quantum computing in multiparticle geometric algebraPhys. Lett. A19982401–21716196161998PhLA..240....1S1044.8153110.1016/S0375-9601(98)00010-3
AertsD.CzachorM.Tensor-product versus geometric-product codingPhys. Rev. A20087701231624871772008PhRvA..77a2316A10.1103/PhysRevA.77.012316
ChappellJ.M.IqbalA.AbbottD.N-player quantum games in an EPR settingPLoS ONE201275e364042012PLoSO...736404C10.1371/journal.pone.0036404
De SabbataV.DattaB.Geometric Algebra and Applications to Physics2007LondonTaylor & Francis Group1128.81002
GroverL.Quantum computers can search rapidly by using almost any transformationPhys. Rev. Lett.19988019432943321998PhRvL..80.4329G10.1103/PhysRevLett.80.4329
NgJ.AbbottD.Introduction to solid-state quantum computation for engineersMicroelectron. J.2002331–217117710.1016/S0026-2692(01)00116-1
DoranC.LasenbyA.Geometric Algebra for Physicists2003CambridgeCambridge University Press1078.5300110.1017/CBO9780511807497
Hestenes, D.: Clifford Algebras and Their Applications in Mathematical Physics (Reidel, Dordrecht/Boston, 1986), chap. Clifford Algebra and the interpretation of quantum mechanics (1986)
LiC.HwangC.HsiehJ.WangK.General phase-matching condition for a quantum searching algorithmPhys. Rev. A20026530343052002PhRvA..65c4305L10.1103/PhysRevA.65.034305
BoyerM.BrassardG.HøyerP.TappaA.Tight bounds on quantum searchingFortsch. Phys.199846/494935061998ForPh..46..493B10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
NielsenM.ChuangI.Quantum Computation and Quantum Information, 1st edn2002CambridgeAddison-Wesley
GroverL.Quantum mechanics helps in searching for a needle in a haystackPhys. Rev. Lett.19977923253281997PhRvL..79..325G10.1103/PhysRevLett.79.325
LongG.TuC.LiY.ZhangW.YanH.An SO(3) picture for quantum searchingJ. Phys. A Math. Gen.200134486186618260302001JPhA...34..861L1034.8100710.1088/0305-4470/34/4/312
Vlasov, A.Y.: eprint arXiv:quant-ph/9907079 (1999)
BihamE.BihamO.BironD.GrasslM.LidarD.Grover’s quantum search algorithm for an arbitrary initial amplitude distributionPhys. Rev. A199960427421999PhRvA..60.2742B10.1103/PhysRevA.60.2742
BihamE.BihamO.BironD.GrasslM.LidarD.A.ShapiraD.Analysis of generalized Grover quantum search algorithms using recursion equationsPhys. Rev. A2000630123102001PhRvA..63a2310B10.1103/PhysRevA.63.012310
VlasovA.Y.Clifford algebras and universal sets of quantum gatesPhys. Rev. A20016305430218424252001PhRvA..63e4302V10.1103/PhysRevA.63.054302
GroverL.From schrödingers equation to the quantum search algorithmAm. J. Phys.20016977697772001AmJPh..69..769G10.1119/1.1359518
GroverL.K.Fixed-point quantum searchPhys. Rev. Lett.2005951505011505042005PhRvL..95o0501G10.1103/PhysRevLett.95.150501
HsiehJ.LiC.General su(2) formulation for quantum searching with certaintyPhys. Rev. A2002650523222002PhRvA..65e2322H10.1103/PhysRevA.65.052322
ZalkaC.Grover’s quantum searching algorithm is optimalPhys. Rev. A199960274627511999PhRvA..60.2746Z10.1103/PhysRevA.60.2746
AertsD.CzachorM.Cartoon computation: quantum-like computing without quantum mechanicsJ. Phys. A Math. Theor.20074013F25923233512007JPhA...40..259A1114.8101910.1088/1751-8113/40/13/F01
D. Shapira (483_CR28) 2005; 71
V.E. Korepin (483_CR34) 2006; 116
D. Aerts (483_CR16) 2009; 42
J. Hsieh (483_CR20) 2002; 65
G. Long (483_CR8) 2001; 34
E. Biham (483_CR32) 1999; 60
J.M. Chappell (483_CR19) 2012; 7
M. Gregorič (483_CR11) 2009; 48
L. Grover (483_CR3) 2001; 69
S. Somaroo (483_CR10) 1998; 240
P. Høyer (483_CR30) 2000; 62
J. Chappell (483_CR7) 2009; 78
E. Biham (483_CR33) 2002; 66
483_CR13
483_CR1
M. Nielsen (483_CR5) 2002
D. Hestenes (483_CR12) 1984
D. Aerts (483_CR14) 2007; 40
L. Grover (483_CR2) 1998; 80
483_CR17
A.Y. Vlasov (483_CR18) 2001; 63
