Automated FRET Two‐Hybrid Analysis
ABSTRACT The fluorescence resonance energy transfer (FRET) two‐hybrid assay enables live‐cell detection of biomolecular complexes but faces high‐throughput screening (HTS) limitations due to laborious image analysis. We developed an automated platform using the Luminance‐Uniformity‐based Region of I...
Uložené v:
| Vydané v: | Journal of biophotonics Ročník 18; číslo 9; s. e70033 - n/a |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.09.2025
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 1864-063X, 1864-0648, 1864-0648 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | ABSTRACT
The fluorescence resonance energy transfer (FRET) two‐hybrid assay enables live‐cell detection of biomolecular complexes but faces high‐throughput screening (HTS) limitations due to laborious image analysis. We developed an automated platform using the Luminance‐Uniformity‐based Region of Interest Selection (LURS) algorithm, accelerating processing 12‐fold (6 h
→
30 min) for three‐channel FRET imaging. Validation with FRET standards (C32V:
E
D
C
32
V
=
0.30
±
0.01
,
S
C
32
V
=
1.06
±
0.14
; CVC:
E
D
CVC
=
0.40
±
0.02
,
S
CVC
=
1.90
±
0.11
) matched reference values. Applied to Bcl‐xL/Bak interactions under A1331852 treatment, LURS revealed dose‐dependent stoichiometry reduction (
1.87
→
1.12
). The method achieved precise signal extraction while preserving native cellular conditions, overcoming throughput constraints in dynamic protein interaction studies.
We developed an automated FRET two‐hybrid platform using the LURS algorithm, accelerating image analysis 12‐fold (6 h → 30 min). Validated with C32V/CVC constructs, it accurately measured FRET efficiency and stoichiometry (
n
D
/
n
A
= 1.06 ± 0.14/C32V; 1.90 ± 0.11/CVC), matching reported values. Applied to Bcl‐xL/Bak interaction under A1331852, it revealed stoichiometry reduction (1.87 → 1.12), enabling HTS‐compatible drug discovery. |
|---|---|
| AbstractList | The fluorescence resonance energy transfer (FRET) two‐hybrid assay enables live‐cell detection of biomolecular complexes but faces high‐throughput screening (HTS) limitations due to laborious image analysis. We developed an automated platform using the Luminance‐Uniformity‐based Region of Interest Selection (LURS) algorithm, accelerating processing 12‐fold (6 h 30 min) for three‐channel FRET imaging. Validation with FRET standards (C32V: , ; CVC: , ) matched reference values. Applied to Bcl‐xL/Bak interactions under A1331852 treatment, LURS revealed dose‐dependent stoichiometry reduction (). The method achieved precise signal extraction while preserving native cellular conditions, overcoming throughput constraints in dynamic protein interaction studies. ABSTRACT The fluorescence resonance energy transfer (FRET) two‐hybrid assay enables live‐cell detection of biomolecular complexes but faces high‐throughput screening (HTS) limitations due to laborious image analysis. We developed an automated platform using the Luminance‐Uniformity‐based Region of Interest Selection (LURS) algorithm, accelerating processing 12‐fold (6 h → 30 min) for three‐channel FRET imaging. Validation with FRET standards (C32V: E D C 32 V = 0.30 ± 0.01 , S C 32 V = 1.06 ± 0.14 ; CVC: E D CVC = 0.40 ± 0.02 , S CVC = 1.90 ± 0.11 ) matched reference values. Applied to Bcl‐xL/Bak interactions under A1331852 treatment, LURS revealed dose‐dependent stoichiometry reduction ( 1.87 → 1.12 ). The method achieved precise signal extraction while preserving native cellular conditions, overcoming throughput constraints in dynamic protein interaction studies. We developed an automated FRET two‐hybrid platform using the LURS algorithm, accelerating image analysis 12‐fold (6 h → 30 min). Validated with C32V/CVC constructs, it accurately measured FRET efficiency and stoichiometry ( n D / n A = 1.06 ± 0.14/C32V; 1.90 ± 0.11/CVC), matching reported values. Applied to Bcl‐xL/Bak interaction under A1331852, it revealed stoichiometry reduction (1.87 → 1.12), enabling HTS‐compatible drug discovery. The fluorescence resonance energy transfer (FRET) two-hybrid assay enables live-cell detection of biomolecular complexes but faces high-throughput screening (HTS) limitations due to laborious image analysis. We developed an automated platform using the Luminance-Uniformity-based Region of Interest Selection (LURS) algorithm, accelerating processing 12-fold (6 h 30 min) for three-channel FRET imaging. Validation with FRET standards (C32V: , ; CVC: , ) matched reference values. Applied to Bcl-xL/Bak interactions under A1331852 treatment, LURS revealed dose-dependent stoichiometry reduction ( ). The method achieved precise signal extraction while preserving native cellular conditions, overcoming throughput constraints in dynamic protein interaction studies. The fluorescence resonance energy transfer (FRET) two‐hybrid assay enables live‐cell detection of biomolecular complexes but faces high‐throughput screening (HTS) limitations due to laborious image analysis. We developed an automated platform using the Luminance‐Uniformity‐based Region of Interest Selection (LURS) algorithm, accelerating processing 12‐fold (6 h → 30 min) for three‐channel FRET imaging. Validation with FRET standards (C32V: E D C 32 V = 0.30 ± 0.01 , S C 32 V = 1.06 ± 0.14 ; CVC: E D CVC = 0.40 ± 0.02 , S CVC = 1.90 ± 0.11 ) matched reference values. Applied to Bcl‐xL/Bak interactions under A1331852 treatment, LURS revealed dose‐dependent stoichiometry reduction ( 1.87 → 1.12 ). The method achieved precise signal extraction while preserving native cellular conditions, overcoming throughput constraints in dynamic protein interaction studies. The fluorescence resonance energy transfer (FRET) two-hybrid assay enables live-cell detection of biomolecular complexes but faces high-throughput screening (HTS) limitations due to laborious image analysis. We developed an automated platform using the Luminance-Uniformity-based Region of Interest Selection (LURS) algorithm, accelerating processing 12-fold (6 h → 30 min) for three-channel FRET imaging. Validation with FRET standards (C32V: E D C 32 V = 0.30 ± 0.01 , S C 32 V = 1.06 ± 0.14 ; CVC: E D CVC = 0.40 ± 0.02 , S CVC = 1.90 ± 0.11 ) matched reference values. Applied to Bcl-xL/Bak interactions under A1331852 treatment, LURS revealed dose-dependent stoichiometry reduction ( 1.87 → 1.12 ). The method achieved precise signal extraction while preserving native cellular conditions, overcoming throughput constraints in dynamic protein interaction studies.The fluorescence resonance energy transfer (FRET) two-hybrid assay enables live-cell detection of biomolecular complexes but faces high-throughput screening (HTS) limitations due to laborious image analysis. We developed an automated platform using the Luminance-Uniformity-based Region of Interest Selection (LURS) algorithm, accelerating processing 12-fold (6 h → 30 min) for three-channel FRET imaging. Validation with FRET standards (C32V: E D C 32 V = 0.30 ± 0.01 , S C 32 V = 1.06 ± 0.14 ; CVC: E D CVC = 0.40 ± 0.02 , S CVC = 1.90 ± 0.11 ) matched reference values. Applied to Bcl-xL/Bak interactions under A1331852 treatment, LURS revealed dose-dependent stoichiometry reduction ( 1.87 → 1.12 ). The method achieved precise signal extraction while preserving native cellular conditions, overcoming throughput constraints in dynamic protein interaction studies. |
| Author | Hu, Min Xu, Yanling Chen, Tongsheng Huang, Qialing Wei, Zhiqiang Sun, Beini Wang, Jingzhen Zhuang, Zhengfei |
| Author_xml | – sequence: 1 givenname: Zhiqiang surname: Wei fullname: Wei, Zhiqiang organization: South China Normal University – sequence: 2 givenname: Yanling surname: Xu fullname: Xu, Yanling organization: South China Normal University – sequence: 3 givenname: Jingzhen surname: Wang fullname: Wang, Jingzhen organization: South China Normal University – sequence: 4 givenname: Beini surname: Sun fullname: Sun, Beini organization: South China Normal University – sequence: 5 givenname: Qialing surname: Huang fullname: Huang, Qialing organization: South China Normal University – sequence: 6 givenname: Zhengfei surname: Zhuang fullname: Zhuang, Zhengfei organization: South China Normal University – sequence: 7 givenname: Tongsheng surname: Chen fullname: Chen, Tongsheng organization: South China Normal University – sequence: 8 givenname: Min orcidid: 0000-0001-5567-7930 surname: Hu fullname: Hu, Min email: hmin@scnu.edu.cn organization: South China Normal University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40268497$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90M1Kw0AQB_BFKvZDLz6AFPQgQupu9iObY1taWykUpIK3ZbuZQEqSrdmGkpuP4DP6JKam9uDB0w7Lb4aZfxe1cpsDQtcEDwjG_uNmndhBgDGlZ6hDpGAeFky2TjV9a6OucxuMBaacXqA2w76QLAw66G5Y7mymdxD1py-TVX-1t18fn7NqXSRRf5jrtHKJu0TnsU4dXB3fHnqdTlbjmbdYPs3Hw4VnKJHUMyKGCAIsI25Aakl07BtMcKAN44JpzQlwHUpfSykhMsJwELr-j_0YR8BoD903c7eFfS_B7VSWOANpqnOwpVOUhMznlAYHevuHbmxZ1PvWymdChoJxUquboyrXGURqWySZLir1e38NHhpgCutcAfGJEKwO4apDuOon3BqTBu-TFKp_pHoezZdNzzdEtHoO |
| Cites_doi | 10.1088/2040-8986/ac3675 10.1038/s41419‐019‐1407‐6 10.1038/nprot.2016.128 10.1529/biophysj.106.096206 10.1038/nmeth.4593 10.1529/biophysj.105.061853 10.1364/PRJ.485521 10.1016/S0896‐6273(01)00438‐X 10.1038/ncomms13709 10.1016/j.bbrc.2019.03.089 10.1016/j.bspc.2019.101585 10.1109/ICCV51070.2023.00371 10.3390/molecules26216339 10.1529/biophysj.103.022087 10.1038/s41467-023-38808-8 10.1529/biophysj.106.088773 10.1038/s41592‐019‐0530‐8 10.1016/j.xpro.2023.102459 10.1073/pnas.1905924116 10.1021/acsmedchemlett.9b00568 10.1016/j.xinn.2023.100425 10.1038/s41420-023-01338-9 10.1111/jmi.12783 10.1007/978-981-16-5640-8_50 10.1063/1.5021466 10.1142/S1793545820500212 |
| ContentType | Journal Article |
| Copyright | 2025 Wiley‐VCH GmbH. 2025 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2025 Wiley‐VCH GmbH. – notice: 2025 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SP 7SR 7U5 8FD FR3 JG9 K9. L7M P64 7X8 |
| DOI | 10.1002/jbio.70033 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Biotechnology Research Abstracts Technology Research Database Electronics & Communications Abstracts ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1864-0648 |
| EndPage | n/a |
| ExternalDocumentID | 40268497 10_1002_jbio_70033 JBIO70033 |
| Genre | researchArticle Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China – fundername: Basic and Applied Basic Research Foundation of Guangdong Province – fundername: Graduate Research Innovation Program of South China Normal University – fundername: Key‐Area Research and Development Program of Guangdong Province – fundername: Key-Area Research and Development Program of Guangdong Province |
| GroupedDBID | --- 05W 0R~ 1OC 31~ 33P 3SF 4.4 52U 52V 53G 5DZ 5GY 66C 8-0 8-1 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABLJU ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRMAN DRSTM EBD EBS EJD EMOBN F5P FEDTE FUBAC G-S GODZA HGLYW HVGLF HZ~ IX1 KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NNB O9- OIG P2W PQQKQ ROL SUPJJ SV3 W99 WBKPD WIH WIJ WIK WOHZO WXSBR XV2 ZZTAW AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SP 7SR 7U5 8FD FR3 JG9 K9. L7M P64 7X8 |
| ID | FETCH-LOGICAL-c3183-c6fede708d5ce8a81af2c0107ac4564aa51e5a982a888edc6c5e6a4aaf2f0de43 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001472730000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-063X 1864-0648 |
| IngestDate | Sat Nov 01 14:27:02 EDT 2025 Sat Nov 01 15:15:28 EDT 2025 Sat Sep 06 11:15:57 EDT 2025 Sat Nov 29 07:31:59 EST 2025 Sat Sep 06 07:16:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | FRET two‐hybrid assay image processing FRET quantitative analysis stoichiometry automated data processing |
| Language | English |
| License | 2025 Wiley‐VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3183-c6fede708d5ce8a81af2c0107ac4564aa51e5a982a888edc6c5e6a4aaf2f0de43 |
| Notes | This work was supported by grants from the Key‐Area Research and Development Program of Guangdong Province (Grant No. 2022B0303040003), National Natural Science Foundation of China (NSFC) (Grant No. 62135003 and 62475077), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2024A1515010586), and Graduate Research Innovation Program of South China Normal University (Grant No. 2024KYLX074). Funding ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5567-7930 |
| PMID | 40268497 |
| PQID | 3246896451 |
| PQPubID | 1006377 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_3194253374 proquest_journals_3246896451 pubmed_primary_40268497 crossref_primary_10_1002_jbio_70033 wiley_primary_10_1002_jbio_70033_JBIO70033 |
| PublicationCentury | 2000 |
| PublicationDate | September 2025 2025-09-00 2025-Sep 20250901 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany – name: Jena |
| PublicationTitle | Journal of biophotonics |
| PublicationTitleAlternate | J Biophotonics |
| PublicationYear | 2025 |
| Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
| Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
| References | 2021; 26 2004; 86 2006; 91 2023; 14 2021; 23 2023; 11 2023; 4 2019; 53 2011 2023; 15 2019; 10 2023; 9 2019; 16 2020; 13 2020; 11 2005; 89 2016; 11 2016; 7 2023 2022 2018; 112 2019; 116 2019; 512 2018; 15 2001; 31 2019; 274 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Gedraite E. S. (e_1_2_9_25_1) 2011 e_1_2_9_26_1 Fang C. (e_1_2_9_9_1) 2023; 15 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 11 start-page: 2470 issue: 12 year: 2016 end-page: 2498 article-title: Quantifying Macromolecular Interactions in Living Cells Using FRET Two‐Hybrid Assays publication-title: Nature Protocols – volume: 89 start-page: 2736 issue: 4 year: 2005 end-page: 2749 article-title: Quantitative Multiphoton Spectral Imaging and Its Use for Measuring Resonance Energy Transfer publication-title: Biophysical Journal – volume: 15 start-page: 173 issue: 3 year: 2018 end-page: 182 article-title: STED Super‐Resolved Microscopy publication-title: Nature Methods – start-page: 393 year: 2011 end-page: 396 – volume: 26 start-page: 6339 issue: 21 year: 2021 article-title: Quantitative FRET (qFRET) Technology for the Determination of Protein–Protein Interaction Affinity in Solution publication-title: Molecules – volume: 10 issue: 3 year: 2019 article-title: BCL‐2 Family Isoforms in Apoptosis and Cancer publication-title: Cell Death & Disease – volume: 116 start-page: 15817 issue: 32 year: 2019 end-page: 15822 article-title: A Photostable Fluorescent Marker for the Superresolution Live Imaging of the Dynamic Structure of the Mitochondrial Cristae publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 91 start-page: L39 issue: 5 year: 2006 end-page: L41 article-title: Measurement of FRET Efficiency and Ratio of Donor to Acceptor Concentration in Living Cells publication-title: Biophysical Journal – volume: 15 start-page: 694 issue: 2 year: 2023 end-page: 709 article-title: Review of FRET Biosensing and Its Application in Biomolecular Detection publication-title: American Journal of Translational Research – volume: 11 start-page: 887 issue: 5 year: 2023 end-page: 896 article-title: Structured Illumination‐Based Super‐Resolution Live‐Cell Quantitative FRET Imaging publication-title: Photonics Research – start-page: 4015 year: 2023 end-page: 4026 – volume: 7 issue: 1 year: 2016 article-title: Detecting Stoichiometry of Macromolecular Complexes in Live Cells Using FRET publication-title: Nature Communications – volume: 274 start-page: 45 issue: 1 year: 2019 end-page: 54 article-title: AutomatedE‐FRETmicroscope for Dynamical Live‐Cell FRET Imaging publication-title: Journal of Microscopy – volume: 4 issue: 3 year: 2023 article-title: Protocol for Deriving Proximity, Affinity, and Stoichiometry of Protein Interactions Using Image‐Based Quantitative Two‐Hybrid FRET publication-title: STAR Protocols – volume: 4 issue: 3 year: 2023 article-title: Rapid, Artifact‐Reduced, Image Reconstruction for Super‐Resolution Structured Illumination Microscopy publication-title: Innovation – start-page: 663 year: 2022 – volume: 31 start-page: 973 issue: 6 year: 2001 end-page: 985 article-title: Preassociation of Calmodulin With Voltage‐Gated Ca2+ Channels Revealed by FRET in Single Living Cells publication-title: Neuron – volume: 14 start-page: 3089 issue: 1 year: 2023 article-title: Quantitative Structured Illumination Microscopy via a Physical Model‐Based Background Filtering Algorithm Reveals Actin Dynamics publication-title: Nature Communications – volume: 91 start-page: L99 issue: 12 year: 2006 end-page: L101 article-title: Cerulean, Venus, and VenusY67C FRET Reference Standards publication-title: Biophysical Journal – volume: 53 year: 2019 article-title: Controlling and Online Measurement of Automatic Dual‐Channel E‐FRET Microscope publication-title: Biomedical Signal Processing and Control – year: 2023 – volume: 23 issue: 12 year: 2021 article-title: An Overview of Structured Illumination Microscopy: Recent Advances and Perspectives publication-title: Journal of Optics – volume: 13 issue: 6 year: 2020 article-title: Highly‐Efficient Quantitative Fluorescence Resonance Energy Transfer Measurements Based on Deep Learning publication-title: Journal of Innovative Optical Health Sciences – volume: 9 start-page: 37 issue: 1 year: 2023 article-title: Regorafenib Induces Bim‐Mediated Intrinsic Apoptosis by Blocking AKT‐Mediated FOXO3a Nuclear Export publication-title: Cell Death Discovery – volume: 11 start-page: 1829 issue: 10 year: 2020 end-page: 1836 article-title: Discovery of A‐1331852, a First‐In‐Class, Potent, and Orally‐Bioavailable BCL‐X L Inhibitor publication-title: ACS Medicinal Chemistry Letters – volume: 16 start-page: 815 issue: 9 year: 2019 end-page: 829 article-title: FRET as a Biomolecular Research Tool—Understanding Its Potential While Avoiding Pitfalls publication-title: Nature Methods – volume: 86 start-page: 3923 issue: 6 year: 2004 end-page: 3939 article-title: Photobleaching‐Corrected FRET Efficiency Imaging of Live Cells publication-title: Biophysical Journal – volume: 112 issue: 15 year: 2018 article-title: FRET Two‐Hybrid Assay by Linearly Fitting FRET Efficiency to Concentration Ratio Between Acceptor and Donor publication-title: Applied Physics Letters – volume: 512 start-page: 492 issue: 3 year: 2019 end-page: 497 article-title: Gaussian FRET Two‐Hybrid Assays for Determining the Stoichiometry of Hetero‐Oligomeric Complexes in Single Living Cells publication-title: Biochemical and Biophysical Research Communications – ident: e_1_2_9_4_1 doi: 10.1088/2040-8986/ac3675 – ident: e_1_2_9_21_1 doi: 10.1038/s41419‐019‐1407‐6 – ident: e_1_2_9_11_1 doi: 10.1038/nprot.2016.128 – ident: e_1_2_9_19_1 doi: 10.1529/biophysj.106.096206 – ident: e_1_2_9_3_1 doi: 10.1038/nmeth.4593 – ident: e_1_2_9_20_1 doi: 10.1529/biophysj.105.061853 – ident: e_1_2_9_10_1 doi: 10.1364/PRJ.485521 – ident: e_1_2_9_14_1 doi: 10.1016/S0896‐6273(01)00438‐X – ident: e_1_2_9_12_1 doi: 10.1038/ncomms13709 – ident: e_1_2_9_17_1 doi: 10.1016/j.bbrc.2019.03.089 – ident: e_1_2_9_26_1 doi: 10.1016/j.bspc.2019.101585 – ident: e_1_2_9_30_1 doi: 10.1109/ICCV51070.2023.00371 – ident: e_1_2_9_8_1 doi: 10.3390/molecules26216339 – ident: e_1_2_9_15_1 doi: 10.1529/biophysj.103.022087 – ident: e_1_2_9_5_1 doi: 10.1038/s41467-023-38808-8 – start-page: 393 volume-title: Proceedings ELMAR‐2011 year: 2011 ident: e_1_2_9_25_1 – ident: e_1_2_9_27_1 doi: 10.1529/biophysj.106.088773 – ident: e_1_2_9_7_1 doi: 10.1038/s41592‐019‐0530‐8 – ident: e_1_2_9_13_1 doi: 10.1016/j.xpro.2023.102459 – ident: e_1_2_9_2_1 doi: 10.1073/pnas.1905924116 – ident: e_1_2_9_28_1 doi: 10.1021/acsmedchemlett.9b00568 – ident: e_1_2_9_6_1 doi: 10.1016/j.xinn.2023.100425 – volume: 15 start-page: 694 issue: 2 year: 2023 ident: e_1_2_9_9_1 article-title: Review of FRET Biosensing and Its Application in Biomolecular Detection publication-title: American Journal of Translational Research – ident: e_1_2_9_22_1 doi: 10.1038/s41420-023-01338-9 – ident: e_1_2_9_23_1 doi: 10.1111/jmi.12783 – ident: e_1_2_9_24_1 doi: 10.1007/978-981-16-5640-8_50 – ident: e_1_2_9_16_1 doi: 10.1063/1.5021466 – ident: e_1_2_9_18_1 doi: 10.1142/S1793545820500212 – ident: e_1_2_9_29_1 |
| SSID | ssj0060353 |
| Score | 2.3962831 |
| Snippet | ABSTRACT
The fluorescence resonance energy transfer (FRET) two‐hybrid assay enables live‐cell detection of biomolecular complexes but faces high‐throughput... The fluorescence resonance energy transfer (FRET) two‐hybrid assay enables live‐cell detection of biomolecular complexes but faces high‐throughput screening... The fluorescence resonance energy transfer (FRET) two-hybrid assay enables live-cell detection of biomolecular complexes but faces high-throughput screening... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | e70033 |
