A Universal Malicious Documents Static Detection Framework Based on Feature Generalization

In this study, Portable Document Format (PDF), Word, Excel, Rich Test format (RTF) and image documents are taken as the research objects to study a static and fast method by which to detect malicious documents. Malicious PDF and Word document features are abstracted and extended, which can be used t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 11; číslo 24; s. 12134
Hlavní autoři: Lu, Xiaofeng, Wang, Fei, Jiang, Cheng, Lio, Pietro
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.12.2021
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this study, Portable Document Format (PDF), Word, Excel, Rich Test format (RTF) and image documents are taken as the research objects to study a static and fast method by which to detect malicious documents. Malicious PDF and Word document features are abstracted and extended, which can be used to detect other types of documents. A universal static detection framework for malicious documents based on feature generalization is then proposed. The generalized features include specification check errors, the structure path, code keywords, and the number of objects. The proposed method is verified on two datasets, and is compared with Kaspersky, NOD32, and McAfee antivirus software. The experimental results demonstrate that the proposed method achieves good performance in terms of the detection accuracy, runtime, and scalability. The average F1-score of all types of documents is found to be 0.99, and the average detection time of a document is 0.5926 s, which is at the same level as the compared antivirus software.
AbstractList In this study, Portable Document Format (PDF), Word, Excel, Rich Test format (RTF) and image documents are taken as the research objects to study a static and fast method by which to detect malicious documents. Malicious PDF and Word document features are abstracted and extended, which can be used to detect other types of documents. A universal static detection framework for malicious documents based on feature generalization is then proposed. The generalized features include specification check errors, the structure path, code keywords, and the number of objects. The proposed method is verified on two datasets, and is compared with Kaspersky, NOD32, and McAfee antivirus software. The experimental results demonstrate that the proposed method achieves good performance in terms of the detection accuracy, runtime, and scalability. The average F1-score of all types of documents is found to be 0.99, and the average detection time of a document is 0.5926 s, which is at the same level as the compared antivirus software.
Author Wang, Fei
Jiang, Cheng
Lu, Xiaofeng
Lio, Pietro
Author_xml – sequence: 1
  givenname: Xiaofeng
  orcidid: 0000-0003-1033-164X
  surname: Lu
  fullname: Lu, Xiaofeng
– sequence: 2
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
– sequence: 3
  givenname: Cheng
  surname: Jiang
  fullname: Jiang, Cheng
– sequence: 4
  givenname: Pietro
  surname: Lio
  fullname: Lio, Pietro
BookMark eNptUU1LxDAQDaKgrt78AQGvriZN0qZH3fVjQfGgXryEaTqVrN1mTVJFf71dV0HEuczM483jPWaXbHa-Q0IOODsWomQnsFxynkmecSE3yE7GinwsJC82f83bZD_GORuq5EJztkMeT-lD514xRGjpDbTOOt9HOvW2X2CXIr1LkJylU0xok_MdvQiwwDcfnukZRKzpCkJIfUB6iR2GQeMDVsw9stVAG3H_u4_Iw8X5_eRqfH17OZucXo-t4FqOyzqTtWoUU4XllYJG6crWea5Z0_BCgi1LCwXyYRegSmUriSAqyfJSg1ZcjMhsrVt7mJtlcAsI78aDM1-AD08GwpChRdMohVCrrCiVkFBp3UimFTCL0loAO2gdrrWWwb_0GJOZ-z50g32T5TwrpJRcD6xszbLBxxiwMdalr8wpgGsNZ2b1EvP7JcPR0Z-jH6v_0j8BieuOsg
CitedBy_id crossref_primary_10_1007_s00521_024_10314_y
crossref_primary_10_1117_1_JEI_31_3_033046
crossref_primary_10_1016_j_icte_2024_03_005
crossref_primary_10_3390_e25071099
Cites_doi 10.1109/TrustCom/BigDataSE.2018.00144
10.1109/TIFS.2016.2631905
10.1109/ICCCN.2019.8846940
10.1007/978-3-540-73614-1_14
10.1145/2600176.2600177
10.1016/j.cose.2014.10.014
10.1109/ICIIECS.2017.8276144
10.1007/3-540-36084-0_15
10.1145/2076732.2076785
10.1186/s13388-016-0026-3
10.1109/JISIC.2014.23
