A Sub‐Optimum Algorithm for Turning on/Off Co‐Channel Access Points in Ultra‐Dense Networks
ABSTRACT This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per link in ultra‐dense networks (UDNs) consisting of densely distributed co‐channel access points (APs) and user equipment (UEs). The pr...
Saved in:
| Published in: | Engineering reports (Hoboken, N.J.) Vol. 7; no. 11 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2025
Wiley |
| Subjects: | |
| ISSN: | 2577-8196, 2577-8196 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | ABSTRACT
This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per link in ultra‐dense networks (UDNs) consisting of densely distributed co‐channel access points (APs) and user equipment (UEs). The proposed seven‐step algorithm first assigns UEs to APs that provide higher data rates while accounting for the interference of all APs. Next, only the interference from the selected APs is considered to identify UEs that meet the minimum throughput threshold level. In subsequent steps, considering both the interference of previously assigned APs and the remaining candidate APs, additional UEs are connected. Simulation results in MATLAB for a 250m×250m$$ 250\ \mathrm{m}\times 250\ \mathrm{m} $$ service area with 250$$ 250 $$ randomly distributed APs and varying numbers of UEs (25–250$$ 250 $$) demonstrate that the proposed algorithm achieves higher connectivity and total throughput with significantly reduced processing time compared to the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search (CS), and Gray Wolf Optimization (GWO). Specifically, as the number of UEs increases from 10%$$ 10\% $$ to 100%$$ 100\% $$ of the number of APs, the proposed algorithm improves the number of connected UEs by 10%−48%$$ 10\%-48\% $$, 47%−96%$$ 47\%-96\% $$, 57%−109%$$ 57\%-109\% $$, and 22%−58%$$ 22\%-58\% $$, and the total throughput by 20%−52%$$ 20\%-52\% $$, 44%−86%$$ 44\%-86\% $$, 50%−105%$$ 50\%-105\% $$, and 22%−69%$$ 22\%-69\% $$, respectively, over the four benchmark algorithms. Moreover, owing to its lower computational complexity, the proposed method achieves at least 99%$$ 99\% $$ reduction in processing time.
In the proposed seven‐step Kuhn–Munkres–based resource allocation algorithm, users are initially assigned to access points that support higher data rates while accounting for interference from all access points. Next, only the interference from the selected access points is considered to identify users connected to these access points who meet the minimum throughput threshold.
argmaxxi,jk,l∑l=1NP∑k=1NC∑j=1NAT∑i=1NUTxi,jk,l×RBk.l(i,j)Subject to:C1:xi,jk,l∈{0,1},∀i∈1,…,NUT,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NPC2:∑i=1NUTxi,jk,l≤NC,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NPC3:∑j=1NATxi,jk,l≤1,∀i∈1,…,NUT,∀k∈1,…,NC,∀l∈1,…,NPC4:RBk.l(i,j)≥RBth,∀i∈1,…,NUT,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NPC5:Pt,jk,l=Ptmin+l−1NP−1×Ptmax−Ptmin,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NP$$ \left\{\begin{array}{l}\underset{x_{i,j}^{k,l}}{\mathrm{argmax}}\left(\sum \limits_{l=1}^{N_P}\sum \limits_{k=1}^{N_C}{\sum}_{\mathrm{j}=1}^{{\mathrm{N}}_{\mathrm{AT}}}{\sum}_{i=1}^{N_{\mathrm{UT}}}{x}_{i,j}^{k,l}\times {R}_B^{k.l}\left(i,j\right)\right)\kern17.25em \\ {}\mathrm{Subject}\kern0.34em \mathrm{to}:\kern33.25em \\ {}{\mathrm{C}}_1:\kern0.5em {x}_{i,j}^{k,l}\in \left\{0,1\right\},\kern15.25em \forall \mathrm{i}\in \left\{1,\dots, {N}_{\mathrm{UT}}\right\},\forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\\ {}\kern22em \forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\ \\ {}{\mathrm{C}}_2:\kern0.5em {\sum}_{i=1}^{N_{\mathrm{UT}}}{x}_{i,j}^{k,l}\le {N}_C,\kern13.5em \forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\kern0.5em \\ {}\kern14em \forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\\ {}\ \\ {}{\mathrm{C}}_3:\kern0.5em {\sum}_{j=1}^{N_{\mathrm{AT}}}{x}_{i,j}^{k,l}\le 1,\kern14em \forall \mathrm{i}\in \left\{1,\dots, {N}_{\mathrm{UT}}\right\},\forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\\ {}\kern14.25em \forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\\ {}{\mathrm{C}}_4:{R}_B^{k.l}\left(i,j\right)\ge {R_B}_{\mathrm{th}},\kern13.5em \forall \mathrm{i}\in \left\{1,\dots, {N}_{\mathrm{UT}}\right\},\forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\\ {}\kern21.75em \forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\\ {}\begin{array}{l}{\mathrm{C}}_5:\kern0.5em {P}_{t,j}^{k,l}={P}_{\mathrm{tmin}}+\frac{\mathrm{l}-1}{N_P-1}\times \left({P}_{\mathrm{tmax}}-{P}_{\mathrm{tmin}}\right),\kern3em \forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\\ {}\kern13.75em \forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\end{array}\\ {}\end{array}\right. $$ |
|---|---|
| AbstractList | ABSTRACT This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per link in ultra‐dense networks (UDNs) consisting of densely distributed co‐channel access points (APs) and user equipment (UEs). The proposed seven‐step algorithm first assigns UEs to APs that provide higher data rates while accounting for the interference of all APs. Next, only the interference from the selected APs is considered to identify UEs that meet the minimum throughput threshold level. In subsequent steps, considering both the interference of previously assigned APs and the remaining candidate APs, additional UEs are connected. Simulation results in MATLAB for a 250m×250m$$ 250\ \mathrm{m}\times 250\ \mathrm{m} $$ service area with 250$$ 250 $$ randomly distributed APs and varying numbers of UEs (25–250$$ 250 $$) demonstrate that the proposed algorithm achieves higher connectivity and total throughput with significantly reduced processing time compared to the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search (CS), and Gray Wolf Optimization (GWO). Specifically, as the number of UEs increases from 10%$$ 10\% $$ to 100%$$ 100\% $$ of the number of APs, the proposed algorithm improves the number of connected UEs by 10%−48%$$ 10\%-48\% $$, 47%−96%$$ 47\%-96\% $$, 57%−109%$$ 57\%-109\% $$, and 22%−58%$$ 22\%-58\% $$, and the total throughput by 20%−52%$$ 20\%-52\% $$, 44%−86%$$ 44\%-86\% $$, 50%−105%$$ 50\%-105\% $$, and 22%−69%$$ 22\%-69\% $$, respectively, over the four benchmark algorithms. Moreover, owing to its lower computational complexity, the proposed method achieves at least 99%$$ 99\% $$ reduction in processing time. ABSTRACT This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per link in ultra‐dense networks (UDNs) consisting of densely distributed co‐channel access points (APs) and user equipment (UEs). The proposed seven‐step algorithm first assigns UEs to APs that provide higher data rates while accounting for the interference of all APs. Next, only the interference from the selected APs is considered to identify UEs that meet the minimum throughput threshold level. In subsequent steps, considering both the interference of previously assigned APs and the remaining candidate APs, additional UEs are connected. Simulation results in MATLAB for a 250m×250m$$ 250\ \mathrm{m}\times 250\ \mathrm{m} $$ service area with 250$$ 250 $$ randomly distributed APs and varying numbers of UEs (25–250$$ 250 $$) demonstrate that the proposed algorithm achieves higher connectivity and total throughput with significantly reduced processing time compared to the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search (CS), and Gray Wolf Optimization (GWO). Specifically, as the number of UEs increases from 10%$$ 10\% $$ to 100%$$ 100\% $$ of the number of APs, the proposed algorithm improves the number of connected UEs by 10%−48%$$ 10\%-48\% $$, 47%−96%$$ 47\%-96\% $$, 57%−109%$$ 57\%-109\% $$, and 22%−58%$$ 22\%-58\% $$, and the total throughput by 20%−52%$$ 20\%-52\% $$, 44%−86%$$ 44\%-86\% $$, 50%−105%$$ 50\%-105\% $$, and 22%−69%$$ 22\%-69\% $$, respectively, over the four benchmark algorithms. Moreover, owing to its lower computational complexity, the proposed method achieves at least 99%$$ 99\% $$ reduction in processing time. In the proposed seven‐step Kuhn–Munkres–based resource allocation algorithm, users are initially assigned to access points that support higher data rates while accounting for interference from all access points. Next, only the interference from the selected access points is considered to identify users connected to these access points who meet the minimum throughput threshold. argmaxxi,jk,l∑l=1NP∑k=1NC∑j=1NAT∑i=1NUTxi,jk,l×RBk.l(i,j)Subject to:C1:xi,jk,l∈{0,1},∀i∈1,…,NUT,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NPC2:∑i=1NUTxi,jk,l≤NC,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NPC3:∑j=1NATxi,jk,l≤1,∀i∈1,…,NUT,∀k∈1,…,NC,∀l∈1,…,NPC4:RBk.l(i,j)≥RBth,∀i∈1,…,NUT,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NPC5:Pt,jk,l=Ptmin+l−1NP−1×Ptmax−Ptmin,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NP$$ \left\{\begin{array}{l}\underset{x_{i,j}^{k,l}}{\mathrm{argmax}}\left(\sum \limits_{l=1}^{N_P}\sum \limits_{k=1}^{N_C}{\sum}_{\mathrm{j}=1}^{{\mathrm{N}}_{\mathrm{AT}}}{\sum}_{i=1}^{N_{\mathrm{UT}}}{x}_{i,j}^{k,l}\times {R}_B^{k.l}\left(i,j\right)\right)\kern17.25em \\ {}\mathrm{Subject}\kern0.34em \mathrm{to}:\kern33.25em \\ {}{\mathrm{C}}_1:\kern0.5em {x}_{i,j}^{k,l}\in \left\{0,1\right\},\kern15.25em \forall \mathrm{i}\in \left\{1,\dots, {N}_{\mathrm{UT}}\right\},\forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\\ {}\kern22em \forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\ \\ {}{\mathrm{C}}_2:\kern0.5em {\sum}_{i=1}^{N_{\mathrm{UT}}}{x}_{i,j}^{k,l}\le {N}_C,\kern13.5em \forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\kern0.5em \\ {}\kern14em \forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\\ {}\ \\ {}{\mathrm{C}}_3:\kern0.5em {\sum}_{j=1}^{N_{\mathrm{AT}}}{x}_{i,j}^{k,l}\le 1,\kern14em \forall \mathrm{i}\in \left\{1,\dots, {N}_{\mathrm{UT}}\right\},\forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\\ {}\kern14.25em \forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\\ {}{\mathrm{C}}_4:{R}_B^{k.l}\left(i,j\right)\ge {R_B}_{\mathrm{th}},\kern13.5em \forall \mathrm{i}\in \left\{1,\dots, {N}_{\mathrm{UT}}\right\},\forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\\ {}\kern21.75em \forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\\ {}\begin{array}{l}{\mathrm{C}}_5:\kern0.5em {P}_{t,j}^{k,l}={P}_{\mathrm{tmin}}+\frac{\mathrm{l}-1}{N_P-1}\times \left({P}_{\mathrm{tmax}}-{P}_{\mathrm{tmin}}\right),\kern3em \forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\\ {}\kern13.75em \forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\end{array}\\ {}\end{array}\right. $$ ABSTRACT This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per link in ultra‐dense networks (UDNs) consisting of densely distributed co‐channel access points (APs) and user equipment (UEs). The proposed seven‐step algorithm first assigns UEs to APs that provide higher data rates while accounting for the interference of all APs. Next, only the interference from the selected APs is considered to identify UEs that meet the minimum throughput threshold level. In subsequent steps, considering both the interference of previously assigned APs and the remaining candidate APs, additional UEs are connected. Simulation results in MATLAB for a 250m×250m service area with 250 randomly distributed APs and varying numbers of UEs (25–250) demonstrate that the proposed algorithm achieves higher connectivity and total throughput with significantly reduced processing time compared to the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search (CS), and Gray Wolf Optimization (GWO). Specifically, as the number of UEs increases from 10% to 100% of the number of APs, the proposed algorithm improves the number of connected UEs by 10%−48%, 47%−96%, 57%−109%, and 22%−58%, and the total throughput by 20%−52%, 44%−86%, 50%−105%, and 22%−69%, respectively, over the four benchmark algorithms. Moreover, owing to its lower computational complexity, the proposed method achieves at least 99% reduction in processing time. This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per link in ultra‐dense networks (UDNs) consisting of densely distributed co‐channel access points (APs) and user equipment (UEs). The proposed seven‐step algorithm first assigns UEs to APs that provide higher data rates while accounting for the interference of all APs. Next, only the interference from the selected APs is considered to identify UEs that meet the minimum throughput threshold level. In subsequent steps, considering both the interference of previously assigned APs and the remaining candidate APs, additional UEs are connected. Simulation results in MATLAB for a service area with randomly distributed APs and varying numbers of UEs (25–) demonstrate that the proposed algorithm achieves higher connectivity and total throughput with significantly reduced processing time compared to the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search (CS), and Gray Wolf Optimization (GWO). Specifically, as the number of UEs increases from to of the number of APs, the proposed algorithm improves the number of connected UEs by , , , and , and the total throughput by , , , and , respectively, over the four benchmark algorithms. Moreover, owing to its lower computational complexity, the proposed method achieves at least reduction in processing time. |
| Author | Ashoor, Ebrahim Shirvani Moghaddam, Shahriar Shirvani Moghaddam, Kiaksar |
| Author_xml | – sequence: 1 givenname: Shahriar orcidid: 0000-0002-8427-2446 surname: Shirvani Moghaddam fullname: Shirvani Moghaddam, Shahriar email: sh_shirvani@sru.ac.ir organization: Shahid Rajaee Teacher Training University (SRTTU) – sequence: 2 givenname: Kiaksar orcidid: 0000-0003-0249-1547 surname: Shirvani Moghaddam fullname: Shirvani Moghaddam, Kiaksar email: kiaksar.shirvani.m@gmail.com organization: Iran University of Science and Technology (IUST) – sequence: 3 givenname: Ebrahim surname: Ashoor fullname: Ashoor, Ebrahim email: ebrahim.ashoor1995@gmail.com organization: Shahid Rajaee Teacher Training University (SRTTU) |
| BookMark | eNp9kc1KAzEQx4Mo-HnxCQLehNZ87G52j6VqFcQK1nPIZic1dZvUZEvx5iP4jD6JsSviyVOG8JvfDPM_RLvOO0DolJIhJYRdgJuzoSBZyXfQAcuFGJS0Knb_1PvoJMYFSTAVlHBygNQIP67rz_eP6aqzy_USj9q5D7Z7XmLjA56tg7Nujr27mBqDxz6R42flHLR4pDXEiB-8dV3E1uGntgsqAZfgIuB76DY-vMRjtGdUG-Hk5z1CT9dXs_HN4G46uR2P7gaa05IPjGAUGGNUN4yrjBlFmcmhJsbkGTGVMDxvCC00I7looKam0SXPdKWLoqrrgh-h297beLWQq2CXKrxJr6zcfvgwlyp0VrcgdaOSrIAyL3UGTVMLagoNtDLJTKFOrrPetQr-dQ2xkwufLpHWl5wVVZnlXGSJOu8pHXyMAczvVErkdyLyOxG5TSTBtIc3toW3f0h5dT9hfc8XkRSRvg |
| Cites_doi | 10.1007/s10489‐014‐0645‐7 10.1002/nav.3800020109 10.3390/electronics13101986 10.1002/nav.3800030404 10.1109/MNET.2018.1800085 10.1007/s00521‐014‐1806‐7 10.1109/COMNETSAT53002.2021.9530777 10.1109/COMNETSAT53002.2021.9530808 10.3390/s23083899 10.3390/fi15110348 10.1109/MTTW56973.2022.9942598 10.1109/JSAC.2024.3443759 10.1016/j.swevo.2023.101290 10.1109/NABIC.2009.5393690 10.1109/ICCCE.2018.8539307 10.3390/sym15010002 10.1007/s00366‐011‐0241‐y 10.1007/s10489‐018‐1153‐y 10.1007/s11276‐018‐1796‐y 10.1109/ATNAC.2018.8615149 10.1155/2022/9312847 10.1109/MTTW53539.2021.9607143 10.1017/CBO9780511841224 10.1109/MCOM.2018 10.5772/intechopen.82033 10.1137/0105003 10.1109/ACCESS.2021.3063205 10.1016/j.phycom.2021.101415 10.1109/COMST.2018.2867268 10.1155/2014/596850 10.1016/j.asoc.2018.01.040 10.1109/COMST.2018.2844322 10.1049/wss2.12048 10.1002/ett.3199 10.1002/dac.3315 10.1109/IIT50501.2020.9299058 10.5772/intechopen.74815 10.1109/ACCESS.2022.3145981 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by John Wiley & Sons Ltd. 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). published by John Wiley & Sons Ltd. – notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.1002/eng2.70483 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2577-8196 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_cda35d6e858c4eddb71f6ce19f7de1eb 10_1002_eng2_70483 ENG270483 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: Shahid Rajaee Teacher Training University (SRTTU) funderid: 1404.388028(17.03.1404) |