| SubjectTerms | Algorithms automated data processing Automation Energy transfer Fluorescence resonance energy transfer Fluorescence Resonance Energy Transfer - methods FRET quantitative analysis FRET two‐hybrid assay Humans Image analysis Image processing Image Processing, Computer-Assisted Stoichiometry Two-Hybrid System Techniques |
| Title | Automated FRET Two‐Hybrid Analysis |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.70033 https://www.ncbi.nlm.nih.gov/pubmed/40268497 https://www.proquest.com/docview/3246896451 https://www.proquest.com/docview/3194253374 |
| Volume | 18 |
| WOSCitedRecordID | wos001472730000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1864-0648 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060353 issn: 1864-063X databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH349olYg9CdFmk-xuwIuvoiIqpYXewmYzAT00YlvFmz_B3-gvcTZpWkUQxFtINkx2dmb2m83uNwD10OxQCzVzPD8WDuVfqRMTLHI83YiRLMBTic6LTYibG9nthndTcFSehSn4IcYLbsYz8nhtHFzF_cMJaehDfJ8dCFOLbBqqjAzXr0D1rNXsXJeRmDe8nIXSldx3aCrujulJ2eHk7e8T0g-U-R205rNOc-F_37sI8yO0aR8X5rEEU9hbhrkvHIQrUD8eDjKCrZjYzdZ5226_ZB9v7xev5iSXXVKWrEKned4-vXBGpRMcbZzU0TzFBEVDJoFGqaSrUqYp9RJKG_4YpQIXAxVKpigDxkRzHSBXdD9laSNB31uDSi_r4QbYyONYSESKmtJPEi-WlNQiiWEqNSNtwV6pv-ixYMiICi5kFpk-R3mfLaiVqo1GXtKPCMxxGXI_cC3YHT8m-zY_LVQPsyG1cUMKK54nfAvWiyEZi6Hcl0s_FBbs55r_RX50dXJ5m19t_qXxFswyU_A331RWg8rgaYjbMKOfB_f9px2YFl25M7K6T-Q32H0 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60CuqD9xHPiH0SYptrs3msR6laq5QKfQubzQT0oRHbKr75E_yN_hJnc6kIgvgWkg2TnZ1zM_sNQNVXFWq-tAzbCT2D8q_YCCksMmxZD5EkwBaRTJtNeJ0O7_f9m7w2R52FyfAhyg03pRmpvVYKrjaka5-ooffhXXLkqWZkkzDlkBy5FZg67TZv24UpZnU7haE0OXMM8sX9Ep_Uqn2-_d0j_Qgzv0etqdtpLvzzgxdhPo839UYmIEswgYNlmPuCQrgC1cZ4lFDgipHe7J719N5z8v761npRZ7n0ArRkFW6bZ72TlpE3TzCkUlNDshgj9Oo8ciVywU0RW5KSL09IhSAjhGuiK3xuCcqBMZJMusgE3Y-tuB6hY69BZZAMcAN0ZGHocUSym9yJIjvklNYikbFErNZag4OCgcFDhpERZGjIVqDmHKRz1mC74G2Q68kwoHCOcZ85rqnBfvmYJFz9thADTMY0xvTJsNi252iwnq1JSYayX8Yd39PgMGX9L_SDi-Pz6_Rq8y-D92Cm1btqB-3zzuUWzFqq_W9aYrYNldHjGHdgWj6N7oaPu7nwfQDI2tuF |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60FdEH7yOeEX0SYptrs3msR6gHVaRC38JmdwL60EgPxTd_gr_RX-JsklZFEMS3kGyY7Oycm9lvAA5CXaEWSsdyvSSwKP9KrYTCIsuV9QRJAlyhZN5sImi1eKcT3pS1OfosTIEPMd5w05qR22ut4Pio0tonauhDcp8dBboZ2SRUPT9kpJfV09vo7mpkilndzWEobc48i3xxZ4xP6tQ-3_7ukX6Emd-j1tztRPP__OAFmCvjTbNRCMgiTGB3CWa_oBAuw0FjOMgocEVlRrdnbbP9nL2_vjVf9FkucwRasgJ30Vn7pGmVzRMsqdXUkixFhUGdK18iF9wWqSMp-QqE1AgyQvg2-iLkjqAcGJVk0kcm6H7qpHWFnrsKlW7WxXUwkSVJwBHJbnJPKTfhlNYikXFEqtfagP0RA-PHAiMjLtCQnVjPOc7nbMDWiLdxqSf9mMI5xkPm-bYBe-PHJOH6t4XoYjakMXZIhsV1A8-AtWJNxmQo-2XcCwMDDnPW_0I_vjg-v86vNv4yeBemb06j-Oq8dbkJM47u_ptXmG1BZdAb4jZMyafBfb-3U8reB4nU2wA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+FRET+Two%E2%80%90Hybrid+Analysis&rft.jtitle=Journal+of+biophotonics&rft.au=Wei%2C+Zhiqiang&rft.au=Xu%2C+Yanling&rft.au=Wang%2C+Jingzhen&rft.au=Sun%2C+Beini&rft.date=2025-09-01&rft.pub=WILEY%E2%80%90VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=1864-063X&rft.eissn=1864-0648&rft.volume=18&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fjbio.70033&rft.externalDBID=10.1002%252Fjbio.70033&rft.externalDocID=JBIO70033 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon |