A Sub‐Optimum Algorithm for Turning on/Off Co‐Channel Access Points in Ultra‐Dense Networks

ABSTRACT This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per link in ultra‐dense networks (UDNs) consisting of densely distributed co‐channel access points (APs) and user equipment (UEs). The pr...

Full description

Saved in:
Bibliographic Details
Published in:Engineering reports (Hoboken, N.J.) Vol. 7; no. 11
Main Authors: Shirvani Moghaddam, Shahriar, Shirvani Moghaddam, Kiaksar, Ashoor, Ebrahim
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.11.2025
Wiley
Subjects:
ISSN:2577-8196, 2577-8196
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per link in ultra‐dense networks (UDNs) consisting of densely distributed co‐channel access points (APs) and user equipment (UEs). The proposed seven‐step algorithm first assigns UEs to APs that provide higher data rates while accounting for the interference of all APs. Next, only the interference from the selected APs is considered to identify UEs that meet the minimum throughput threshold level. In subsequent steps, considering both the interference of previously assigned APs and the remaining candidate APs, additional UEs are connected. Simulation results in MATLAB for a 250m×250m$$ 250\ \mathrm{m}\times 250\ \mathrm{m} $$ service area with 250$$ 250 $$ randomly distributed APs and varying numbers of UEs (25–250$$ 250 $$) demonstrate that the proposed algorithm achieves higher connectivity and total throughput with significantly reduced processing time compared to the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search (CS), and Gray Wolf Optimization (GWO). Specifically, as the number of UEs increases from 10%$$ 10\% $$ to 100%$$ 100\% $$ of the number of APs, the proposed algorithm improves the number of connected UEs by 10%−48%$$ 10\%-48\% $$, 47%−96%$$ 47\%-96\% $$, 57%−109%$$ 57\%-109\% $$, and 22%−58%$$ 22\%-58\% $$, and the total throughput by 20%−52%$$ 20\%-52\% $$, 44%−86%$$ 44\%-86\% $$, 50%−105%$$ 50\%-105\% $$, and 22%−69%$$ 22\%-69\% $$, respectively, over the four benchmark algorithms. Moreover, owing to its lower computational complexity, the proposed method achieves at least 99%$$ 99\% $$ reduction in processing time. In the proposed seven‐step Kuhn–Munkres–based resource allocation algorithm, users are initially assigned to access points that support higher data rates while accounting for interference from all access points. Next, only the interference from the selected access points is considered to identify users connected to these access points who meet the minimum throughput threshold. argmaxxi,jk,l∑l=1NP∑k=1NC∑j=1NAT∑i=1NUTxi,jk,l×RBk.l(i,j)Subject to:C1:xi,jk,l∈{0,1},∀i∈1,…,NUT,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NPC2:∑i=1NUTxi,jk,l≤NC,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NPC3:∑j=1NATxi,jk,l≤1,∀i∈1,…,NUT,∀k∈1,…,NC,∀l∈1,…,NPC4:RBk.l(i,j)≥RBth,∀i∈1,…,NUT,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NPC5:Pt,jk,l=Ptmin+l−1NP−1×Ptmax−Ptmin,∀j∈1,…,NAT,∀k∈1,…,NC,∀l∈1,…,NP$$ \left\{\begin{array}{l}\underset{x_{i,j}^{k,l}}{\mathrm{argmax}}\left(\sum \limits_{l=1}^{N_P}\sum \limits_{k=1}^{N_C}{\sum}_{\mathrm{j}=1}^{{\mathrm{N}}_{\mathrm{AT}}}{\sum}_{i=1}^{N_{\mathrm{UT}}}{x}_{i,j}^{k,l}\times {R}_B^{k.l}\left(i,j\right)\right)\kern17.25em \\ {}\mathrm{Subject}\kern0.34em \mathrm{to}:\kern33.25em \\ {}{\mathrm{C}}_1:\kern0.5em {x}_{i,j}^{k,l}\in \left\{0,1\right\},\kern15.25em \forall \mathrm{i}\in \left\{1,\dots, {N}_{\mathrm{UT}}\right\},\forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\\ {}\kern22em \forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\ \\ {}{\mathrm{C}}_2:\kern0.5em {\sum}_{i=1}^{N_{\mathrm{UT}}}{x}_{i,j}^{k,l}\le {N}_C,\kern13.5em \forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\kern0.5em \\ {}\kern14em \forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\\ {}\ \\ {}{\mathrm{C}}_3:\kern0.5em {\sum}_{j=1}^{N_{\mathrm{AT}}}{x}_{i,j}^{k,l}\le 1,\kern14em \forall \mathrm{i}\in \left\{1,\dots, {N}_{\mathrm{UT}}\right\},\forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\\ {}\kern14.25em \forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\\ {}{\mathrm{C}}_4:{R}_B^{k.l}\left(i,j\right)\ge {R_B}_{\mathrm{th}},\kern13.5em \forall \mathrm{i}\in \left\{1,\dots, {N}_{\mathrm{UT}}\right\},\forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\\ {}\kern21.75em \forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\\ {}\begin{array}{l}{\mathrm{C}}_5:\kern0.5em {P}_{t,j}^{k,l}={P}_{\mathrm{tmin}}+\frac{\mathrm{l}-1}{N_P-1}\times \left({P}_{\mathrm{tmax}}-{P}_{\mathrm{tmin}}\right),\kern3em \forall \mathrm{j}\in \left\{1,\dots, {N}_{\mathrm{AT}}\right\},\forall \mathrm{k}\in \left\{1,\dots, {N}_C\right\},\\ {}\kern13.75em \forall \mathrm{l}\in \left\{1,\dots, {N}_P\right\}\end{array}\\ {}\end{array}\right. $$
Bibliography:This work was supported by Shahid Rajaee Teacher Training University (SRTTU) under grant number 1404.388028(17.03.1404).
Funding
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2577-8196
2577-8196
DOI:10.1002/eng2.70483