| GroupedDBID | 0R~ 1OC 24P AAMMB ABJCF ACCMX ACXQS ADKYN ADMLS ADZMN AEFGJ AFFHD AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARCSS AVUZU BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC M7S M~E OK1 PHGZM PHGZT PIMPY PQGLB PTHSS WIN AAYXX CITATION 8FE 8FG ABUWG AZQEC DWQXO L6V PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c3183-f721e2221cd23a42fa12f5eb0ff540f97f35d016c2057deb1fdc834c9c669bb63 |
| IEDL.DBID | 24P |
| ISSN | 2577-8196 |
| IngestDate | Mon Dec 01 19:26:35 EST 2025 Mon Nov 24 18:15:03 EST 2025 Thu Nov 27 00:58:36 EST 2025 Tue Nov 25 09:20:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3183-f721e2221cd23a42fa12f5eb0ff540f97f35d016c2057deb1fdc834c9c669bb63 |
| Notes | This work was supported by Shahid Rajaee Teacher Training University (SRTTU) under grant number 1404.388028(17.03.1404). Funding ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8427-2446 0000-0003-0249-1547 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feng2.70483 |
| PQID | 3269845374 |
| PQPubID | 5066167 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cda35d6e858c4eddb71f6ce19f7de1eb proquest_journals_3269845374 crossref_primary_10_1002_eng2_70483 wiley_primary_10_1002_eng2_70483_ENG270483 |
| PublicationCentury | 2000 |
| PublicationDate | November 2025 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Engineering reports (Hoboken, N.J.) |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2021; 9 2013; 29 2021; 48 2023; 13 2023; 78 2017; 28 2023; 15 2009 2007 2005 2014; 2014 2024; 13 2024 2002 2018; 65 2018; 20 1955; 2 1957; 5 2018; 48 2015; 26 2017; 30 2022; 2022 2023; 23 2019; 21 2019; 25 2015; 43 2018 2024; 42 2022; 10 2018; 56 2018; 32 1956; 3 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_25_1 Proakis J. G. (e_1_2_11_32_1) 2007 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 Shirvani Moghaddam S. (e_1_2_11_28_1) 2024 Papoulis A. (e_1_2_11_33_1) 2002 |
| References_xml | – volume: 13 issue: 10 year: 2024 article-title: The Past, Present, and Future of the Internet: A Statistical, Technical, and Functional Comparison of Wired/Wireless Fixed/Mobile Internet publication-title: Electronics – volume: 21 start-page: 2134 issue: 3 year: 2019 end-page: 2168 article-title: Resource Allocation for Ultra‐Dense Networks: A Survey, Some Research Issues and Challenges publication-title: IEEE Communications Surveys & Tutorials – volume: 5 start-page: 32 issue: 1 year: 1957 end-page: 38 article-title: Algorithms for the Assignment and Transportation Problems publication-title: Journal of the Society for Industrial and Applied Mathematics – volume: 3 start-page: 253 issue: 4 year: 1956 end-page: 258 article-title: Variants of the Hungarian Method for Assignment Problems publication-title: Naval Research Logistics Quarterly – start-page: 9 year: 2024 end-page: 10 – start-page: 1 year: 2018 end-page: 12 – volume: 9 start-page: 37418 year: 2021 end-page: 37430 article-title: On the Performance of Mean‐Based Sort for Large Data Sets publication-title: IEEE Access – year: 2005 – volume: 13 start-page: 37 issue: 2 year: 2023 end-page: 47 article-title: A Threshold‐Based Sorting Algorithm for Dense Wireless Communication Networks publication-title: IET Wireless Sensor Systems – year: 2007 – volume: 28 issue: 12 year: 2017 article-title: Modeling and Analysis of Traffic‐Aware Spectrum Handover Schemes in Cognitive HetNets publication-title: Transactions on Emerging Telecommunications Technologies – start-page: 9 year: 2009 end-page: 11 – volume: 25 start-page: 2041 issue: 4 year: 2019 end-page: 2064 article-title: Next Generation Wireless Cellular Networks: Ultra‐Dense Multi‐Tier and Multi‐Cell Cooperation Perspective publication-title: Wireless Networks – volume: 48 start-page: 3612 issue: 10 year: 2018 end-page: 3629 article-title: Differential Evolution Algorithm With Multiple Mutation Strategies Based on Roulette Wheel Selection publication-title: Applied Intelligence – volume: 2 start-page: 83 issue: 1–2 year: 1955 end-page: 97 article-title: The Hungarian Method for the Assignment Problem publication-title: Naval Research Logistics Quarterly – year: 2018 – volume: 43 start-page: 150 year: 2015 end-page: 161 article-title: How Effective Is the Grey Wolf Optimizer in Training Multi‐Layer Perceptrons publication-title: Applied Intelligence – year: 2002 – volume: 65 start-page: 400 year: 2018 end-page: 411 article-title: A Group Incremental Feature Selection for Classification Using Rough Set Theory Based Genetic Algorithm publication-title: Applied Soft Computing – volume: 15 start-page: 2 issue: 1 year: 2023 article-title: Ultra‐Dense Networks: Taxonomy and Key Performance Indicators publication-title: Symmetry – volume: 10 start-page: 11584 year: 2022 end-page: 11607 article-title: A General Framework for Sorting Large Data Sets Using Independent Subarrays of Approximately Equal Length publication-title: IEEE Access – volume: 56 start-page: 14 issue: 6 year: 2018 end-page: 20 article-title: User‐Centric C‐RAN Architecture for Ultra‐Dense 5G Networks: Challenges and Methodologies publication-title: IEEE Communications Magazine – volume: 2022 year: 2022 article-title: Intelligent Resource Allocation for Ultradense Networks Based on Improved Reinforcement Learning publication-title: Scientific Programming – volume: 15 issue: 11 year: 2023 article-title: The 6G Ecosystem as Support for IoE and Private Networks: Vision, Requirements, and Challenges publication-title: Future Internet – volume: 26 start-page: 1257 year: 2015 end-page: 1263 article-title: Evolutionary Population Dynamics and Grey Wolf Optimizer publication-title: Neural Computing and Applications – volume: 42 start-page: 2992 issue: 11 year: 2024 end-page: 3031 article-title: A Survey of Recent Advances in Optimization Methods for Wireless Communications publication-title: IEEE Journal on Selected Areas in Communications – volume: 30 issue: 16 year: 2017 article-title: Analysis and Performance Evaluation of an Efficient Handover Algorithm for Cognitive HetNets publication-title: International Journal of Communication Systems – volume: 48 year: 2021 article-title: Resource Allocation Trends for Ultra Dense Networks in 5G and Beyond Networks: A Classification and Comprehensive Survey publication-title: Physical Communication – volume: 20 start-page: 1616 issue: 3 year: 2018 end-page: 1653 article-title: Millimeter Wave Communication: A Comprehensive Survey publication-title: IEEE Communications Surveys & Tutorials – volume: 29 start-page: 17 year: 2013 end-page: 35 article-title: Cuckoo Search Algorithm: A Metaheuristic Approach to Solve Structural Optimization Problems publication-title: Engineering With Computers – volume: 78 year: 2023 article-title: Designing Problem‐Specific Operators for Solving the Cell Switch‐Off Problem in Ultra‐Dense 5G Networks With Hybrid MOEAs publication-title: Swarm and Evolutionary Computation – volume: 2014 year: 2014 article-title: Hybrid PSO Optimization for Hybrid Flowshop Scheduling Problem With Maintenance Activities publication-title: Scientific World Journal – volume: 23 year: 2023 article-title: Joint Clustering and Resource Allocation Optimization in Ultra‐Dense Networks With Multiple Drones as Small Cells Using Game Theory publication-title: Sensors – volume: 32 start-page: 28 issue: 6 year: 2018 end-page: 34 article-title: A Deep‐Learning‐Based Radio Resource Assignment Technique for 5G Ultra Dense Networks publication-title: IEEE Network – ident: e_1_2_11_41_1 doi: 10.1007/s10489‐014‐0645‐7 – ident: e_1_2_11_15_1 doi: 10.1002/nav.3800020109 – ident: e_1_2_11_3_1 doi: 10.3390/electronics13101986 – ident: e_1_2_11_16_1 doi: 10.1002/nav.3800030404 – start-page: 9 volume-title: Presented at the 11th International Symposium on Telecommunication (IST) year: 2024 ident: e_1_2_11_28_1 – ident: e_1_2_11_13_1 doi: 10.1109/MNET.2018.1800085 – ident: e_1_2_11_42_1 doi: 10.1007/s00521‐014‐1806‐7 – ident: e_1_2_11_26_1 doi: 10.1109/COMNETSAT53002.2021.9530777 – ident: e_1_2_11_22_1 doi: 10.1109/COMNETSAT53002.2021.9530808 – ident: e_1_2_11_12_1 doi: 10.3390/s23083899 – ident: e_1_2_11_34_1 doi: 10.3390/fi15110348 – ident: e_1_2_11_19_1 doi: 10.1109/MTTW56973.2022.9942598 – ident: e_1_2_11_30_1 doi: 10.1109/JSAC.2024.3443759 – ident: e_1_2_11_29_1 doi: 10.1016/j.swevo.2023.101290 – ident: e_1_2_11_39_1 doi: 10.1109/NABIC.2009.5393690 – ident: e_1_2_11_35_1 doi: 10.1109/ICCCE.2018.8539307 – ident: e_1_2_11_7_1 doi: 10.3390/sym15010002 – ident: e_1_2_11_40_1 doi: 10.1007/s00366‐011‐0241‐y – ident: e_1_2_11_37_1 doi: 10.1007/s10489‐018‐1153‐y – ident: e_1_2_11_2_1 doi: 10.1007/s11276‐018‐1796‐y – ident: e_1_2_11_6_1 doi: 10.1109/ATNAC.2018.8615149 – ident: e_1_2_11_14_1 doi: 10.1155/2022/9312847 – ident: e_1_2_11_18_1 doi: 10.1109/MTTW53539.2021.9607143 – ident: e_1_2_11_31_1 doi: 10.1017/CBO9780511841224 – ident: e_1_2_11_8_1 doi: 10.1109/MCOM.2018 – ident: e_1_2_11_20_1 doi: 10.5772/intechopen.82033 – ident: e_1_2_11_17_1 doi: 10.1137/0105003 – volume-title: Digital Communications year: 2007 ident: e_1_2_11_32_1 – ident: e_1_2_11_25_1 doi: 10.1109/ACCESS.2021.3063205 – ident: e_1_2_11_11_1 doi: 10.1016/j.phycom.2021.101415 – ident: e_1_2_11_10_1 doi: 10.1109/COMST.2018.2867268 – volume-title: Probability, Random Variables, and Stochastic Processes year: 2002 ident: e_1_2_11_33_1 – ident: e_1_2_11_38_1 doi: 10.1155/2014/596850 – ident: e_1_2_11_36_1 doi: 10.1016/j.asoc.2018.01.040 – ident: e_1_2_11_9_1 doi: 10.1109/COMST.2018.2844322 – ident: e_1_2_11_23_1 doi: 10.1049/wss2.12048 – ident: e_1_2_11_4_1 doi: 10.1002/ett.3199 – ident: e_1_2_11_5_1 doi: 10.1002/dac.3315 – ident: e_1_2_11_27_1 doi: 10.1109/IIT50501.2020.9299058 – ident: e_1_2_11_21_1 doi: 10.5772/intechopen.74815 – ident: e_1_2_11_24_1 doi: 10.1109/ACCESS.2022.3145981 |
| SSID | ssj0002171030 |
| Score | 2.3076208 |
| Snippet | ABSTRACT
This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean... This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per... ABSTRACT This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Assignment problem Cuckoo Search (CS) Efficiency Genetic Genetic algorithms Gray Wolf Optimization (GWO) Kuhn‐Munkres (KM) Optimization Particle swarm optimization Particle Swarm Optimization (PSO) resource allocation (assignment) Search algorithms Service areas Ultra‐Dense Network (UDN) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELZQxQAD4leUP1mCCSk0cew4HktpYUAtAyA2y3bsUqlNUVuYeQSekSfh7LSoLLCwRdElOt357r6TfN8hdAZ9MWMqM1GsodOhRohIK20jETPHc-2ICXNrj7e8282fnsTd0qovfyesogeuDNcwhUpZkdmc5YbaotA8cZmxiXC8sInVPvvGXCw1Uz4HA9D2-7O--UhJw5Z9csE9gfqPChSI-n-gy2WMGopMZxNtzNEhblZabaEVW26j9SXOwB2kmhiC_fP9owfBPnod4eawP4YO_3mEAX9iv7ke5HCvbPScw60xSPoJgtLCb8NyRHw3HpSzKR6U-GE4mygQuIJe1uJudSN8uoseOu371k0035MQGR-RkYMuzkKdT0xBUkWJUwlxzOrYOcBjTnAHFgRoZwiAswKSsytMnoJfTJYJrbN0D9XKcWn3Ec5FxhSjaQrACz5VmqZKxDm1UMS4o7aOThe2ky8VHYasiI-J9BaWwcJ1dOnN-i3hKazDC3CsnDtW_uXYOjpaOEXO42oqAWyKnLKU0zo6D476RQ3Z7l6T8HTwHwodojXil_-GQcQjVJtNXu0xWjVvs8F0chLO3xcypONh priority: 102 providerName: Directory of Open Access Journals – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Bb9MwFH6CsQM7MDZAKwxkaZyQQhvHTuIT6sbGDlM3iRb1ZtmOXSq1ydakO_MT-I38Ep7dtKyXXbhFkWM95bOfv_dsfw_gI8bFnKvURD2NkQ4zQkRaaRuJHndZrh014d7aj6tsMMjHY3HTJtzq9ljl2icGR11UxufIu0gzRM54krEvt3eRrxrld1fbEhpP4ZlXSYjD0b3vmxwL0m1fRWujSkq7tpzQz5mXUd9ah4Jc_xbHfMhUw1Jzsf-_Rr6EFy3JJP3VqDiAJ7Y8hL0H0oOvQPUJ-ow_v35fo8-YL-ekP5tgT83POUEaS4bLkDAhVdm9do6cVdjSX0QoLXYbaiySm2paNjWZlmQ0axYKG3zFkNiSwepgef0aRhfnw7PLqC23EBk_sSOHwaBFuhCbgiaKUadi6rjVPeeQ1jmRuYQXyBANRY5XoI93hckThNekqdA6Td7ATlmV9ghILlKuOEsS5G_4qdIsUaKXM4trYeaY7cDJ-ufL25WqhlzpJ1PpIZIBog6celw2LbwSdnhRLSaynVjSFArNSm3Oc8NsUegsdqmxsXBoY2x1B47XUMl2etbyH04d-BSQfsQMeT74RsPT28f7egfPqa8OHG4qHsNOs1ja97Br7ptpvfgQhuZfRD3vQQ priority: 102 providerName: ProQuest |
| Title | A Sub‐Optimum Algorithm for Turning on/Off Co‐Channel Access Points in Ultra‐Dense Networks |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feng2.70483 https://www.proquest.com/docview/3269845374 https://doaj.org/article/cda35d6e858c4eddb71f6ce19f7de1eb |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: M7S dateStart: 20191201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: BENPR dateStart: 20191201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: PIMPY dateStart: 20191201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: WIN dateStart: 20190101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: 24P dateStart: 20190101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VlgMcym_FlrKyBCeksBvHTmKJy7ZsoRKkEbRQTpHt2MtK3QQlWc48As_IkzB2drftBQlxSyxbGnl-_M3I_gbgBebFnMtYB2OFmQ7TQgRKKhOIMbdJqizV_t3a5_dJlqUXFyLfgtfrtzA9P8Sm4OY8w8dr5-BStaMr0lBTzeirxDGi34KdMIwSZ9OU5ZsKC4Jt10PLdZfjCYZitLUNPykdXS2_cSJ54v4baPM6ZvWHzvG9_xP3PuyuwCaZ9NbxALZM9RDuXqMgfARyQjB2_P756xRjx2K5IJPLWd3Mu28LgnCWnC194YTU1ejUWnJU40z3IAGlIRPfa5Hk9bzqWjKvyPll10ic8AZTY0Oy_oJ5-xjOj6dnR--CVduFQDsHDywmhQZhQ6hLGklGrQyp5UaNrUV4Z0ViI14iUtQUsV6Jsd6WOo1QzTqOhVJxtAfbVV2ZJ0BSEXPJWRQhjsOlUrFIinHKDJ6JiWVmAM_XW19879k1ip5HmRZuwwq_YQM4dFrZzHCM2H6gbmbFysEKXUoUKzYpTzUzZamS0MbahMKijKFRAzhY67RYuWlbIHYVKeNRwgbw0mvvL2IU0-wt9V_7_zL5Kdyhrmewf794ANtdszTP4Lb-0c3bZuhNdgg7h9Ms_zj0FYGhu3_6Ccfykw_5V_z7cpL9AYup9UU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQ5lH-xUMAScEEKu3F-fajQ0h9adUkrsa16M7Zjb1fqJmWTpeqNR-BJeCiehLGzWdpLbz1wiyLHGsdfZr6ZeGYA3qJfHEUiVl5PoqcTKsY8KaT2WC8ySSoNVS5v7WiQZFl6fMwOluB3mwtjj1W2OtEp6rxUNkbeRZrB0jAKkvDj2XfPdo2yf1fbFhoNLPb0xTm6bNX67ibu7ztKt7eGGzvevKuApyx-PYM-j0ar6KucBiKkRvjURFr2jEH2YlhigihHIqQoUpkcVZnJVRrgKlQcMynjAOe9BbeRRlDmjgp-XcR0kN7brl2LKqi0q4sR_ZDYsu1X7J5rD3CF015mxs60bd__317KA1idk2jSb1D_EJZ08QjuXSqt-BhEn6BO_PPz1z7qxMlsQvqnI5S8PpkQpOlkOHMBIVIW3X1jyEaJI22iRaFxWtdDkhyU46KuyLggh6f1VOCATXT5Ncmag_PVEzi8kTU-heWiLPQzICmLIxGFQYD8FB8VMgwE66WhRlufmFB34E272fysqRrCm_rQlFtIcAeJDnyyOFiMsJW-3Y1yOuJzxcFVLlCsWKdRqkKd5zLxTay0zwzK6GvZgbUWGnyufir-DxcdeO-QdY0YfCv7TN3V8-vneg13d4ZfBnywm-29gBVqOyG7rMw1WK6nM_0S7qgf9biavnKfBYFvNw25v5RfTCM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLUJw4B-xUMAScEEKu3F-fUBo6XZh1ZLm0KL2FGzHXlbqJmWTBXHjEXgeHocnYewkS3vprQduUeRYk_jz528czwzAC_SLg4CH0hkK9HR8yZgjuFAOGwY6ioWm0satfdqLkiQ-OmLpBvzuYmHMscqOEy1R56U0e-QDlBks9gMv8ge6PRaRjidvT786poKU-dPaldNoILKrfnxH9616Mx3jWL-kdLJzsP3BaSsMONJg2dHo_yhcIV2ZU4_7VHOX6kCJodaoZDSLtBfkKIokRVmTI63pXMYevpEMQyZE6GG_V2ATJblPe7CZTj-mx-sdHhT7pobXOicqHahiRl9HJon7uVXQFgs4p3DP6mS70E1u_c-f6DbcbOU1GTXz4Q5sqOIu3DiTdPEe8BFBtvzz89c-suVitSCjkxlaXn9ZEBTw5GBlt4pIWQz2tSbbJbY0IRiFwm5tdUmSlvOirsi8IIcn9ZJjg7EqKkWS5kh9dR8OL-UdH0CvKAv1EEjMwoAHvuehcsVHufA9zoaxr1AFRNpXfXjeDXx22uQTyZrM0TQz8MgsPPrwzmBi3cLkALc3yuUsayklkzlHs0IVB7H0VZ6LyNWhVC7TaKOrRB-2OphkLTFV2T-M9OGVRdkFZmQ7yXtqrx5d3NczuIZIy_amye5juE5NiWQbrrkFvXq5Uk_gqvxWz6vl03aOEPh82Zj7C6adVlk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sub%E2%80%90Optimum+Algorithm+for+Turning+on%2FOff+Co%E2%80%90Channel+Access+Points+in+Ultra%E2%80%90Dense+Networks&rft.jtitle=Engineering+reports+%28Hoboken%2C+N.J.%29&rft.au=Shirvani+Moghaddam%2C+Shahriar&rft.au=Shirvani+Moghaddam%2C+Kiaksar&rft.au=Ashoor%2C+Ebrahim&rft.date=2025-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2577-8196&rft.eissn=2577-8196&rft.volume=7&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feng2.70483&rft.externalDBID=10.1002%252Feng2.70483&rft.externalDocID=ENG270483 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2577-8196&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2577-8196&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2577-8196&client=summon |