10.1109/INFCOMW.2017.8116414
10.1007/s11416-012-0166-z
10.1109/MALWARE.2012.6461002
10.1109/DSN.2018.00057
10.1145/1920261.1920305
10.1016/j.future.2019.04.012
10.1007/978-3-642-31537-4_40
10.1007/s11416-007-0060-2
10.1109/TAAI.2013.43
10.1155/2019/8485365
10.1145/2420950.2420987
10.1109/IAW.2007.381941
10.1109/SYNASC49474.2019.00041
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app112412134
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Open Access资源_DOAJ
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_f55ead5279534ab88f4085a0ce4ccaac
10_3390_app112412134
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c3184-9d24d5f5057c1b5af58bcd6680ff174ac99ca7e180f3a595cb4ea3b40698a8513
IEDL.DBID PIMPY
ISSN 2076-3417
IngestDate Fri Oct 03 12:32:11 EDT 2025
Mon Jun 30 11:23:01 EDT 2025
Sat Nov 29 07:10:19 EST 2025
Tue Nov 18 21:58:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3184-9d24d5f5057c1b5af58bcd6680ff174ac99ca7e180f3a595cb4ea3b40698a8513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1033-164X
OpenAccessLink https://www.proquest.com/publiccontent/docview/2612744418?pq-origsite=%requestingapplication%
PQID 2612744418
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_f55ead5279534ab88f4085a0ce4ccaac
proquest_journals_2612744418
crossref_citationtrail_10_3390_app112412134
crossref_primary_10_3390_app112412134
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Le (ref_47) 2016; 2
ref_50
Nissim (ref_24) 2015; 48
ref_14
ref_13
ref_11
ref_19
ref_18
ref_16
ref_15
ref_25
Vatamanu (ref_17) 2012; 8
ref_21
ref_20
Wu (ref_45) 2019; 36
ref_29
ref_28
ref_26
Nissim (ref_9) 2017; 12
Toth (ref_12) 2002; Volume 2516
ref_36
ref_35
ref_33
ref_32
ref_31
ref_30
ref_39
ref_38
ref_37
Du (ref_10) 2019; 40
Nissim (ref_22) 2016; 5
ref_44
ref_43
Le (ref_46) 2017; 38
Li (ref_27) 2007; 4579
ref_42
ref_41
ref_40
ref_1
ref_3
ref_2
Yu (ref_8) 2019; 99
ref_49
Jeong (ref_23) 2019; 2019
ref_48
Lagadec (ref_34) 2008; 4
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_48
  doi: 10.1109/TrustCom/BigDataSE.2018.00144
– ident: ref_49
– ident: ref_5
– ident: ref_32
– volume: 2
  start-page: 34
  year: 2016
  ident: ref_47
  article-title: Research on OLE object vulnerability analysis for RTF
  publication-title: J. Netw. Inf. Secur.
– volume: 12
  start-page: 631
  year: 2017
  ident: ref_9
  article-title: ALDOCX: Detection of Unknown Malicious Microsoft Office Documents Using Designated Active Learning Methods Based on New Structural Feature Extraction Methodology
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2016.2631905
– ident: ref_39
– ident: ref_29
  doi: 10.1109/ICCCN.2019.8846940
– ident: ref_1
– ident: ref_35
– volume: 4579
  start-page: 231
  year: 2007
  ident: ref_27
  article-title: A Study of Malcode-Bearing Documents
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-73614-1_14
– ident: ref_15
  doi: 10.1145/2600176.2600177
– ident: ref_4
– ident: ref_31
– volume: 48
  start-page: 246
  year: 2015
  ident: ref_24
  article-title: Detection of malicious PDF files and directions for enhancements: A state-of-the art survey
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2014.10.014
– ident: ref_44
  doi: 10.1109/ICIIECS.2017.8276144
– volume: Volume 2516
  start-page: 274
  year: 2002
  ident: ref_12
  article-title: Accurate buffer overflow detection via abstract payload execution
  publication-title: International Workshop on Recent Advances in Intrusion Detection
  doi: 10.1007/3-540-36084-0_15
– ident: ref_16
  doi: 10.1145/2076732.2076785
– volume: 5
  start-page: 1
  year: 2016
  ident: ref_22
  article-title: Keeping pace with the creation of new malicious PDF files using an active-learning based detection framework
  publication-title: Secur. Inform.
  doi: 10.1186/s13388-016-0026-3
– ident: ref_41
– ident: ref_21
  doi: 10.1109/JISIC.2014.23
– ident: ref_13
– ident: ref_38
– ident: ref_20
– ident: ref_28
– volume: 38
  start-page: 96
  year: 2017
  ident: ref_46
  article-title: Research on RTF array overflow vulnerability mining technology
  publication-title: J. Commun.