C. Zalka (483_CR26) 1999; 60
R. Parker (483_CR23) 2002
C. Li (483_CR24) 2002; 65
C. Doran (483_CR21) 2003
M. Boyer (483_CR27) 1998; 46/49
E. Biham (483_CR29) 2000; 63
483_CR31
J. Ng (483_CR6) 2002; 33
L.K. Grover (483_CR35) 2005; 95
D. Aerts (483_CR15) 2008; 77
R. Alves (483_CR9) 2010; 20
G. Long (483_CR25) 1999; 262
L. Grover (483_CR4) 1997; 79
V. De Sabbata (483_CR22) 2007
References_xml – reference: GroverL.Quantum computers can search rapidly by using almost any transformationPhys. Rev. Lett.19988019432943321998PhRvL..80.4329G10.1103/PhysRevLett.80.4329
– reference: ParkerR.DoranC.Analysis of One and Two Particle Quantum Systems Using Geometric Algebra2002Boston, MABirkhäuser213226
– reference: VlasovA.Y.Clifford algebras and universal sets of quantum gatesPhys. Rev. A20016305430218424252001PhRvA..63e4302V10.1103/PhysRevA.63.054302
– reference: HøyerP.Arbitrary phases in quantum amplitude amplificationPhys. Rev. A20006250523040523092000PhRvA..62e2302Y10.1103/PhysRevA.62.052304
– reference: AertsD.CzachorM.Cartoon computation: quantum-like computing without quantum mechanicsJ. Phys. A Math. Theor.20074013F25923233512007JPhA...40..259A1114.8101910.1088/1751-8113/40/13/F01
– reference: GroverL.Quantum mechanics helps in searching for a needle in a haystackPhys. Rev. Lett.19977923253281997PhRvL..79..325G10.1103/PhysRevLett.79.325
– reference: HestenesD.SobczykG.Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, vol. 51984BerlinSpringer10.1007/978-94-009-6292-7
– reference: Vlasov, A.Y.: eprint arXiv:quant-ph/9907079 (1999)
– reference: ShapiraD.ShimoniY.BihamO.Algebraic analysis of quantum search with pure and mixed statesPhys. Rev. A20057104232021437692005PhRvA..71d2320S10.1103/PhysRevA.71.042320
– reference: HsiehJ.LiC.General su(2) formulation for quantum searching with certaintyPhys. Rev. A2002650523222002PhRvA..65e2322H10.1103/PhysRevA.65.052322
– reference: Brassard, G., Hoyer, P.: An exact quantum polynomial-time algorithm for simon’s problem. In: Proceedings of the 5th Israeli Symposium on Theory of Computing and Systems ISTCS, pp. 12–23 (1997)
– reference: LiC.HwangC.HsiehJ.WangK.General phase-matching condition for a quantum searching algorithmPhys. Rev. A20026530343052002PhRvA..65c4305L10.1103/PhysRevA.65.034305
– reference: ZalkaC.Grover’s quantum searching algorithm is optimalPhys. Rev. A199960274627511999PhRvA..60.2746Z10.1103/PhysRevA.60.2746
– reference: GroverL.From schrödingers equation to the quantum search algorithmAm. J. Phys.20016977697772001AmJPh..69..769G10.1119/1.1359518
– reference: KorepinV.E.ValliloB.C.Group theoretical formulation of a quantum partial search algorithmProg. Theor. Phys.200611678379322984112006PThPh.116..783K1115.8132610.1143/PTP.116.783
– reference: AertsD.CzachorM.Tensor-product versus geometric-product codingPhys. Rev. A20087701231624871772008PhRvA..77a2316A10.1103/PhysRevA.77.012316
– reference: BihamE.BihamO.BironD.GrasslM.LidarD.Grover’s quantum search algorithm for an arbitrary initial amplitude distributionPhys. Rev. A199960427421999PhRvA..60.2742B10.1103/PhysRevA.60.2742
– reference: NielsenM.ChuangI.Quantum Computation and Quantum Information, 1st edn2002CambridgeAddison-Wesley
– reference: ChappellJ.IqbalA.LoheM.Von SmekalL.An analysis of the quantum penny flip game using geometric algebraJ. Phys. Soc. Jpn.200978554801548042009JPSJ...78E4801C10.1143/JPSJ.78.054801
– reference: ChappellJ.M.IqbalA.AbbottD.N-player quantum games in an EPR settingPLoS ONE201275e364042012PLoSO...736404C10.1371/journal.pone.0036404
– reference: GregoričM.Mankoč BorštnikN.Quantum gates and quantum algorithms with clifford algebra techniquesInt. J. Theor. Phys.20094825075151162.8134210.1007/s10773-008-9826-7
– reference: GroverL.K.Fixed-point quantum searchPhys. Rev. Lett.2005951505011505042005PhRvL..95o0501G10.1103/PhysRevLett.95.150501
– reference: AertsD.CzachorM.OrlowskiL.Teleportation of geometric structures in 3DJ. Phys. A Math. Theor.200942131353072009JPhA...42m5307A10.1088/1751-8113/42/13/135307
– reference: De SabbataV.DattaB.Geometric Algebra and Applications to Physics2007LondonTaylor & Francis Group1128.81002
– reference: NgJ.AbbottD.Introduction to solid-state quantum computation for engineersMicroelectron. J.2002331–217117710.1016/S0026-2692(01)00116-1
– reference: BoyerM.BrassardG.HøyerP.TappaA.Tight bounds on quantum searchingFortsch. Phys.199846/494935061998ForPh..46..493B10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
– reference: BihamE.KenigsbergD.Grover’s quantum search algorithm for an arbitrary initial mixed statePhys. Rev. A2002660623012002PhRvA..66f2301B10.1103/PhysRevA.66.062301
– reference: Hestenes, D.: Clifford Algebras and Their Applications in Mathematical Physics (Reidel, Dordrecht/Boston, 1986), chap. Clifford Algebra and the interpretation of quantum mechanics (1986)
– reference: LongG.TuC.LiY.ZhangW.YanH.An SO(3) picture for quantum searchingJ. Phys. A Math. Gen.200134486186618260302001JPhA...34..861L1034.8100710.1088/0305-4470/34/4/312
– reference: SomarooS.CoryD.HavelT.Expressing the operations of quantum computing in multiparticle geometric algebraPhys. Lett. A19982401–21716196161998PhLA..240....1S1044.8153110.1016/S0375-9601(98)00010-3
– reference: Grover, L.: A framework for fast quantum mechanical algorithms. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, ACM, pp. 53–62 (1998)
– reference: DoranC.LasenbyA.Geometric Algebra for Physicists2003CambridgeCambridge University Press1078.5300110.1017/CBO9780511807497
– reference: AlvesR.LavorC.Clifford algebra applied to Grover’s algorithmAdv. Appl. Clifford Algebras20102047748827376011210.8101710.1007/s00006-010-0206-z
– reference: LongG.LiY.ZhangW.NiuL.Phase matching in quantum searchingPhys. Lett. A19992621273417320771999PhLA..262...27L1059.8151810.1016/S0375-9601(99)00631-3
– reference: BihamE.BihamO.BironD.GrasslM.LidarD.A.ShapiraD.Analysis of generalized Grover quantum search algorithms using recursion equationsPhys. Rev. A2000630123102001PhRvA..63a2310B10.1103/PhysRevA.63.012310
– volume: 60
  start-page: 2746
  year: 1999
  ident: 483_CR26
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.60.2746
– volume: 63
  start-page: 054302
  year: 2001
  ident: 483_CR18
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.63.054302
– volume-title: Geometric Algebra and Applications to Physics
  year: 2007
  ident: 483_CR22
– volume: 60
  start-page: 2742
  issue: 4
  year: 1999
  ident: 483_CR32
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.60.2742
– volume: 79
  start-page: 325
  issue: 2
  year: 1997
  ident: 483_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.325
– volume: 7
  start-page: e36404
  issue: 5
  year: 2012
  ident: 483_CR19
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0036404
– volume: 116
  start-page: 783
  year: 2006
  ident: 483_CR34
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.116.783
– volume-title: Quantum Computation and Quantum Information, 1st edn
  year: 2002
  ident: 483_CR5
– volume: 34
  start-page: 861
  issue: 4
  year: 2001
  ident: 483_CR8
  publication-title: J. Phys. A Math. Gen.
  doi: 10.1088/0305-4470/34/4/312
– volume: 48
  start-page: 507
  issue: 2
  year: 2009
  ident: 483_CR11
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-008-9826-7
– volume: 40
  start-page: F259
  issue: 13
  year: 2007
  ident: 483_CR14
  publication-title: J. Phys. A Math. Theor.
  doi: 10.1088/1751-8113/40/13/F01
– volume: 66
  start-page: 062301
  year: 2002
  ident: 483_CR33
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.66.062301
– volume-title: Geometric Algebra for Physicists
  year: 2003
  ident: 483_CR21
  doi: 10.1017/CBO9780511807497
– ident: 483_CR17
– volume: 240
  start-page: 1
  issue: 1–2
  year: 1998
  ident: 483_CR10
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(98)00010-3
– volume: 33
  start-page: 171
  issue: 1–2
  year: 2002
  ident: 483_CR6
  publication-title: Microelectron. J.
  doi: 10.1016/S0026-2692(01)00116-1
– volume: 46/49
  start-page: 493
  year: 1998
  ident: 483_CR27
  publication-title: Fortsch. Phys.
  doi: 10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
– volume: 71
  start-page: 042320
  year: 2005
  ident: 483_CR28
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.042320
– volume: 42
  start-page: 135307
  issue: 13
  year: 2009
  ident: 483_CR16
  publication-title: J. Phys. A Math. Theor.
  doi: 10.1088/1751-8113/42/13/135307
– volume: 62
  start-page: 052304
  issue: 5
  year: 2000
  ident: 483_CR30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.62.052304
– volume-title: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, vol. 5
  year: 1984
  ident: 483_CR12
  doi: 10.1007/978-94-009-6292-7
– ident: 483_CR31
  doi: 10.1109/ISTCS.1997.595153
– volume: 20
  start-page: 477
  year: 2010
  ident: 483_CR9
  publication-title: Adv. Appl. Clifford Algebras
  doi: 10.1007/s00006-010-0206-z
– volume: 95
  start-page: 150501
  year: 2005
  ident: 483_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.150501
– volume: 77
  start-page: 012316
  year: 2008
  ident: 483_CR15
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.012316
– start-page: 213
  volume-title: Analysis of One and Two Particle Quantum Systems Using Geometric Algebra
  year: 2002
  ident: 483_CR23
– ident: 483_CR1
  doi: 10.1145/276698.276712
– volume: 63
  start-page: 012310
  year: 2000
  ident: 483_CR29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.63.012310
– volume: 69
  start-page: 769
  issue: 7
  year: 2001
  ident: 483_CR3
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1359518
– volume: 80
  start-page: 4329
  issue: 19
  year: 1998
  ident: 483_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.4329
– volume: 65
  start-page: 052322
  year: 2002
  ident: 483_CR20
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.65.052322
– volume: 78
  start-page: 54801
  issue: 5
  year: 2009
  ident: 483_CR7
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.78.054801
– volume: 65
  start-page: 034305
  issue: 3
  year: 2002
  ident: 483_CR24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.65.034305
– ident: 483_CR13
  doi: 10.1007/978-94-009-4728-3_27
– volume: 262
  start-page: 27
  issue: 1
  year: 1999
  ident: 483_CR25
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(99)00631-3
SSID ssj0021686
Score 1.9584937
Snippet The Grover search algorithm is one of the two key algorithms in the field of quantum computing, and hence it is desirable to represent it in the simplest and...
SourceID pascalfrancis
crossref
springer
SourceType Index Database
Enrichment Source
Publisher
StartPage 1719
SubjectTerms Algebra
Algorithmics. Computability. Computer arithmetics
Applied sciences
Associative rings and algebras
Classical and quantum physics: mechanics and fields
Computer science; control theory; systems
Data Structures and Information Theory
Exact sciences and technology
Mathematical Physics
Mathematics
Physics
Physics and Astronomy
Quantum computation
Quantum Computing
Quantum information
Quantum Information Technology
Quantum Physics
Sciences and techniques of general use
Spintronics
Theoretical computing
Title An improved formalism for quantum computation based on geometric algebra—case study: Grover’s search algorithm
URI https://link.springer.com/article/10.1007/s11128-012-0483-7
Volume 12
WOSCitedRecordID wos000315089300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1332
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021686
  issn: 1570-0755
  databaseCode: RSV
  dateStart: 20020401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZggISEGAwQ46UcOIEqbW3TtNwQ4nFAE-IlblXqpDCJbdBunPcjuPD3-CXEWTs08ZDglqqxVdlxbDeOP4Bd9AO_kUrpuKlsOH4iuRMmPHKCxHgnrbxUoUUtORetVnh3F10U97jzstq9PJK0O_XnZTcTGlDhletQG3RHTMOM4RcSXsPl1e04y2oGFt6xyQlRRXBeHmV-x2LCGS08ydzIJR0BWnw5GbUO56T6r09dgsUivmSHowWxDFO6W4Nqid3AClOuwZwt_cR8BbLDLmvbXwtaMRvCPrbzDo3Y88DIfdBhaMmtDhm5PcXM4F73OgTHhYygQkzS_T58RfOS2Y61B-yUOGbvw7ecjcyJ5vWydv-hswo3J8fXR2dOgcTgoLH5vtmrU9SeCpJQaS5TbCpPJp7yhA4DgZ4gLFkv8FOuhZayiZruZ5tUJUzNs8bIW4NKt9fV68AwCjg1jUMeST_BJPIJaYK7SRRyX_iqDo1SJTEWbcoJLeMx_mywTNKNjXRjkm4s6rA3Jnka9ej4bfLOhJ7HFK7gJrUNeR32S6XGhT3nP7Pb-NPsTZh3LZwGVf5sQaWfDfQ2zOJLv51nO3YdfwAzZvAt
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7RhYpKCCgFsfzVB06tIu0mdpz0tqq6UHW7qgpU3CJn7JSV2B-SbM88RC99PZ6kHidZhGgr0ZujjK1oxuPxxOPvAzhGHvJOppTnZ6rj8VQJL0pF7IWpjU5GB5lGx1oykMNhdHkZf6nvcRdNtXtzJOlW6vvLbnZrQIVXvkcw6J58BsvcBiwCzP969m2RZXVDR-_YFcSoIoVojjL_NMSDYLQ2U4XVS1YRWjw6GXUBp7_xX5-6Cev1_pL1qgnxEpbMZAs2Gu4GVrvyFjx3pZ9YvIK8N2Ej92vBaOa2sNejYkwtdjO3ep-PGbruzoaMwp5mtvHdTMdEx4WMqEJs0n13-xPtS-YQa9-xExoxv7v9VbDKnUhumo_Kq_E2XPQ_nL8_9WomBg-tz5d2rc7QBDpMI22EyrCrA5UGOpAmCiUGkrhkg5BnwkijVBcN3c-2qUqU2WeDcbADrcl0YnaBYRwKAo1DESueYhpzYpoQfhpHgkuu29BpTJJgDVNObBnXyT3AMmk3sdpNSLuJbMObRZdZhdHxL-GjB3Ze9PClsKltJNrwtjFqUvtz8ffh9p4k_RpWT88_D5LBx-GnfXjhO2oNqgI6gFaZz80hrOCPclTkR25O_wZ9aPMR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB619EdIqLRA1aUt9YFTUcRuYsdJb6jttlXRCqkFcYucsQ0rsdltkuXMQ3Dh9XiSepxkEaKthHpzFI8VzXg8nnj8fQDbyGPet0oFoVX9gOdKBEku0iDOXXQyOrIaPWvJvhyNkuPj9KDlOa26avfuSLK500AoTUW9O9N29-bim9smUBFWGBAkeiAfwiNOdfSUrv84WmRcg9hTPQ4EsatIIbpjzT8NcSswrcxU5XRkG3KLO6ekPvgMV__7s5_Ds3bfyfaaifICHphiDVY7TgfWuvgaPPEloVitQ7lXsLH_5WA081vbs3E1oRb7NXf2mE8YenFvW0bhUDPXODHTCdF0ISMKEZeMX19convJPJLtB_aFRiyvL64q1rgZ9ZuW4_p0sgGHw88_P34NWoaGAN1aULs13KKJdJwn2ghlcaAjlUc6kiaJJUaSOGajmFthpFFqgIbubbsUJrHu2WAavYSlYlqYV8AwjQWByaFIFc8xTzkxUIgwTxPBJdc96HfmybCFLycWjbPsBniZtJs57Wak3Uz24P1CZNZgd_yr89Ytmy8kQilcypuIHux0Bs5aP6_-PtzmvXq_g6cHn4bZ_rfR99ewHHrGDSoOegNLdTk3b-Exntfjqtzy0_s3e8T79Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+formalism+for+quantum+computation+based+on+geometric+algebra%E2%80%94case+study%3A+Grover%27s+search+algorithm&rft.jtitle=Quantum+information+processing&rft.au=CHAPPELL%2C+James+M&rft.au=IQBAL%2C+Azhar&rft.au=LOHE%2C+M.+A&rft.au=VON+SMEKAL%2C+Lorenz&rft.date=2013-04-01&rft.pub=Springer&rft.issn=1570-0755&rft.volume=12&rft.issue=4&rft.spage=1719&rft.epage=1735&rft_id=info:doi/10.1007%2Fs11128-012-0483-7&rft.externalDBID=n%2Fa&rft.externalDocID=27571785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-0755&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-0755&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-0755&client=summon