A Sub‐Optimum Algorithm for Turning on/Off Co‐Channel Access Points in Ultra‐Dense Networks

ABSTRACT This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per link in ultra‐dense networks (UDNs) consisting of densely distributed co‐channel access points (APs) and user equipment (UEs). The pr...

Full description

Saved in:
Bibliographic Details
Published in:Engineering reports (Hoboken, N.J.) Vol. 7; no. 11
Main Authors: Shirvani Moghaddam, Shahriar, Shirvani Moghaddam, Kiaksar, Ashoor, Ebrahim
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.11.2025
Wiley
Subjects:
ISSN:2577-8196, 2577-8196
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per link in ultra‐dense networks (UDNs) consisting of densely distributed co‐channel access points (APs) and user equipment (UEs). The proposed seven‐step algorithm first assigns UEs to APs that provide higher data rates while accounting for the interference of all APs. Next, only the interference from the selected APs is considered to identify UEs that meet the minimum throughput threshold level. In subsequent steps, considering both the interference of previously assigned APs and the remaining candidate APs, additional UEs are connected. Simulation results in MATLAB for a 250m×250m$$ 250\ \mathrm{m}\times 250\ \mathrm{m} $$ service area with 250$$ 250 $$ randomly distributed APs and varying numbers of UEs (25–250$$ 250 $$) demonstrate that the proposed algorithm achieves higher connectivity and total throughput with significantly reduced processing time compared to the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search (CS), and Gray Wolf Optimization (GWO). Specifically, as the number of UEs increases from 10%$$ 10\% $$ to 100%$$ 100\% $$ of the number of APs, the proposed algorithm improves the number of connected UEs by 10%−48%$$ 10\%-48\% $$, 47%−96%$$ 47\%-96\% $$, 57%−109%$$ 57\%-109\% $$, and 22%−58%$$ 22\%-58\% $$, and the total throughput by 20%−52%$$ 20\%-52\% $$, 44%−86%$$ 44\%-86\% $$, 50%−105%$$ 50\%-105\% $$, and 22%−69%$$ 22\%-69\% $$, respectively, over the four benchmark algorithms. Moreover, owing to its lower computational complexity, the proposed method achieves at least 99%$$ 99\% $$ reduction in processing time. In the proposed seven‐step Kuhn–Munkres–based resource allocation algorithm, users are initially assigned to access points that support higher data rates while accounting for interference from all access points. Next, only the interference from the selected access points is considered to identify users connected to these access points who meet the minimum throughput threshold. argmaxxi,jk,l∑l=1NP∑k=1NC∑j=1NAT∑i=1NUTxi,jk,l×RBk.l(i,j)Subject to:C1:xi,jk,l∈{0,1},∀i∈1,…,NUT,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NPC2:∑i=1NUTxi,jk,l≤NC,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NPC3:∑j=1NATxi,jk,l≤1,∀i∈1,…,NUT,∀k∈1,…,NC,∀l∈1,…,NPC4:RBk.l(i,j)≥RBth,∀i∈1,…,NUT,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NPC5:Pt,jk,l=Ptmin+l−1NP−1×Ptmax−Ptmin,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NP$$ \left\{\begin{array}{l}\underset{x_{i,j}^{k,l}}{\mathrm{argmax}}\left(\sum \limits_{l=1}^{N_P}\sum \limits_{k=1}^{N_C}{\sum}_{\mathrm{j}=1}^{{\mathrm{N}}_{\mathrm{AT}}}{\sum}_{i=1}^{N_{\mathrm{UT}}}{x}_{i,j}^{k,l}\times {R}_B^{k.l}\left(i,j\right)\right)\kern17.25em \\ {}\mathrm{Subject}\kern0.34em \mathrm{to}:\kern33.25em \\ {}{\mathrm{C}}_1:\kern0.5em {x}_{i,j}^{k,l}\in \left\{0,1\right\},\kern15.25em \forall \mathrm{i}\in \left\{1,\dots, {N}_{\mathrm{UT}}\right\},\forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\\ {}\kern22em \forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\ \\ {}{\mathrm{C}}_2:\kern0.5em {\sum}_{i=1}^{N_{\mathrm{UT}}}{x}_{i,j}^{k,l}\le {N}_C,\kern13.5em \forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\kern0.5em \\ {}\kern14em \forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\\ {}\ \\ {}{\mathrm{C}}_3:\kern0.5em {\sum}_{j=1}^{N_{\mathrm{AT}}}{x}_{i,j}^{k,l}\le 1,\kern14em \forall \mathrm{i}\in \left\{1,\dots, {N}_{\mathrm{UT}}\right\},\forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\\ {}\kern14.25em \forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\\ {}{\mathrm{C}}_4:{R}_B^{k.l}\left(i,j\right)\ge {R_B}_{\mathrm{th}},\kern13.5em \forall \mathrm{i}\in \left\{1,\dots, {N}_{\mathrm{UT}}\right\},\forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\\ {}\kern21.75em \forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\\ {}\begin{array}{l}{\mathrm{C}}_5:\kern0.5em {P}_{t,j}^{k,l}={P}_{\mathrm{tmin}}+\frac{\mathrm{l}-1}{N_P-1}\times \left({P}_{\mathrm{tmax}}-{P}_{\mathrm{tmin}}\right),\kern3em \forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\\ {}\kern13.75em \forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\end{array}\\ {}\end{array}\right. $$
AbstractList ABSTRACT This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per link in ultra‐dense networks (UDNs) consisting of densely distributed co‐channel access points (APs) and user equipment (UEs). The proposed seven‐step algorithm first assigns UEs to APs that provide higher data rates while accounting for the interference of all APs. Next, only the interference from the selected APs is considered to identify UEs that meet the minimum throughput threshold level. In subsequent steps, considering both the interference of previously assigned APs and the remaining candidate APs, additional UEs are connected. Simulation results in MATLAB for a 250m×250m$$ 250\ \mathrm{m}\times 250\ \mathrm{m} $$ service area with 250$$ 250 $$ randomly distributed APs and varying numbers of UEs (25–250$$ 250 $$) demonstrate that the proposed algorithm achieves higher connectivity and total throughput with significantly reduced processing time compared to the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search (CS), and Gray Wolf Optimization (GWO). Specifically, as the number of UEs increases from 10%$$ 10\% $$ to 100%$$ 100\% $$ of the number of APs, the proposed algorithm improves the number of connected UEs by 10%−48%$$ 10\%-48\% $$, 47%−96%$$ 47\%-96\% $$, 57%−109%$$ 57\%-109\% $$, and 22%−58%$$ 22\%-58\% $$, and the total throughput by 20%−52%$$ 20\%-52\% $$, 44%−86%$$ 44\%-86\% $$, 50%−105%$$ 50\%-105\% $$, and 22%−69%$$ 22\%-69\% $$, respectively, over the four benchmark algorithms. Moreover, owing to its lower computational complexity, the proposed method achieves at least 99%$$ 99\% $$ reduction in processing time.
ABSTRACT This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per link in ultra‐dense networks (UDNs) consisting of densely distributed co‐channel access points (APs) and user equipment (UEs). The proposed seven‐step algorithm first assigns UEs to APs that provide higher data rates while accounting for the interference of all APs. Next, only the interference from the selected APs is considered to identify UEs that meet the minimum throughput threshold level. In subsequent steps, considering both the interference of previously assigned APs and the remaining candidate APs, additional UEs are connected. Simulation results in MATLAB for a 250m×250m$$ 250\ \mathrm{m}\times 250\ \mathrm{m} $$ service area with 250$$ 250 $$ randomly distributed APs and varying numbers of UEs (25–250$$ 250 $$) demonstrate that the proposed algorithm achieves higher connectivity and total throughput with significantly reduced processing time compared to the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search (CS), and Gray Wolf Optimization (GWO). Specifically, as the number of UEs increases from 10%$$ 10\% $$ to 100%$$ 100\% $$ of the number of APs, the proposed algorithm improves the number of connected UEs by 10%−48%$$ 10\%-48\% $$, 47%−96%$$ 47\%-96\% $$, 57%−109%$$ 57\%-109\% $$, and 22%−58%$$ 22\%-58\% $$, and the total throughput by 20%−52%$$ 20\%-52\% $$, 44%−86%$$ 44\%-86\% $$, 50%−105%$$ 50\%-105\% $$, and 22%−69%$$ 22\%-69\% $$, respectively, over the four benchmark algorithms. Moreover, owing to its lower computational complexity, the proposed method achieves at least 99%$$ 99\% $$ reduction in processing time. In the proposed seven‐step Kuhn–Munkres–based resource allocation algorithm, users are initially assigned to access points that support higher data rates while accounting for interference from all access points. Next, only the interference from the selected access points is considered to identify users connected to these access points who meet the minimum throughput threshold. argmaxxi,jk,l∑l=1NP∑k=1NC∑j=1NAT∑i=1NUTxi,jk,l×RBk.l(i,j)Subject to:C1:xi,jk,l∈{0,1},∀i∈1,…,NUT,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NPC2:∑i=1NUTxi,jk,l≤NC,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NPC3:∑j=1NATxi,jk,l≤1,∀i∈1,…,NUT,∀k∈1,…,NC,∀l∈1,…,NPC4:RBk.l(i,j)≥RBth,∀i∈1,…,NUT,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NPC5:Pt,jk,l=Ptmin+l−1NP−1×Ptmax−Ptmin,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NP$$ \left\{\begin{array}{l}\underset{x_{i,j}^{k,l}}{\mathrm{argmax}}\left(\sum \limits_{l=1}^{N_P}\sum \limits_{k=1}^{N_C}{\sum}_{\mathrm{j}=1}^{{\mathrm{N}}_{\mathrm{AT}}}{\sum}_{i=1}^{N_{\mathrm{UT}}}{x}_{i,j}^{k,l}\times {R}_B^{k.l}\left(i,j\right)\right)\kern17.25em \\ {}\mathrm{Subject}\kern0.34em \mathrm{to}:\kern33.25em \\ {}{\mathrm{C}}_1:\kern0.5em {x}_{i,j}^{k,l}\in \left\{0,1\right\},\kern15.25em \forall \mathrm{i}\in \left\{1,\dots, {N}_{\mathrm{UT}}\right\},\forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\\ {}\kern22em \forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\ \\ {}{\mathrm{C}}_2:\kern0.5em {\sum}_{i=1}^{N_{\mathrm{UT}}}{x}_{i,j}^{k,l}\le {N}_C,\kern13.5em \forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\kern0.5em \\ {}\kern14em \forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\\ {}\ \\ {}{\mathrm{C}}_3:\kern0.5em {\sum}_{j=1}^{N_{\mathrm{AT}}}{x}_{i,j}^{k,l}\le 1,\kern14em \forall \mathrm{i}\in \left\{1,\dots, {N}_{\mathrm{UT}}\right\},\forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\\ {}\kern14.25em \forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\\ {}{\mathrm{C}}_4:{R}_B^{k.l}\left(i,j\right)\ge {R_B}_{\mathrm{th}},\kern13.5em \forall \mathrm{i}\in \left\{1,\dots, {N}_{\mathrm{UT}}\right\},\forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\\ {}\kern21.75em \forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\\ {}\begin{array}{l}{\mathrm{C}}_5:\kern0.5em {P}_{t,j}^{k,l}={P}_{\mathrm{tmin}}+\frac{\mathrm{l}-1}{N_P-1}\times \left({P}_{\mathrm{tmax}}-{P}_{\mathrm{tmin}}\right),\kern3em \forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\\ {}\kern13.75em \forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\end{array}\\ {}\end{array}\right. $$
ABSTRACT This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per link in ultra‐dense networks (UDNs) consisting of densely distributed co‐channel access points (APs) and user equipment (UEs). The proposed seven‐step algorithm first assigns UEs to APs that provide higher data rates while accounting for the interference of all APs. Next, only the interference from the selected APs is considered to identify UEs that meet the minimum throughput threshold level. In subsequent steps, considering both the interference of previously assigned APs and the remaining candidate APs, additional UEs are connected. Simulation results in MATLAB for a 250m×250m service area with 250 randomly distributed APs and varying numbers of UEs (25–250) demonstrate that the proposed algorithm achieves higher connectivity and total throughput with significantly reduced processing time compared to the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search (CS), and Gray Wolf Optimization (GWO). Specifically, as the number of UEs increases from 10% to 100% of the number of APs, the proposed algorithm improves the number of connected UEs by 10%−48%, 47%−96%, 57%−109%, and 22%−58%, and the total throughput by 20%−52%, 44%−86%, 50%−105%, and 22%−69%, respectively, over the four benchmark algorithms. Moreover, owing to its lower computational complexity, the proposed method achieves at least 99% reduction in processing time.
This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per link in ultra‐dense networks (UDNs) consisting of densely distributed co‐channel access points (APs) and user equipment (UEs). The proposed seven‐step algorithm first assigns UEs to APs that provide higher data rates while accounting for the interference of all APs. Next, only the interference from the selected APs is considered to identify UEs that meet the minimum throughput threshold level. In subsequent steps, considering both the interference of previously assigned APs and the remaining candidate APs, additional UEs are connected. Simulation results in MATLAB for a service area with randomly distributed APs and varying numbers of UEs (25–) demonstrate that the proposed algorithm achieves higher connectivity and total throughput with significantly reduced processing time compared to the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search (CS), and Gray Wolf Optimization (GWO). Specifically, as the number of UEs increases from to of the number of APs, the proposed algorithm improves the number of connected UEs by , , , and , and the total throughput by , , , and , respectively, over the four benchmark algorithms. Moreover, owing to its lower computational complexity, the proposed method achieves at least reduction in processing time.
Author Ashoor, Ebrahim
Shirvani Moghaddam, Shahriar
Shirvani Moghaddam, Kiaksar
Author_xml – sequence: 1
  givenname: Shahriar
  orcidid: 0000-0002-8427-2446
  surname: Shirvani Moghaddam
  fullname: Shirvani Moghaddam, Shahriar
  email: sh_shirvani@sru.ac.ir
  organization: Shahid Rajaee Teacher Training University (SRTTU)
– sequence: 2
  givenname: Kiaksar
  orcidid: 0000-0003-0249-1547
  surname: Shirvani Moghaddam
  fullname: Shirvani Moghaddam, Kiaksar
  email: kiaksar.shirvani.m@gmail.com
  organization: Iran University of Science and Technology (IUST)
– sequence: 3
  givenname: Ebrahim
  surname: Ashoor
  fullname: Ashoor, Ebrahim
  email: ebrahim.ashoor1995@gmail.com
  organization: Shahid Rajaee Teacher Training University (SRTTU)
BookMark eNp9kc1KAzEQx4Mo-HnxCQLehNZ87G52j6VqFcQK1nPIZic1dZvUZEvx5iP4jD6JsSviyVOG8JvfDPM_RLvOO0DolJIhJYRdgJuzoSBZyXfQAcuFGJS0Knb_1PvoJMYFSTAVlHBygNQIP67rz_eP6aqzy_USj9q5D7Z7XmLjA56tg7Nujr27mBqDxz6R42flHLR4pDXEiB-8dV3E1uGntgsqAZfgIuB76DY-vMRjtGdUG-Hk5z1CT9dXs_HN4G46uR2P7gaa05IPjGAUGGNUN4yrjBlFmcmhJsbkGTGVMDxvCC00I7looKam0SXPdKWLoqrrgh-h297beLWQq2CXKrxJr6zcfvgwlyp0VrcgdaOSrIAyL3UGTVMLagoNtDLJTKFOrrPetQr-dQ2xkwufLpHWl5wVVZnlXGSJOu8pHXyMAczvVErkdyLyOxG5TSTBtIc3toW3f0h5dT9hfc8XkRSRvg
Cites_doi 10.1007/s10489‐014‐0645‐7
10.1002/nav.3800020109
10.3390/electronics13101986
10.1002/nav.3800030404
10.1109/MNET.2018.1800085
10.1007/s00521‐014‐1806‐7
10.1109/COMNETSAT53002.2021.9530777
10.1109/COMNETSAT53002.2021.9530808
10.3390/s23083899
10.3390/fi15110348
10.1109/MTTW56973.2022.9942598
10.1109/JSAC.2024.3443759
10.1016/j.swevo.2023.101290
10.1109/NABIC.2009.5393690
10.1109/ICCCE.2018.8539307
10.3390/sym15010002
10.1007/s00366‐011‐0241‐y
10.1007/s10489‐018‐1153‐y
10.1007/s11276‐018‐1796‐y
10.1109/ATNAC.2018.8615149
10.1155/2022/9312847
10.1109/MTTW53539.2021.9607143
10.1017/CBO9780511841224
10.1109/MCOM.2018
10.5772/intechopen.82033
10.1137/0105003
10.1109/ACCESS.2021.3063205
10.1016/j.phycom.2021.101415
10.1109/COMST.2018.2867268
10.1155/2014/596850
10.1016/j.asoc.2018.01.040
10.1109/COMST.2018.2844322
10.1049/wss2.12048
10.1002/ett.3199
10.1002/dac.3315
10.1109/IIT50501.2020.9299058
10.5772/intechopen.74815
10.1109/ACCESS.2022.3145981
ContentType Journal Article
Copyright 2025 The Author(s). published by John Wiley & Sons Ltd.
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by John Wiley & Sons Ltd.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/eng2.70483
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2577-8196
EndPage n/a
ExternalDocumentID oai_doaj_org_article_cda35d6e858c4eddb71f6ce19f7de1eb
10_1002_eng2_70483
ENG270483
Genre researchArticle
GrantInformation_xml – fundername: Shahid Rajaee Teacher Training University (SRTTU)
  funderid: 1404.388028(17.03.1404)
GroupedDBID 0R~
1OC
24P
AAMMB
ABJCF
ACCMX
ACXQS
ADKYN
ADMLS
ADZMN
AEFGJ
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
WIN
AAYXX
CITATION
8FE
8FG
ABUWG
AZQEC
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3183-f721e2221cd23a42fa12f5eb0ff540f97f35d016c2057deb1fdc834c9c669bb63
IEDL.DBID 24P
ISSN 2577-8196
IngestDate Mon Dec 01 19:26:35 EST 2025
Mon Nov 24 18:15:03 EST 2025
Thu Nov 27 00:58:36 EST 2025
Tue Nov 25 09:20:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3183-f721e2221cd23a42fa12f5eb0ff540f97f35d016c2057deb1fdc834c9c669bb63
Notes This work was supported by Shahid Rajaee Teacher Training University (SRTTU) under grant number 1404.388028(17.03.1404).
Funding
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8427-2446
0000-0003-0249-1547
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feng2.70483
PQID 3269845374
PQPubID 5066167
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_cda35d6e858c4eddb71f6ce19f7de1eb
proquest_journals_3269845374
crossref_primary_10_1002_eng2_70483
wiley_primary_10_1002_eng2_70483_ENG270483
PublicationCentury 2000
PublicationDate November 2025
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Engineering reports (Hoboken, N.J.)
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 9
2013; 29
2021; 48
2023; 13
2023; 78
2017; 28
2023; 15
2009
2007
2005
2014; 2014
2024; 13
2024
2002
2018; 65
2018; 20
1955; 2
1957; 5
2018; 48
2015; 26
2017; 30
2022; 2022
2023; 23
2019; 21
2019; 25
2015; 43
2018
2024; 42
2022; 10
2018; 56
2018; 32
1956; 3
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
Proakis J. G. (e_1_2_11_32_1) 2007
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
Shirvani Moghaddam S. (e_1_2_11_28_1) 2024
Papoulis A. (e_1_2_11_33_1) 2002
References_xml – volume: 13
  issue: 10
  year: 2024
  article-title: The Past, Present, and Future of the Internet: A Statistical, Technical, and Functional Comparison of Wired/Wireless Fixed/Mobile Internet
  publication-title: Electronics
– volume: 21
  start-page: 2134
  issue: 3
  year: 2019
  end-page: 2168
  article-title: Resource Allocation for Ultra‐Dense Networks: A Survey, Some Research Issues and Challenges
  publication-title: IEEE Communications Surveys & Tutorials
– volume: 5
  start-page: 32
  issue: 1
  year: 1957
  end-page: 38
  article-title: Algorithms for the Assignment and Transportation Problems
  publication-title: Journal of the Society for Industrial and Applied Mathematics
– volume: 3
  start-page: 253
  issue: 4
  year: 1956
  end-page: 258
  article-title: Variants of the Hungarian Method for Assignment Problems
  publication-title: Naval Research Logistics Quarterly
– start-page: 9
  year: 2024
  end-page: 10
– start-page: 1
  year: 2018
  end-page: 12
– volume: 9
  start-page: 37418
  year: 2021
  end-page: 37430
  article-title: On the Performance of Mean‐Based Sort for Large Data Sets
  publication-title: IEEE Access
– year: 2005
– volume: 13
  start-page: 37
  issue: 2
  year: 2023
  end-page: 47
  article-title: A Threshold‐Based Sorting Algorithm for Dense Wireless Communication Networks
  publication-title: IET Wireless Sensor Systems
– year: 2007
– volume: 28
  issue: 12
  year: 2017
  article-title: Modeling and Analysis of Traffic‐Aware Spectrum Handover Schemes in Cognitive HetNets
  publication-title: Transactions on Emerging Telecommunications Technologies
– start-page: 9
  year: 2009
  end-page: 11
– volume: 25
  start-page: 2041
  issue: 4
  year: 2019
  end-page: 2064
  article-title: Next Generation Wireless Cellular Networks: Ultra‐Dense Multi‐Tier and Multi‐Cell Cooperation Perspective
  publication-title: Wireless Networks
– volume: 48
  start-page: 3612
  issue: 10
  year: 2018
  end-page: 3629
  article-title: Differential Evolution Algorithm With Multiple Mutation Strategies Based on Roulette Wheel Selection
  publication-title: Applied Intelligence
– volume: 2
  start-page: 83
  issue: 1–2
  year: 1955
  end-page: 97
  article-title: The Hungarian Method for the Assignment Problem
  publication-title: Naval Research Logistics Quarterly
– year: 2018
– volume: 43
  start-page: 150
  year: 2015
  end-page: 161
  article-title: How Effective Is the Grey Wolf Optimizer in Training Multi‐Layer Perceptrons
  publication-title: Applied Intelligence
– year: 2002
– volume: 65
  start-page: 400
  year: 2018
  end-page: 411
  article-title: A Group Incremental Feature Selection for Classification Using Rough Set Theory Based Genetic Algorithm
  publication-title: Applied Soft Computing
– volume: 15
  start-page: 2
  issue: 1
  year: 2023
  article-title: Ultra‐Dense Networks: Taxonomy and Key Performance Indicators
  publication-title: Symmetry
– volume: 10
  start-page: 11584
  year: 2022
  end-page: 11607
  article-title: A General Framework for Sorting Large Data Sets Using Independent Subarrays of Approximately Equal Length
  publication-title: IEEE Access
– volume: 56
  start-page: 14
  issue: 6
  year: 2018
  end-page: 20
  article-title: User‐Centric C‐RAN Architecture for Ultra‐Dense 5G Networks: Challenges and Methodologies
  publication-title: IEEE Communications Magazine
– volume: 2022
  year: 2022
  article-title: Intelligent Resource Allocation for Ultradense Networks Based on Improved Reinforcement Learning
  publication-title: Scientific Programming
– volume: 15
  issue: 11
  year: 2023
  article-title: The 6G Ecosystem as Support for IoE and Private Networks: Vision, Requirements, and Challenges
  publication-title: Future Internet
– volume: 26
  start-page: 1257
  year: 2015
  end-page: 1263
  article-title: Evolutionary Population Dynamics and Grey Wolf Optimizer
  publication-title: Neural Computing and Applications
– volume: 42
  start-page: 2992
  issue: 11
  year: 2024
  end-page: 3031
  article-title: A Survey of Recent Advances in Optimization Methods for Wireless Communications
  publication-title: IEEE Journal on Selected Areas in Communications
– volume: 30
  issue: 16
  year: 2017
  article-title: Analysis and Performance Evaluation of an Efficient Handover Algorithm for Cognitive HetNets
  publication-title: International Journal of Communication Systems
– volume: 48
  year: 2021
  article-title: Resource Allocation Trends for Ultra Dense Networks in 5G and Beyond Networks: A Classification and Comprehensive Survey
  publication-title: Physical Communication
– volume: 20
  start-page: 1616
  issue: 3
  year: 2018
  end-page: 1653
  article-title: Millimeter Wave Communication: A Comprehensive Survey
  publication-title: IEEE Communications Surveys & Tutorials
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  article-title: Cuckoo Search Algorithm: A Metaheuristic Approach to Solve Structural Optimization Problems
  publication-title: Engineering With Computers
– volume: 78
  year: 2023
  article-title: Designing Problem‐Specific Operators for Solving the Cell Switch‐Off Problem in Ultra‐Dense 5G Networks With Hybrid MOEAs
  publication-title: Swarm and Evolutionary Computation
– volume: 2014
  year: 2014
  article-title: Hybrid PSO Optimization for Hybrid Flowshop Scheduling Problem With Maintenance Activities
  publication-title: Scientific World Journal
– volume: 23
  year: 2023
  article-title: Joint Clustering and Resource Allocation Optimization in Ultra‐Dense Networks With Multiple Drones as Small Cells Using Game Theory
  publication-title: Sensors
– volume: 32
  start-page: 28
  issue: 6
  year: 2018
  end-page: 34
  article-title: A Deep‐Learning‐Based Radio Resource Assignment Technique for 5G Ultra Dense Networks
  publication-title: IEEE Network
– ident: e_1_2_11_41_1
  doi: 10.1007/s10489‐014‐0645‐7
– ident: e_1_2_11_15_1
  doi: 10.1002/nav.3800020109
– ident: e_1_2_11_3_1
  doi: 10.3390/electronics13101986
– ident: e_1_2_11_16_1
  doi: 10.1002/nav.3800030404
– start-page: 9
  volume-title: Presented at the 11th International Symposium on Telecommunication (IST)
  year: 2024
  ident: e_1_2_11_28_1
– ident: e_1_2_11_13_1
  doi: 10.1109/MNET.2018.1800085
– ident: e_1_2_11_42_1
  doi: 10.1007/s00521‐014‐1806‐7
– ident: e_1_2_11_26_1
  doi: 10.1109/COMNETSAT53002.2021.9530777
– ident: e_1_2_11_22_1
  doi: 10.1109/COMNETSAT53002.2021.9530808
– ident: e_1_2_11_12_1
  doi: 10.3390/s23083899
– ident: e_1_2_11_34_1
  doi: 10.3390/fi15110348
– ident: e_1_2_11_19_1
  doi: 10.1109/MTTW56973.2022.9942598
– ident: e_1_2_11_30_1
  doi: 10.1109/JSAC.2024.3443759
– ident: e_1_2_11_29_1
  doi: 10.1016/j.swevo.2023.101290
– ident: e_1_2_11_39_1
  doi: 10.1109/NABIC.2009.5393690
– ident: e_1_2_11_35_1
  doi: 10.1109/ICCCE.2018.8539307
– ident: e_1_2_11_7_1
  doi: 10.3390/sym15010002
– ident: e_1_2_11_40_1
  doi: 10.1007/s00366‐011‐0241‐y
– ident: e_1_2_11_37_1
  doi: 10.1007/s10489‐018‐1153‐y
– ident: e_1_2_11_2_1
  doi: 10.1007/s11276‐018‐1796‐y
– ident: e_1_2_11_6_1
  doi: 10.1109/ATNAC.2018.8615149
– ident: e_1_2_11_14_1
  doi: 10.1155/2022/9312847
– ident: e_1_2_11_18_1
  doi: 10.1109/MTTW53539.2021.9607143
– ident: e_1_2_11_31_1
  doi: 10.1017/CBO9780511841224
– ident: e_1_2_11_8_1
  doi: 10.1109/MCOM.2018
– ident: e_1_2_11_20_1
  doi: 10.5772/intechopen.82033
– ident: e_1_2_11_17_1
  doi: 10.1137/0105003
– volume-title: Digital Communications
  year: 2007
  ident: e_1_2_11_32_1
– ident: e_1_2_11_25_1
  doi: 10.1109/ACCESS.2021.3063205
– ident: e_1_2_11_11_1
  doi: 10.1016/j.phycom.2021.101415
– ident: e_1_2_11_10_1
  doi: 10.1109/COMST.2018.2867268
– volume-title: Probability, Random Variables, and Stochastic Processes
  year: 2002
  ident: e_1_2_11_33_1
– ident: e_1_2_11_38_1
  doi: 10.1155/2014/596850
– ident: e_1_2_11_36_1
  doi: 10.1016/j.asoc.2018.01.040
– ident: e_1_2_11_9_1
  doi: 10.1109/COMST.2018.2844322
– ident: e_1_2_11_23_1
  doi: 10.1049/wss2.12048
– ident: e_1_2_11_4_1
  doi: 10.1002/ett.3199
– ident: e_1_2_11_5_1
  doi: 10.1002/dac.3315
– ident: e_1_2_11_27_1
  doi: 10.1109/IIT50501.2020.9299058
– ident: e_1_2_11_21_1
  doi: 10.5772/intechopen.74815
– ident: e_1_2_11_24_1
  doi: 10.1109/ACCESS.2022.3145981
SSID ssj0002171030
Score 2.3076208
Snippet ABSTRACT This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean...
This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per...
ABSTRACT This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Assignment problem
Cuckoo Search (CS)
Efficiency
Genetic
Genetic algorithms
Gray Wolf Optimization (GWO)
Kuhn‐Munkres (KM)
Optimization
Particle swarm optimization
Particle Swarm Optimization (PSO)
resource allocation (assignment)
Search algorithms
Service areas
Ultra‐Dense Network (UDN)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELZQxQAD4leUP1mCCSk0cew4HktpYUAtAyA2y3bsUqlNUVuYeQSekSfh7LSoLLCwRdElOt357r6TfN8hdAZ9MWMqM1GsodOhRohIK20jETPHc-2ICXNrj7e8282fnsTd0qovfyesogeuDNcwhUpZkdmc5YbaotA8cZmxiXC8sInVPvvGXCw1Uz4HA9D2-7O--UhJw5Z9csE9gfqPChSI-n-gy2WMGopMZxNtzNEhblZabaEVW26j9SXOwB2kmhiC_fP9owfBPnod4eawP4YO_3mEAX9iv7ke5HCvbPScw60xSPoJgtLCb8NyRHw3HpSzKR6U-GE4mygQuIJe1uJudSN8uoseOu371k0035MQGR-RkYMuzkKdT0xBUkWJUwlxzOrYOcBjTnAHFgRoZwiAswKSsytMnoJfTJYJrbN0D9XKcWn3Ec5FxhSjaQrACz5VmqZKxDm1UMS4o7aOThe2ky8VHYasiI-J9BaWwcJ1dOnN-i3hKazDC3CsnDtW_uXYOjpaOEXO42oqAWyKnLKU0zo6D476RQ3Z7l6T8HTwHwodojXil_-GQcQjVJtNXu0xWjVvs8F0chLO3xcypONh
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Bb9MwFH6CsQM7MDZAKwxkaZyQQhvHTuIT6sbGDlM3iRb1ZtmOXSq1ydakO_MT-I38Ep7dtKyXXbhFkWM95bOfv_dsfw_gI8bFnKvURD2NkQ4zQkRaaRuJHndZrh014d7aj6tsMMjHY3HTJtzq9ljl2icGR11UxufIu0gzRM54krEvt3eRrxrld1fbEhpP4ZlXSYjD0b3vmxwL0m1fRWujSkq7tpzQz5mXUd9ah4Jc_xbHfMhUw1Jzsf-_Rr6EFy3JJP3VqDiAJ7Y8hL0H0oOvQPUJ-ow_v35fo8-YL-ekP5tgT83POUEaS4bLkDAhVdm9do6cVdjSX0QoLXYbaiySm2paNjWZlmQ0axYKG3zFkNiSwepgef0aRhfnw7PLqC23EBk_sSOHwaBFuhCbgiaKUadi6rjVPeeQ1jmRuYQXyBANRY5XoI93hckThNekqdA6Td7ATlmV9ghILlKuOEsS5G_4qdIsUaKXM4trYeaY7cDJ-ufL25WqhlzpJ1PpIZIBog6celw2LbwSdnhRLSaynVjSFArNSm3Oc8NsUegsdqmxsXBoY2x1B47XUMl2etbyH04d-BSQfsQMeT74RsPT28f7egfPqa8OHG4qHsNOs1ja97Br7ptpvfgQhuZfRD3vQQ
  priority: 102
  providerName: ProQuest
Title A Sub‐Optimum Algorithm for Turning on/Off Co‐Channel Access Points in Ultra‐Dense Networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feng2.70483
https://www.proquest.com/docview/3269845374
https://doaj.org/article/cda35d6e858c4eddb71f6ce19f7de1eb
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: M7S
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: BENPR
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: PIMPY
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: WIN
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: 24P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VlgMcym_FlrKyBCeksBvHTmKJy7ZsoRKkEbRQTpHt2MtK3QQlWc48As_IkzB2drftBQlxSyxbGnl-_M3I_gbgBebFnMtYB2OFmQ7TQgRKKhOIMbdJqizV_t3a5_dJlqUXFyLfgtfrtzA9P8Sm4OY8w8dr5-BStaMr0lBTzeirxDGi34KdMIwSZ9OU5ZsKC4Jt10PLdZfjCYZitLUNPykdXS2_cSJ54v4baPM6ZvWHzvG9_xP3PuyuwCaZ9NbxALZM9RDuXqMgfARyQjB2_P756xRjx2K5IJPLWd3Mu28LgnCWnC194YTU1ejUWnJU40z3IAGlIRPfa5Hk9bzqWjKvyPll10ic8AZTY0Oy_oJ5-xjOj6dnR--CVduFQDsHDywmhQZhQ6hLGklGrQyp5UaNrUV4Z0ViI14iUtQUsV6Jsd6WOo1QzTqOhVJxtAfbVV2ZJ0BSEXPJWRQhjsOlUrFIinHKDJ6JiWVmAM_XW19879k1ip5HmRZuwwq_YQM4dFrZzHCM2H6gbmbFysEKXUoUKzYpTzUzZamS0MbahMKijKFRAzhY67RYuWlbIHYVKeNRwgbw0mvvL2IU0-wt9V_7_zL5Kdyhrmewf794ANtdszTP4Lb-0c3bZuhNdgg7h9Ms_zj0FYGhu3_6Ccfykw_5V_z7cpL9AYup9UU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQ5lH-xUMAScEEKu3F-fajQ0h9adUkrsa16M7Zjb1fqJmWTpeqNR-BJeCiehLGzWdpLbz1wiyLHGsdfZr6ZeGYA3qJfHEUiVl5PoqcTKsY8KaT2WC8ySSoNVS5v7WiQZFl6fMwOluB3mwtjj1W2OtEp6rxUNkbeRZrB0jAKkvDj2XfPdo2yf1fbFhoNLPb0xTm6bNX67ibu7ztKt7eGGzvevKuApyx-PYM-j0ar6KucBiKkRvjURFr2jEH2YlhigihHIqQoUpkcVZnJVRrgKlQcMynjAOe9BbeRRlDmjgp-XcR0kN7brl2LKqi0q4sR_ZDYsu1X7J5rD3CF015mxs60bd__317KA1idk2jSb1D_EJZ08QjuXSqt-BhEn6BO_PPz1z7qxMlsQvqnI5S8PpkQpOlkOHMBIVIW3X1jyEaJI22iRaFxWtdDkhyU46KuyLggh6f1VOCATXT5Ncmag_PVEzi8kTU-heWiLPQzICmLIxGFQYD8FB8VMgwE66WhRlufmFB34E272fysqRrCm_rQlFtIcAeJDnyyOFiMsJW-3Y1yOuJzxcFVLlCsWKdRqkKd5zLxTay0zwzK6GvZgbUWGnyufir-DxcdeO-QdY0YfCv7TN3V8-vneg13d4ZfBnywm-29gBVqOyG7rMw1WK6nM_0S7qgf9biavnKfBYFvNw25v5RfTCM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLUJw4B-xUMAScEEKu3F-fUBo6XZh1ZLm0KL2FGzHXlbqJmWTBXHjEXgeHocnYewkS3vprQduUeRYk_jz528czwzAC_SLg4CH0hkK9HR8yZgjuFAOGwY6ioWm0satfdqLkiQ-OmLpBvzuYmHMscqOEy1R56U0e-QDlBks9gMv8ge6PRaRjidvT786poKU-dPaldNoILKrfnxH9616Mx3jWL-kdLJzsP3BaSsMONJg2dHo_yhcIV2ZU4_7VHOX6kCJodaoZDSLtBfkKIokRVmTI63pXMYevpEMQyZE6GG_V2ATJblPe7CZTj-mx-sdHhT7pobXOicqHahiRl9HJon7uVXQFgs4p3DP6mS70E1u_c-f6DbcbOU1GTXz4Q5sqOIu3DiTdPEe8BFBtvzz89c-suVitSCjkxlaXn9ZEBTw5GBlt4pIWQz2tSbbJbY0IRiFwm5tdUmSlvOirsi8IIcn9ZJjg7EqKkWS5kh9dR8OL-UdH0CvKAv1EEjMwoAHvuehcsVHufA9zoaxr1AFRNpXfXjeDXx22uQTyZrM0TQz8MgsPPrwzmBi3cLkALc3yuUsayklkzlHs0IVB7H0VZ6LyNWhVC7TaKOrRB-2OphkLTFV2T-M9OGVRdkFZmQ7yXtqrx5d3NczuIZIy_amye5juE5NiWQbrrkFvXq5Uk_gqvxWz6vl03aOEPh82Zj7C6adVlk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sub%E2%80%90Optimum+Algorithm+for+Turning+on%2FOff+Co%E2%80%90Channel+Access+Points+in+Ultra%E2%80%90Dense+Networks&rft.jtitle=Engineering+reports+%28Hoboken%2C+N.J.%29&rft.au=Shirvani+Moghaddam%2C+Shahriar&rft.au=Shirvani+Moghaddam%2C+Kiaksar&rft.au=Ashoor%2C+Ebrahim&rft.date=2025-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2577-8196&rft.eissn=2577-8196&rft.volume=7&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feng2.70483&rft.externalDBID=10.1002%252Feng2.70483&rft.externalDocID=ENG270483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2577-8196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2577-8196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2577-8196&client=summon