– ident: ref_30
– volume: 36
  start-page: 233
  year: 2019
  ident: ref_45
  article-title: Research on JPEG steganalysis algorithm based on fusion features
  publication-title: Comput. Simul.
– ident: ref_3
– ident: ref_7
  doi: 10.1109/INFCOMW.2017.8116414
– volume: 8
  start-page: 151
  year: 2012
  ident: ref_17
  article-title: A practical approach on clustering malicious PDF documents
  publication-title: J. Comput. Virol.
  doi: 10.1007/s11416-012-0166-z
– ident: ref_40
– ident: ref_37
– ident: ref_50
  doi: 10.1109/MALWARE.2012.6461002
– volume: 40
  start-page: 118
  year: 2019
  ident: ref_10
  article-title: Malicious PDF document detection based on mixed feature
  publication-title: J. Commun.
– ident: ref_33
  doi: 10.1109/DSN.2018.00057
– ident: ref_14
  doi: 10.1145/1920261.1920305
– ident: ref_6
– ident: ref_25
– ident: ref_2
– volume: 99
  start-page: 517
  year: 2019
  ident: ref_8
  article-title: Malicious documents detection for business process management based on multi-layer abstract model
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.04.012
– ident: ref_18
  doi: 10.1007/978-3-642-31537-4_40
– volume: 4
  start-page: 115
  year: 2008
  ident: ref_34
  article-title: OpenDocument and Open XML security (OpenOffice.org and MS Office 2007)
  publication-title: J. Comput. Virol.
  doi: 10.1007/s11416-007-0060-2
– ident: ref_26
  doi: 10.1109/TAAI.2013.43
– volume: 2019
  start-page: 8485365
  year: 2019
  ident: ref_23
  article-title: Malware Detection on Byte Streams of PDF Files Using Convolutional Neural Networks
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2019/8485365
– ident: ref_36
– ident: ref_43
– ident: ref_19
  doi: 10.1145/2420950.2420987
– ident: ref_42
  doi: 10.1109/IAW.2007.381941
– ident: ref_11
  doi: 10.1109/SYNASC49474.2019.00041
SSID ssj0000913810
Score 2.284423
Snippet In this study, Portable Document Format (PDF), Word, Excel, Rich Test format (RTF) and image documents are taken as the research objects to study a static and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 12134
SubjectTerms Active learning
Anti-virus software
Design
feature generalization
JavaScript
Keywords
machine learning
malicious document detection
Methods
static detection
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQg7qq4vshBQZFi2yRNc_S1eHHxoCBeSp4gSJXd1d_vTJpdVkS8eGyaNulkkpmh33xDyJGWZe6EROrLImSc5TYzOtLdgXPKjWeGuVhsQo5G9dOTul8o9YWYsI4euBPceRACPlaUUgnGtanrgJxcOreew-Da4umbS7UQTMUzWBVIXdUh3RnE9fg_GFwLHhnMvtmgSNX_4ySO5mW4QdaTX0gvuvn0yJJv-2RtgS2wT3ppH07oSSKLPt0kzxc0YSvg6Ttwqi2CWinYjo-YvEbRm3yx9NpPI-iqpcMZHIteggVzFJt8pPek6bUpNXOLPA5vHq5us1QvIbOwM3mmXMmdCBhy2MIIHURtrKuqOg8BAg9tlbJa-gKumRZKWMO9ZgZzX2sNnhfbJsvtW-t3CFVM5BazcFXheAV3pdQmuML5KuhKswE5m0mwsYlMHGtavDYQVKC8m0V5D8jxvPd7R6LxS79LXIx5H6S-jg2gEE1SiOYvhRiQ_dlSNmk_ThokSpMcXL969z_G2COrJWJbIqxlnyxPxx_-gKzYz-nLZHwYVfELcmbj4g
  priority: 102
  providerName: Directory of Open Access Journals
Title A Universal Malicious Documents Static Detection Framework Based on Feature Generalization
URI https://www.proquest.com/docview/2612744418
https://doaj.org/article/f55ead5279534ab88f4085a0ce4ccaac
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB6VpAd64NWipkDkA0hU1Yrd2N7HCREgKgeiCFGJcln5iSKhBJLA7--M4wQQak89ru1drTSel_3NNwD7quikVhZEfZn5RPDUJFoFujsMToV2XHMbmk0U_X55c1MNYnn0NMIqFzYxGOo52zPhttEIH9mxoRPzIyK-KgS68vL44TGhHlJ01xobaqxAk4i30gY0BxeXg9_LMxfiwCyzdI5_55jt0y0xBhwi8Jq98UyBwP-dfQ5Op7f-f393A9Zi8MlO5rtlEz640RZ8ekVJuAWbUdmn7DAyUn__DLcnLAI48O1LjNwNIWcZOqinUCHHKGQdGnbmZgHZNWK9BeaLddFNWkZDLnCIsvjZWP_5BX71zq9PfyaxKUNiUP1FUtmOsNJTXmMyLZWXpTY2z8vUe8xulKkqowqX4TNXspJGC6e4pgLbUmF4x7ehMRqP3FdgFZepoVLfKrMix9miUNrbzLrcq1zxFvxYCKQ2kbGcGmfc15i5kPjq1-JrwcFy9cOcqeMv67ok2-Ua4tcOA-PJXR3VtfZSoorJTlFJLpQuS09McCo1TuCWV6YFuwux11Hpp_WLlL_9e3oHVjsEjQmomF1ozCZPbg8-mufZcDppQ7N73h9ctcPxQDvu4T9TMQBB
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRL0ALS06kIBH6gEQhFJbCfxAaGWsuqq3dUeilS4BMcfqFK12-5uQfwpfiMzXmcpQnDrgWMcJ1Li55mx_eYNwHNd5qmVJUlfZj4RPDVJo4PcHQanonG84TYUmyiHw-r0VI1W4EebC0O0ytYmBkNtJ4b2yF-T1FUp0HlXby8uE6oaRaerbQmNBSyO3PdvuGSbvekf4Pju5nnv_cm7wyRWFUgM4lckyubCSk-Buckaqb2sGmOLokq9x_BcG6WMLl2G11xLJU0jnOYNZYhWGuMTju-9BasCwZ52YHXUH4w-Lnd1SGWzytIFw55zldI5NIY0Iiin_eb7QomAPzxAcGu9-__bD3kA92IAzfYWiF-HFTfegLVrsoobsB4N1oy9iKraLx_Cpz0WSSj49ABXH4bYvwyd7FXI8mMUdp8ZduDmgZ02Zr2Wt8b20dVbRk0u6KCy-NqYw7oJH27ki7egM56M3TYwxWVqKF1ZZVYUeLcsdeNtZl3hdaF5F161Q16bqLpOxT_Oa1x9EUDq6wDpwu6y98VCbeQv_fYJPcs-pBEeGibTL3U0ObWXEs2EzEsludBNVXlSs9OpcQKnrTZd2GmBVUfDNat_oerRv28_gzuHJ4Pj-rg_PHoMd3Oi-gSWzw505tMr9wRum6_zs9n0aZwjDD7fNAp_AlySTtE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLUJwAFpALBTwgUogFDWJ7SQ-INSyrFiVrvYAUuES_Ikqod2yuwXx1_h1zHidpQjBrQeOsR1LiZ9nxsmbNwCPdV3mTtYkfVmETPDcZkZHuTsMToXx3HAXi03U43FzfKwmG_Cjy4UhWmVnE6OhdjNL38j3SOqqFui8m72QaBGTwfDF6ZeMKkjRn9aunMYKIof--zc8vi2ejwa41rtlOXz19uXrLFUYyCxiWWTKlcLJQEG6LYzUQTbGuqpq8hAwVNdWKatrX-A111JJa4TX3FC2aKMxVuE47yXYrKl-bw82J6Ojyfv1Fx5S3GyKfMW251zl9E8awxsRVdR-84OxXMAf3iC6uOGN__nl3ITrKbBm-6udsAUbfroN187JLW7DVjJkC_YkqW0_vQUf9lkip-DdR3gqscQKZuh8z2L2H6Nw_MSygV9G1tqUDTs-GzvAEMAxavJRH5WlaVNu6214dyFPfAd609nU3wWmuMwtpTGrwokKe-tam-AK56ugK8378Kxb_tYmNXYqCvK5xVMZgaU9D5Y-7K5Hn65USP4y7oCQtB5D2uGxYTb_1CZT1AYp0XzIslaSC22aJpDKnc6tF7idte3DTgeyNhm0RfsLYff-3f0IriD02jej8eF9uFoSAyiSf3agt5yf-Qdw2X5dnizmD9N2YfDxokH4EyNtV5o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Universal+Malicious+Documents+Static+Detection+Framework+Based+on+Feature+Generalization&rft.jtitle=Applied+sciences&rft.au=Lu%2C+Xiaofeng&rft.au=Wang%2C+Fei&rft.au=Jiang%2C+Cheng&rft.au=Lio%2C+Pietro&rft.date=2021-12-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=11&rft.issue=24&rft.spage=12134&rft_id=info:doi/10.3390%2Fapp112412134&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app112412134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon