A Universal Malicious Documents Static Detection Framework Based on Feature Generalization
In this study, Portable Document Format (PDF), Word, Excel, Rich Test format (RTF) and image documents are taken as the research objects to study a static and fast method by which to detect malicious documents. Malicious PDF and Word document features are abstracted and extended, which can be used t...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 11; číslo 24; s. 12134 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.12.2021
|
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this study, Portable Document Format (PDF), Word, Excel, Rich Test format (RTF) and image documents are taken as the research objects to study a static and fast method by which to detect malicious documents. Malicious PDF and Word document features are abstracted and extended, which can be used to detect other types of documents. A universal static detection framework for malicious documents based on feature generalization is then proposed. The generalized features include specification check errors, the structure path, code keywords, and the number of objects. The proposed method is verified on two datasets, and is compared with Kaspersky, NOD32, and McAfee antivirus software. The experimental results demonstrate that the proposed method achieves good performance in terms of the detection accuracy, runtime, and scalability. The average F1-score of all types of documents is found to be 0.99, and the average detection time of a document is 0.5926 s, which is at the same level as the compared antivirus software. |
|---|---|
| AbstractList | In this study, Portable Document Format (PDF), Word, Excel, Rich Test format (RTF) and image documents are taken as the research objects to study a static and fast method by which to detect malicious documents. Malicious PDF and Word document features are abstracted and extended, which can be used to detect other types of documents. A universal static detection framework for malicious documents based on feature generalization is then proposed. The generalized features include specification check errors, the structure path, code keywords, and the number of objects. The proposed method is verified on two datasets, and is compared with Kaspersky, NOD32, and McAfee antivirus software. The experimental results demonstrate that the proposed method achieves good performance in terms of the detection accuracy, runtime, and scalability. The average F1-score of all types of documents is found to be 0.99, and the average detection time of a document is 0.5926 s, which is at the same level as the compared antivirus software. |
| Author | Wang, Fei Jiang, Cheng Lu, Xiaofeng Lio, Pietro |
| Author_xml | – sequence: 1 givenname: Xiaofeng orcidid: 0000-0003-1033-164X surname: Lu fullname: Lu, Xiaofeng – sequence: 2 givenname: Fei surname: Wang fullname: Wang, Fei – sequence: 3 givenname: Cheng surname: Jiang fullname: Jiang, Cheng – sequence: 4 givenname: Pietro surname: Lio fullname: Lio, Pietro |
| BookMark | eNptUU1LxDAQDaKgrt78AQGvriZN0qZH3fVjQfGgXryEaTqVrN1mTVJFf71dV0HEuczM483jPWaXbHa-Q0IOODsWomQnsFxynkmecSE3yE7GinwsJC82f83bZD_GORuq5EJztkMeT-lD514xRGjpDbTOOt9HOvW2X2CXIr1LkJylU0xok_MdvQiwwDcfnukZRKzpCkJIfUB6iR2GQeMDVsw9stVAG3H_u4_Iw8X5_eRqfH17OZucXo-t4FqOyzqTtWoUU4XllYJG6crWea5Z0_BCgi1LCwXyYRegSmUriSAqyfJSg1ZcjMhsrVt7mJtlcAsI78aDM1-AD08GwpChRdMohVCrrCiVkFBp3UimFTCL0loAO2gdrrWWwb_0GJOZ-z50g32T5TwrpJRcD6xszbLBxxiwMdalr8wpgGsNZ2b1EvP7JcPR0Z-jH6v_0j8BieuOsg |
| CitedBy_id | crossref_primary_10_1007_s00521_024_10314_y crossref_primary_10_1117_1_JEI_31_3_033046 crossref_primary_10_1016_j_icte_2024_03_005 crossref_primary_10_3390_e25071099 |
| Cites_doi | 10.1109/TrustCom/BigDataSE.2018.00144 10.1109/TIFS.2016.2631905 10.1109/ICCCN.2019.8846940 10.1007/978-3-540-73614-1_14 10.1145/2600176.2600177 10.1016/j.cose.2014.10.014 10.1109/ICIIECS.2017.8276144 10.1007/3-540-36084-0_15 10.1145/2076732.2076785 10.1186/s13388-016-0026-3 10.1109/JISIC.2014.23 10.1109/INFCOMW.2017.8116414 10.1007/s11416-012-0166-z 10.1109/MALWARE.2012.6461002 10.1109/DSN.2018.00057 10.1145/1920261.1920305 10.1016/j.future.2019.04.012 10.1007/978-3-642-31537-4_40 10.1007/s11416-007-0060-2 10.1109/TAAI.2013.43 10.1155/2019/8485365 10.1145/2420950.2420987 10.1109/IAW.2007.381941 10.1109/SYNASC49474.2019.00041 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/app112412134 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition Open Access资源_DOAJ |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_f55ead5279534ab88f4085a0ce4ccaac 10_3390_app112412134 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c3184-9d24d5f5057c1b5af58bcd6680ff174ac99ca7e180f3a595cb4ea3b40698a8513 |
| IEDL.DBID | PIMPY |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:32:11 EDT 2025 Mon Jun 30 11:23:01 EDT 2025 Sat Nov 29 07:10:19 EST 2025 Tue Nov 18 21:58:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3184-9d24d5f5057c1b5af58bcd6680ff174ac99ca7e180f3a595cb4ea3b40698a8513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1033-164X |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2612744418?pq-origsite=%requestingapplication% |
| PQID | 2612744418 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f55ead5279534ab88f4085a0ce4ccaac proquest_journals_2612744418 crossref_citationtrail_10_3390_app112412134 crossref_primary_10_3390_app112412134 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Le (ref_47) 2016; 2 ref_50 Nissim (ref_24) 2015; 48 ref_14 ref_13 ref_11 ref_19 ref_18 ref_16 ref_15 ref_25 Vatamanu (ref_17) 2012; 8 ref_21 ref_20 Wu (ref_45) 2019; 36 ref_29 ref_28 ref_26 Nissim (ref_9) 2017; 12 Toth (ref_12) 2002; Volume 2516 ref_36 ref_35 ref_33 ref_32 ref_31 ref_30 ref_39 ref_38 ref_37 Du (ref_10) 2019; 40 Nissim (ref_22) 2016; 5 ref_44 ref_43 Le (ref_46) 2017; 38 Li (ref_27) 2007; 4579 ref_42 ref_41 ref_40 ref_1 ref_3 ref_2 Yu (ref_8) 2019; 99 ref_49 Jeong (ref_23) 2019; 2019 ref_48 Lagadec (ref_34) 2008; 4 ref_5 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_48 doi: 10.1109/TrustCom/BigDataSE.2018.00144 – ident: ref_49 – ident: ref_5 – ident: ref_32 – volume: 2 start-page: 34 year: 2016 ident: ref_47 article-title: Research on OLE object vulnerability analysis for RTF publication-title: J. Netw. Inf. Secur. – volume: 12 start-page: 631 year: 2017 ident: ref_9 article-title: ALDOCX: Detection of Unknown Malicious Microsoft Office Documents Using Designated Active Learning Methods Based on New Structural Feature Extraction Methodology publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2016.2631905 – ident: ref_39 – ident: ref_29 doi: 10.1109/ICCCN.2019.8846940 – ident: ref_1 – ident: ref_35 – volume: 4579 start-page: 231 year: 2007 ident: ref_27 article-title: A Study of Malcode-Bearing Documents publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-540-73614-1_14 – ident: ref_15 doi: 10.1145/2600176.2600177 – ident: ref_4 – ident: ref_31 – volume: 48 start-page: 246 year: 2015 ident: ref_24 article-title: Detection of malicious PDF files and directions for enhancements: A state-of-the art survey publication-title: Comput. Secur. doi: 10.1016/j.cose.2014.10.014 – ident: ref_44 doi: 10.1109/ICIIECS.2017.8276144 – volume: Volume 2516 start-page: 274 year: 2002 ident: ref_12 article-title: Accurate buffer overflow detection via abstract payload execution publication-title: International Workshop on Recent Advances in Intrusion Detection doi: 10.1007/3-540-36084-0_15 – ident: ref_16 doi: 10.1145/2076732.2076785 – volume: 5 start-page: 1 year: 2016 ident: ref_22 article-title: Keeping pace with the creation of new malicious PDF files using an active-learning based detection framework publication-title: Secur. Inform. doi: 10.1186/s13388-016-0026-3 – ident: ref_41 – ident: ref_21 doi: 10.1109/JISIC.2014.23 – ident: ref_13 – ident: ref_38 – ident: ref_20 – ident: ref_28 – volume: 38 start-page: 96 year: 2017 ident: ref_46 article-title: Research on RTF array overflow vulnerability mining technology publication-title: J. Commun. – ident: ref_30 – volume: 36 start-page: 233 year: 2019 ident: ref_45 article-title: Research on JPEG steganalysis algorithm based on fusion features publication-title: Comput. Simul. – ident: ref_3 – ident: ref_7 doi: 10.1109/INFCOMW.2017.8116414 – volume: 8 start-page: 151 year: 2012 ident: ref_17 article-title: A practical approach on clustering malicious PDF documents publication-title: J. Comput. Virol. doi: 10.1007/s11416-012-0166-z – ident: ref_40 – ident: ref_37 – ident: ref_50 doi: 10.1109/MALWARE.2012.6461002 – volume: 40 start-page: 118 year: 2019 ident: ref_10 article-title: Malicious PDF document detection based on mixed feature publication-title: J. Commun. – ident: ref_33 doi: 10.1109/DSN.2018.00057 – ident: ref_14 doi: 10.1145/1920261.1920305 – ident: ref_6 – ident: ref_25 – ident: ref_2 – volume: 99 start-page: 517 year: 2019 ident: ref_8 article-title: Malicious documents detection for business process management based on multi-layer abstract model publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.04.012 – ident: ref_18 doi: 10.1007/978-3-642-31537-4_40 – volume: 4 start-page: 115 year: 2008 ident: ref_34 article-title: OpenDocument and Open XML security (OpenOffice.org and MS Office 2007) publication-title: J. Comput. Virol. doi: 10.1007/s11416-007-0060-2 – ident: ref_26 doi: 10.1109/TAAI.2013.43 – volume: 2019 start-page: 8485365 year: 2019 ident: ref_23 article-title: Malware Detection on Byte Streams of PDF Files Using Convolutional Neural Networks publication-title: Secur. Commun. Netw. doi: 10.1155/2019/8485365 – ident: ref_36 – ident: ref_43 – ident: ref_19 doi: 10.1145/2420950.2420987 – ident: ref_42 doi: 10.1109/IAW.2007.381941 – ident: ref_11 doi: 10.1109/SYNASC49474.2019.00041 |
| SSID | ssj0000913810 |
| Score | 2.284423 |
| Snippet | In this study, Portable Document Format (PDF), Word, Excel, Rich Test format (RTF) and image documents are taken as the research objects to study a static and... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 12134 |
| SubjectTerms | Active learning Anti-virus software Design feature generalization JavaScript Keywords machine learning malicious document detection Methods static detection |
| SummonAdditionalLinks | – databaseName: Open Access资源_DOAJ dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQg7qq4vshBQZFi2yRNc_S1eHHxoCBeSp4gSJXd1d_vTJpdVkS8eGyaNulkkpmh33xDyJGWZe6EROrLImSc5TYzOtLdgXPKjWeGuVhsQo5G9dOTul8o9YWYsI4euBPceRACPlaUUgnGtanrgJxcOreew-Da4umbS7UQTMUzWBVIXdUh3RnE9fg_GFwLHhnMvtmgSNX_4ySO5mW4QdaTX0gvuvn0yJJv-2RtgS2wT3ppH07oSSKLPt0kzxc0YSvg6Ttwqi2CWinYjo-YvEbRm3yx9NpPI-iqpcMZHIteggVzFJt8pPek6bUpNXOLPA5vHq5us1QvIbOwM3mmXMmdCBhy2MIIHURtrKuqOg8BAg9tlbJa-gKumRZKWMO9ZgZzX2sNnhfbJsvtW-t3CFVM5BazcFXheAV3pdQmuML5KuhKswE5m0mwsYlMHGtavDYQVKC8m0V5D8jxvPd7R6LxS79LXIx5H6S-jg2gEE1SiOYvhRiQ_dlSNmk_ThokSpMcXL969z_G2COrJWJbIqxlnyxPxx_-gKzYz-nLZHwYVfELcmbj4g priority: 102 providerName: Directory of Open Access Journals |
| Title | A Universal Malicious Documents Static Detection Framework Based on Feature Generalization |
| URI | https://www.proquest.com/docview/2612744418 https://doaj.org/article/f55ead5279534ab88f4085a0ce4ccaac |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB6VpAd64NWipkDkA0hU1Yrd2N7HCREgKgeiCFGJcln5iSKhBJLA7--M4wQQak89ru1drTSel_3NNwD7quikVhZEfZn5RPDUJFoFujsMToV2XHMbmk0U_X55c1MNYnn0NMIqFzYxGOo52zPhttEIH9mxoRPzIyK-KgS68vL44TGhHlJ01xobaqxAk4i30gY0BxeXg9_LMxfiwCyzdI5_55jt0y0xBhwi8Jq98UyBwP-dfQ5Op7f-f393A9Zi8MlO5rtlEz640RZ8ekVJuAWbUdmn7DAyUn__DLcnLAI48O1LjNwNIWcZOqinUCHHKGQdGnbmZgHZNWK9BeaLddFNWkZDLnCIsvjZWP_5BX71zq9PfyaxKUNiUP1FUtmOsNJTXmMyLZWXpTY2z8vUe8xulKkqowqX4TNXspJGC6e4pgLbUmF4x7ehMRqP3FdgFZepoVLfKrMix9miUNrbzLrcq1zxFvxYCKQ2kbGcGmfc15i5kPjq1-JrwcFy9cOcqeMv67ok2-Ua4tcOA-PJXR3VtfZSoorJTlFJLpQuS09McCo1TuCWV6YFuwux11Hpp_WLlL_9e3oHVjsEjQmomF1ozCZPbg8-mufZcDppQ7N73h9ctcPxQDvu4T9TMQBB |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRL0ALS06kIBH6gEQhFJbCfxAaGWsuqq3dUeilS4BMcfqFK12-5uQfwpfiMzXmcpQnDrgWMcJ1Li55mx_eYNwHNd5qmVJUlfZj4RPDVJo4PcHQanonG84TYUmyiHw-r0VI1W4EebC0O0ytYmBkNtJ4b2yF-T1FUp0HlXby8uE6oaRaerbQmNBSyO3PdvuGSbvekf4Pju5nnv_cm7wyRWFUgM4lckyubCSk-Buckaqb2sGmOLokq9x_BcG6WMLl2G11xLJU0jnOYNZYhWGuMTju-9BasCwZ52YHXUH4w-Lnd1SGWzytIFw55zldI5NIY0Iiin_eb7QomAPzxAcGu9-__bD3kA92IAzfYWiF-HFTfegLVrsoobsB4N1oy9iKraLx_Cpz0WSSj49ABXH4bYvwyd7FXI8mMUdp8ZduDmgZ02Zr2Wt8b20dVbRk0u6KCy-NqYw7oJH27ki7egM56M3TYwxWVqKF1ZZVYUeLcsdeNtZl3hdaF5F161Q16bqLpOxT_Oa1x9EUDq6wDpwu6y98VCbeQv_fYJPcs-pBEeGibTL3U0ObWXEs2EzEsludBNVXlSs9OpcQKnrTZd2GmBVUfDNat_oerRv28_gzuHJ4Pj-rg_PHoMd3Oi-gSWzw505tMr9wRum6_zs9n0aZwjDD7fNAp_AlySTtE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLUJwAFpALBTwgUogFDWJ7SQ-INSyrFiVrvYAUuES_Ikqod2yuwXx1_h1zHidpQjBrQeOsR1LiZ9nxsmbNwCPdV3mTtYkfVmETPDcZkZHuTsMToXx3HAXi03U43FzfKwmG_Cjy4UhWmVnE6OhdjNL38j3SOqqFui8m72QaBGTwfDF6ZeMKkjRn9aunMYKIof--zc8vi2ejwa41rtlOXz19uXrLFUYyCxiWWTKlcLJQEG6LYzUQTbGuqpq8hAwVNdWKatrX-A111JJa4TX3FC2aKMxVuE47yXYrKl-bw82J6Ojyfv1Fx5S3GyKfMW251zl9E8awxsRVdR-84OxXMAf3iC6uOGN__nl3ITrKbBm-6udsAUbfroN187JLW7DVjJkC_YkqW0_vQUf9lkip-DdR3gqscQKZuh8z2L2H6Nw_MSygV9G1tqUDTs-GzvAEMAxavJRH5WlaVNu6214dyFPfAd609nU3wWmuMwtpTGrwokKe-tam-AK56ugK8378Kxb_tYmNXYqCvK5xVMZgaU9D5Y-7K5Hn65USP4y7oCQtB5D2uGxYTb_1CZT1AYp0XzIslaSC22aJpDKnc6tF7idte3DTgeyNhm0RfsLYff-3f0IriD02jej8eF9uFoSAyiSf3agt5yf-Qdw2X5dnizmD9N2YfDxokH4EyNtV5o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Universal+Malicious+Documents+Static+Detection+Framework+Based+on+Feature+Generalization&rft.jtitle=Applied+sciences&rft.au=Lu%2C+Xiaofeng&rft.au=Wang%2C+Fei&rft.au=Jiang%2C+Cheng&rft.au=Lio%2C+Pietro&rft.date=2021-12-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=11&rft.issue=24&rft.spage=12134&rft_id=info:doi/10.3390%2Fapp112412134&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app112412134 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |