Microglial exosomes facilitate α-synuclein transmission in Parkinson's disease
Accumulation of neuronal α-synuclein is a prominent feature in Parkinson's disease. More recently, such abnormal protein aggregation has been reported to spread from cell to cell and exosomes are considered as important mediators. The focus of such research, however, has been primarily in neuro...
Saved in:
| Published in: | Brain (London, England : 1878) Vol. 143; no. 5; p. 1476 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
01.05.2020
|
| Subjects: | |
| ISSN: | 1460-2156, 1460-2156 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accumulation of neuronal α-synuclein is a prominent feature in Parkinson's disease. More recently, such abnormal protein aggregation has been reported to spread from cell to cell and exosomes are considered as important mediators. The focus of such research, however, has been primarily in neurons. Given the increasing recognition of the importance of non-cell autonomous-mediated neurotoxicity, it is critical to investigate the contribution of glia to α-synuclein aggregation and spread. Microglia are the primary phagocytes in the brain and have been well-documented as inducers of neuroinflammation. How and to what extent microglia and their exosomes impact α-synuclein pathology has not been well delineated. We report here that when treated with human α-synuclein preformed fibrils, exosomes containing α-synuclein released by microglia are fully capable of inducing protein aggregation in the recipient neurons. Additionally, when combined with microglial proinflammatory cytokines, these exosomes further increased protein aggregation in neurons. Inhibition of exosome synthesis in microglia reduced α-synuclein transmission. The in vivo significance of these exosomes was demonstrated by stereotaxic injection of exosomes isolated from α-synuclein preformed fibrils treated microglia into the mouse striatum. Phosphorylated α-synuclein was observed in multiple brain regions consistent with their neuronal connectivity. These animals also exhibited neurodegeneration in the nigrostriatal pathway in a time-dependent manner. Depleting microglia in vivo dramatically suppressed the transmission of α-synuclein after stereotaxic injection of preformed fibrils. Mechanistically, we report here that α-synuclein preformed fibrils impaired autophagy flux by upregulating PELI1, which in turn, resulted in degradation of LAMP2 in activated microglia. More importantly, by purifying microglia/macrophage derived exosomes in the CSF of Parkinson's disease patients, we confirmed the presence of α-synuclein oligomer in CD11b+ exosomes, which were able to induce α-synuclein aggregation in neurons, further supporting the translational aspect of this study. Taken together, our study supports the view that microglial exosomes contribute to the progression of α-synuclein pathology and therefore, they may serve as a promising therapeutic target for Parkinson's disease. |
|---|---|
| AbstractList | Accumulation of neuronal α-synuclein is a prominent feature in Parkinson's disease. More recently, such abnormal protein aggregation has been reported to spread from cell to cell and exosomes are considered as important mediators. The focus of such research, however, has been primarily in neurons. Given the increasing recognition of the importance of non-cell autonomous-mediated neurotoxicity, it is critical to investigate the contribution of glia to α-synuclein aggregation and spread. Microglia are the primary phagocytes in the brain and have been well-documented as inducers of neuroinflammation. How and to what extent microglia and their exosomes impact α-synuclein pathology has not been well delineated. We report here that when treated with human α-synuclein preformed fibrils, exosomes containing α-synuclein released by microglia are fully capable of inducing protein aggregation in the recipient neurons. Additionally, when combined with microglial proinflammatory cytokines, these exosomes further increased protein aggregation in neurons. Inhibition of exosome synthesis in microglia reduced α-synuclein transmission. The in vivo significance of these exosomes was demonstrated by stereotaxic injection of exosomes isolated from α-synuclein preformed fibrils treated microglia into the mouse striatum. Phosphorylated α-synuclein was observed in multiple brain regions consistent with their neuronal connectivity. These animals also exhibited neurodegeneration in the nigrostriatal pathway in a time-dependent manner. Depleting microglia in vivo dramatically suppressed the transmission of α-synuclein after stereotaxic injection of preformed fibrils. Mechanistically, we report here that α-synuclein preformed fibrils impaired autophagy flux by upregulating PELI1, which in turn, resulted in degradation of LAMP2 in activated microglia. More importantly, by purifying microglia/macrophage derived exosomes in the CSF of Parkinson's disease patients, we confirmed the presence of α-synuclein oligomer in CD11b+ exosomes, which were able to induce α-synuclein aggregation in neurons, further supporting the translational aspect of this study. Taken together, our study supports the view that microglial exosomes contribute to the progression of α-synuclein pathology and therefore, they may serve as a promising therapeutic target for Parkinson's disease. Accumulation of neuronal α-synuclein is a prominent feature in Parkinson's disease. More recently, such abnormal protein aggregation has been reported to spread from cell to cell and exosomes are considered as important mediators. The focus of such research, however, has been primarily in neurons. Given the increasing recognition of the importance of non-cell autonomous-mediated neurotoxicity, it is critical to investigate the contribution of glia to α-synuclein aggregation and spread. Microglia are the primary phagocytes in the brain and have been well-documented as inducers of neuroinflammation. How and to what extent microglia and their exosomes impact α-synuclein pathology has not been well delineated. We report here that when treated with human α-synuclein preformed fibrils, exosomes containing α-synuclein released by microglia are fully capable of inducing protein aggregation in the recipient neurons. Additionally, when combined with microglial proinflammatory cytokines, these exosomes further increased protein aggregation in neurons. Inhibition of exosome synthesis in microglia reduced α-synuclein transmission. The in vivo significance of these exosomes was demonstrated by stereotaxic injection of exosomes isolated from α-synuclein preformed fibrils treated microglia into the mouse striatum. Phosphorylated α-synuclein was observed in multiple brain regions consistent with their neuronal connectivity. These animals also exhibited neurodegeneration in the nigrostriatal pathway in a time-dependent manner. Depleting microglia in vivo dramatically suppressed the transmission of α-synuclein after stereotaxic injection of preformed fibrils. Mechanistically, we report here that α-synuclein preformed fibrils impaired autophagy flux by upregulating PELI1, which in turn, resulted in degradation of LAMP2 in activated microglia. More importantly, by purifying microglia/macrophage derived exosomes in the CSF of Parkinson's disease patients, we confirmed the presence of α-synuclein oligomer in CD11b+ exosomes, which were able to induce α-synuclein aggregation in neurons, further supporting the translational aspect of this study. Taken together, our study supports the view that microglial exosomes contribute to the progression of α-synuclein pathology and therefore, they may serve as a promising therapeutic target for Parkinson's disease.Accumulation of neuronal α-synuclein is a prominent feature in Parkinson's disease. More recently, such abnormal protein aggregation has been reported to spread from cell to cell and exosomes are considered as important mediators. The focus of such research, however, has been primarily in neurons. Given the increasing recognition of the importance of non-cell autonomous-mediated neurotoxicity, it is critical to investigate the contribution of glia to α-synuclein aggregation and spread. Microglia are the primary phagocytes in the brain and have been well-documented as inducers of neuroinflammation. How and to what extent microglia and their exosomes impact α-synuclein pathology has not been well delineated. We report here that when treated with human α-synuclein preformed fibrils, exosomes containing α-synuclein released by microglia are fully capable of inducing protein aggregation in the recipient neurons. Additionally, when combined with microglial proinflammatory cytokines, these exosomes further increased protein aggregation in neurons. Inhibition of exosome synthesis in microglia reduced α-synuclein transmission. The in vivo significance of these exosomes was demonstrated by stereotaxic injection of exosomes isolated from α-synuclein preformed fibrils treated microglia into the mouse striatum. Phosphorylated α-synuclein was observed in multiple brain regions consistent with their neuronal connectivity. These animals also exhibited neurodegeneration in the nigrostriatal pathway in a time-dependent manner. Depleting microglia in vivo dramatically suppressed the transmission of α-synuclein after stereotaxic injection of preformed fibrils. Mechanistically, we report here that α-synuclein preformed fibrils impaired autophagy flux by upregulating PELI1, which in turn, resulted in degradation of LAMP2 in activated microglia. More importantly, by purifying microglia/macrophage derived exosomes in the CSF of Parkinson's disease patients, we confirmed the presence of α-synuclein oligomer in CD11b+ exosomes, which were able to induce α-synuclein aggregation in neurons, further supporting the translational aspect of this study. Taken together, our study supports the view that microglial exosomes contribute to the progression of α-synuclein pathology and therefore, they may serve as a promising therapeutic target for Parkinson's disease. |
| Author | Wang, Jian Tieu, Kim Han, Sida Zhao, Yanxin Dong, Qiang Cui, Mei Feng, Yiwei Guo, Min |
| Author_xml | – sequence: 1 givenname: Min surname: Guo fullname: Guo, Min organization: Department of Neurology, Huashan hospital, Fudan University, Shanghai, China – sequence: 2 givenname: Jian surname: Wang fullname: Wang, Jian organization: Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan hospital, Fudan University, Shanghai, China – sequence: 3 givenname: Yanxin surname: Zhao fullname: Zhao, Yanxin organization: Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China – sequence: 4 givenname: Yiwei surname: Feng fullname: Feng, Yiwei organization: Department of Neurology, Huashan hospital, Fudan University, Shanghai, China – sequence: 5 givenname: Sida surname: Han fullname: Han, Sida organization: Department of Neurology, Huashan hospital, Fudan University, Shanghai, China – sequence: 6 givenname: Qiang surname: Dong fullname: Dong, Qiang organization: Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China – sequence: 7 givenname: Mei surname: Cui fullname: Cui, Mei organization: Department of Neurology, Huashan hospital, Fudan University, Shanghai, China – sequence: 8 givenname: Kim surname: Tieu fullname: Tieu, Kim organization: Department of Environmental Health Sciences, Florida International University, Miami, FL, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32355963$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUEtLw0AYXKRiH3r0KrnpJXYf2Wz3KMUXKPWg5_Bl80VWk92aL0H7s_wj_iYrVvA0MzAzDDNloxADMnYs-LngVs3LDnyYwzsAt3yPTUSW81QKnY_-8TGbEr1wLjIl8wM2VlJpbXM1Yat777r43HhoEvyIFFukpAbnG99Dj8nXZ0qbMLgGfUj6DgK1nsjHkGz1A3SvPlAMp5RUnhAID9l-DQ3h0Q5n7Onq8nF5k96trm-XF3epU8L0aV2B4ZqjFbWpBDiTqUyVCwtaglbGSZFbueDamVojiKqsSpAIytRS221WztjZb--6i28DUl9sdzlsGggYByqksibXNrM_1pOddShbrIp151voNsXfCfIbjqNjBw |
| CitedBy_id | crossref_primary_10_3390_ph15010076 crossref_primary_10_1016_j_jbc_2024_107742 crossref_primary_10_1016_j_chemphyslip_2024_105422 crossref_primary_10_1007_s12017_024_08812_2 crossref_primary_10_1186_s12950_025_00443_z crossref_primary_10_3389_fnins_2021_738442 crossref_primary_10_3389_fimmu_2024_1377409 crossref_primary_10_1177_0271678X251325039 crossref_primary_10_1186_s12974_023_02830_w crossref_primary_10_1016_j_arr_2021_101321 crossref_primary_10_1038_s41582_022_00624_x crossref_primary_10_1186_s12951_024_02556_8 crossref_primary_10_1186_s12964_023_01402_y crossref_primary_10_1186_s40364_024_00661_2 crossref_primary_10_1016_j_mcn_2022_103784 crossref_primary_10_1038_s41420_022_00861_5 crossref_primary_10_3389_fnagi_2022_1049418 crossref_primary_10_1080_10717544_2024_2361165 crossref_primary_10_4252_wjsc_v16_i12_1002 crossref_primary_10_1038_s41597_024_03909_6 crossref_primary_10_1371_journal_ppat_1012517 crossref_primary_10_1007_s10753_024_02156_6 crossref_primary_10_3390_biom12070957 crossref_primary_10_3390_ijms26062491 crossref_primary_10_1016_j_nbd_2022_105804 crossref_primary_10_1002_advs_202503579 crossref_primary_10_1016_j_vesic_2025_100071 crossref_primary_10_3390_antiox11010008 crossref_primary_10_3390_cells12010063 crossref_primary_10_1016_j_bbadis_2025_167960 crossref_primary_10_1007_s00401_021_02268_5 crossref_primary_10_1016_j_bbr_2025_115703 crossref_primary_10_1039_D0MH01542C crossref_primary_10_1186_s40478_020_00993_8 crossref_primary_10_31083_j_jin2311203 crossref_primary_10_1038_s41392_024_02071_0 crossref_primary_10_3390_biom13050873 crossref_primary_10_1016_j_biomaterials_2025_123548 crossref_primary_10_3389_fnmol_2021_630808 crossref_primary_10_1155_2021_9965564 crossref_primary_10_1016_j_bioactmat_2023_03_002 crossref_primary_10_1016_j_parkreldis_2025_107851 crossref_primary_10_1080_17460441_2023_2160440 crossref_primary_10_1002_glia_24626 crossref_primary_10_1038_s41392_025_02124_y crossref_primary_10_1016_j_intimp_2025_114089 crossref_primary_10_2147_JIR_S440377 crossref_primary_10_1016_j_envpol_2024_124035 crossref_primary_10_1016_j_nbd_2024_106663 crossref_primary_10_1186_s40035_023_00375_9 crossref_primary_10_1016_j_neuroscience_2024_06_024 crossref_primary_10_1016_j_prp_2024_155451 crossref_primary_10_3389_fneur_2022_852003 crossref_primary_10_1111_cns_70331 crossref_primary_10_1021_acschemneuro_5c00313 crossref_primary_10_1007_s00401_024_02781_3 crossref_primary_10_1186_s12951_023_02176_8 crossref_primary_10_1186_s40035_024_00459_0 crossref_primary_10_1016_j_jbc_2024_107603 crossref_primary_10_1093_brain_awab122 crossref_primary_10_1016_j_expneurol_2020_113525 crossref_primary_10_1016_j_neuroscience_2024_09_040 crossref_primary_10_1186_s40659_023_00458_x crossref_primary_10_1002_glia_23880 crossref_primary_10_1186_s12974_024_03281_7 crossref_primary_10_1186_s12967_022_03493_6 crossref_primary_10_3390_ijms22094994 crossref_primary_10_3390_cells10020375 crossref_primary_10_3390_ijms23179739 crossref_primary_10_1038_s41531_024_00824_w crossref_primary_10_3390_antiox14080963 crossref_primary_10_1016_j_vesic_2025_100089 crossref_primary_10_1038_s41419_023_05807_y crossref_primary_10_1016_j_brainres_2024_149205 crossref_primary_10_1016_j_biocel_2023_106439 crossref_primary_10_1016_j_nantod_2023_101771 crossref_primary_10_1039_D5FO00422E crossref_primary_10_1016_j_bcp_2021_114796 crossref_primary_10_1016_j_nantod_2023_101770 crossref_primary_10_3390_ijms24076363 crossref_primary_10_1016_j_bbamcr_2025_119905 crossref_primary_10_3389_fimmu_2025_1496304 crossref_primary_10_3390_ijms25031629 crossref_primary_10_1016_j_neuint_2021_105094 crossref_primary_10_4103_NRR_NRR_D_24_00462 crossref_primary_10_1002_bies_202100287 crossref_primary_10_1016_j_pnpbp_2025_111287 crossref_primary_10_1111_cns_13754 crossref_primary_10_1186_s13287_021_02326_5 crossref_primary_10_1016_j_heliyon_2023_e20595 crossref_primary_10_3389_fimmu_2021_611761 crossref_primary_10_3389_fncel_2025_1497555 crossref_primary_10_1186_s13287_025_04374_7 crossref_primary_10_1186_s12974_025_03336_3 crossref_primary_10_3389_fphar_2020_603575 crossref_primary_10_3390_ijms24032477 crossref_primary_10_1007_s12035_025_05026_w crossref_primary_10_3390_cells9112485 crossref_primary_10_3390_pharmaceutics15020443 crossref_primary_10_1002_alz_70363 crossref_primary_10_1016_j_jneuroim_2025_578716 crossref_primary_10_1038_s41531_025_01114_9 crossref_primary_10_1111_jnc_15697 crossref_primary_10_1007_s12017_023_08755_0 crossref_primary_10_1038_s41419_022_05531_z crossref_primary_10_1038_s41418_020_00667_x crossref_primary_10_1111_cns_14738 crossref_primary_10_1073_pnas_2118819119 crossref_primary_10_1093_braincomms_fcaf087 crossref_primary_10_1002_wnan_1993 crossref_primary_10_1016_j_ijbiomac_2024_135826 crossref_primary_10_1186_s13578_021_00709_y crossref_primary_10_1007_s12035_022_03119_4 crossref_primary_10_3389_fncel_2022_984690 crossref_primary_10_1016_j_brainresbull_2023_110762 crossref_primary_10_1021_jacs_4c08869 crossref_primary_10_1038_s41467_021_26519_x crossref_primary_10_1002_psp4_13223 crossref_primary_10_1016_j_envint_2022_107512 crossref_primary_10_1016_j_ejphar_2025_177958 crossref_primary_10_3389_fphar_2022_961817 crossref_primary_10_3390_brainsci13040639 crossref_primary_10_1016_j_nbd_2023_106196 crossref_primary_10_1111_cns_14055 crossref_primary_10_1007_s12035_025_04788_7 crossref_primary_10_1007_s11064_025_04388_w crossref_primary_10_1021_acsomega_5c00364 crossref_primary_10_1039_D5NR00892A crossref_primary_10_3390_cimb46060358 crossref_primary_10_1007_s00281_022_00944_6 crossref_primary_10_1002_adma_202105711 crossref_primary_10_1038_s41583_023_00697_7 crossref_primary_10_3389_fimmu_2022_728794 crossref_primary_10_1523_JNEUROSCI_2350_23_2024 crossref_primary_10_3389_fnagi_2021_765395 crossref_primary_10_1002_jev2_12398 crossref_primary_10_1093_brain_awac261 crossref_primary_10_3389_fphar_2022_878058 crossref_primary_10_19161_etd_1581447 crossref_primary_10_1134_S1819712423040128 crossref_primary_10_3389_fimmu_2021_795036 crossref_primary_10_1038_s41598_023_41382_0 crossref_primary_10_3390_ijms24010264 crossref_primary_10_1038_s41531_023_00606_w crossref_primary_10_1016_j_mad_2021_111473 crossref_primary_10_1016_j_ntt_2022_107124 crossref_primary_10_3389_fneur_2021_615802 crossref_primary_10_3389_fnmol_2021_788695 crossref_primary_10_3390_pharmaceutics15061738 crossref_primary_10_1002_jev2_12397 crossref_primary_10_1186_s40035_024_00453_6 crossref_primary_10_4103_1673_5374_320972 crossref_primary_10_1002_jev2_12394 crossref_primary_10_1016_j_bbi_2025_04_001 crossref_primary_10_1093_brain_awad341 crossref_primary_10_3389_fncel_2021_743353 crossref_primary_10_3389_fnins_2024_1426700 crossref_primary_10_1038_s41531_024_00640_2 crossref_primary_10_1177_1073858421991066 crossref_primary_10_1016_j_ejphar_2024_177199 crossref_primary_10_1016_j_neulet_2022_136734 crossref_primary_10_1186_s13024_025_00859_4 crossref_primary_10_1016_j_arr_2023_101915 crossref_primary_10_1111_cns_14752 crossref_primary_10_3390_ijms25010360 crossref_primary_10_1002_tox_24168 crossref_primary_10_1016_j_intimp_2023_110176 crossref_primary_10_7554_eLife_85837 crossref_primary_10_1016_j_neulet_2023_137562 crossref_primary_10_1016_j_heliyon_2024_e38959 crossref_primary_10_3389_fncel_2023_1105247 crossref_primary_10_3390_ijms22115818 crossref_primary_10_1007_s00018_023_04841_5 crossref_primary_10_1055_s_0043_1771464 crossref_primary_10_1002_advs_202413451 crossref_primary_10_3390_cells14030163 crossref_primary_10_1016_j_cca_2022_02_006 crossref_primary_10_1093_brain_awad332 crossref_primary_10_1186_s40035_022_00330_0 crossref_primary_10_1002_pmic_202300184 crossref_primary_10_1093_sleep_zsae217 crossref_primary_10_3390_jcm13237243 crossref_primary_10_1186_s40035_024_00418_9 crossref_primary_10_1007_s11064_025_04344_8 crossref_primary_10_1007_s00253_023_12410_w crossref_primary_10_1111_ene_15537 crossref_primary_10_1080_14737175_2023_2196014 crossref_primary_10_1161_CIRCRESAHA_122_321939 crossref_primary_10_3390_biom11060770 crossref_primary_10_1186_s40001_023_01606_5 crossref_primary_10_1515_revneuro_2020_0144 crossref_primary_10_1016_j_fmre_2024_12_023 crossref_primary_10_3390_ijms251810068 crossref_primary_10_1111_jnc_16108 crossref_primary_10_1002_jev2_12175 crossref_primary_10_1002_adbi_202400623 crossref_primary_10_1007_s11064_022_03701_1 crossref_primary_10_1084_jem_20221632 crossref_primary_10_1016_j_neuroscience_2023_09_001 crossref_primary_10_1016_j_neures_2020_11_009 crossref_primary_10_3389_fnmol_2023_1090556 crossref_primary_10_1021_acschemneuro_5c00008 crossref_primary_10_3389_fnagi_2025_1657349 crossref_primary_10_1038_s41531_022_00357_0 crossref_primary_10_1016_j_nbd_2025_106791 crossref_primary_10_1007_s12015_023_10592_4 crossref_primary_10_3390_genes13030513 crossref_primary_10_2147_JIR_S362865 crossref_primary_10_3233_JPD_223338 crossref_primary_10_3390_ijms26062644 crossref_primary_10_1007_s12264_022_00957_z crossref_primary_10_1016_j_pharmthera_2023_108565 crossref_primary_10_1523_JNEUROSCI_1337_24_2025 crossref_primary_10_3389_fnins_2022_935869 crossref_primary_10_1016_j_ebiom_2022_103980 crossref_primary_10_3389_fnagi_2022_872134 crossref_primary_10_3390_ijms24043061 crossref_primary_10_3390_ijms21228645 crossref_primary_10_3389_fnagi_2022_975176 crossref_primary_10_1186_s40035_021_00265_y crossref_primary_10_1126_science_adp3645 crossref_primary_10_3390_cells12151963 crossref_primary_10_1146_annurev_pathmechdis_031521_034145 crossref_primary_10_3390_ijms25105122 crossref_primary_10_1186_s40035_023_00372_y crossref_primary_10_4103_REGENMED_REGENMED_D_24_00005 crossref_primary_10_1016_j_arr_2024_102319 crossref_primary_10_1016_j_nbd_2022_105651 crossref_primary_10_1016_j_neuropharm_2025_110439 crossref_primary_10_1186_s10020_024_00953_1 crossref_primary_10_1016_j_immuni_2024_03_010 crossref_primary_10_1186_s40035_022_00326_w crossref_primary_10_1016_j_cej_2024_156028 crossref_primary_10_1016_j_clim_2024_109921 crossref_primary_10_1038_s41531_022_00394_9 crossref_primary_10_1016_j_intimp_2022_109417 crossref_primary_10_1016_j_neuroscience_2022_11_017 crossref_primary_10_1186_s12951_025_03354_6 crossref_primary_10_1016_j_jchemneu_2023_102249 crossref_primary_10_3389_fneur_2024_1479272 crossref_primary_10_1016_j_neuroscience_2024_07_039 crossref_primary_10_1038_s41392_023_01486_5 crossref_primary_10_1002_med_22035 crossref_primary_10_3390_biom14121519 crossref_primary_10_1186_s12974_024_03059_x crossref_primary_10_3389_fcell_2024_1451988 crossref_primary_10_1016_j_colsurfb_2024_113938 crossref_primary_10_1016_j_jmb_2022_167930 crossref_primary_10_1111_cei_13649 crossref_primary_10_1186_s12987_023_00494_5 crossref_primary_10_37349_ent_2025_1004104 crossref_primary_10_3390_cells13080670 crossref_primary_10_1111_jnc_15288 crossref_primary_10_3390_ijms24087647 crossref_primary_10_1007_s12264_021_00651_6 crossref_primary_10_1016_j_jconrel_2021_12_024 crossref_primary_10_3390_v15030794 crossref_primary_10_1038_s41401_023_01153_z crossref_primary_10_1002_adtp_202500124 crossref_primary_10_1016_j_biomaterials_2025_123345 crossref_primary_10_3390_cells11243956 crossref_primary_10_1016_j_pnpbp_2023_110873 crossref_primary_10_1016_j_neurol_2023_07_007 crossref_primary_10_1073_pnas_2119804119 crossref_primary_10_3390_ijms22094402 crossref_primary_10_1080_08820139_2024_2358446 crossref_primary_10_1016_j_cej_2025_163857 crossref_primary_10_26599_NBE_2025_9290117 crossref_primary_10_1038_s41531_024_00714_1 crossref_primary_10_3390_diagnostics13132192 crossref_primary_10_1007_s10522_025_10200_7 crossref_primary_10_3389_fnagi_2022_1039780 crossref_primary_10_1016_j_talanta_2022_123560 crossref_primary_10_1007_s12264_023_01115_9 crossref_primary_10_1167_iovs_66_5_12 crossref_primary_10_1002_advs_202104538 crossref_primary_10_1093_brain_awae177 crossref_primary_10_3390_biomedicines11041187 crossref_primary_10_1186_s12974_024_03243_z crossref_primary_10_1146_annurev_cellbio_100818_125512 crossref_primary_10_3389_fncel_2021_720675 crossref_primary_10_3390_cells12202429 crossref_primary_10_4103_NRR_NRR_D_24_01262 crossref_primary_10_1002_jex2_55 crossref_primary_10_1172_JCI186591 crossref_primary_10_3389_fnint_2021_715190 crossref_primary_10_3390_biom12070994 crossref_primary_10_3390_biomedicines10092147 crossref_primary_10_1016_j_ymthe_2021_04_020 crossref_primary_10_1096_fj_202200277R crossref_primary_10_1016_j_intimp_2024_113483 crossref_primary_10_3389_fimmu_2025_1634758 crossref_primary_10_1186_s40580_024_00426_5 crossref_primary_10_3389_fimmu_2023_1292022 crossref_primary_10_1111_cpr_13094 crossref_primary_10_1155_2021_6640836 crossref_primary_10_3390_ijms22158338 crossref_primary_10_1016_j_biomaterials_2022_121949 crossref_primary_10_3390_cells13221834 crossref_primary_10_3390_ijms24021436 crossref_primary_10_1111_acel_13522 crossref_primary_10_3389_fnmol_2022_805087 crossref_primary_10_3389_fimmu_2021_719807 crossref_primary_10_1038_s41392_024_01743_1 crossref_primary_10_3390_ijms232314753 crossref_primary_10_1016_j_taap_2021_115559 crossref_primary_10_1177_1073858421990001 crossref_primary_10_31083_j_fbl2811292 crossref_primary_10_1002_mas_21749 crossref_primary_10_1002_jev2_12439 crossref_primary_10_1016_j_neuint_2021_105271 crossref_primary_10_3389_fphar_2022_890698 crossref_primary_10_3390_biomedicines11061685 crossref_primary_10_3390_ijms24129805 crossref_primary_10_1016_j_yjmcc_2022_09_004 crossref_primary_10_1016_j_pneurobio_2022_102270 crossref_primary_10_4103_NRR_NRR_D_24_00720 crossref_primary_10_1186_s13062_023_00387_5 crossref_primary_10_3389_fncel_2022_903469 crossref_primary_10_4103_1673_5374_335143 crossref_primary_10_1016_j_phrs_2025_107908 crossref_primary_10_1007_s12035_024_03957_4 crossref_primary_10_1016_j_canlet_2023_216592 crossref_primary_10_3389_fnagi_2024_1411104 crossref_primary_10_3389_fphar_2025_1591469 crossref_primary_10_3389_fbioe_2022_980548 crossref_primary_10_3389_fncel_2022_920686 crossref_primary_10_1016_j_ecoenv_2023_115356 crossref_primary_10_3390_ijms22010440 crossref_primary_10_22159_ijap_2025v17i3_53756 crossref_primary_10_1186_s13024_025_00870_9 crossref_primary_10_1016_j_nano_2021_102375 crossref_primary_10_1289_EHP9505 crossref_primary_10_3389_fncel_2024_1355557 crossref_primary_10_3389_fimmu_2020_583647 crossref_primary_10_1093_nutrit_nuab024 crossref_primary_10_3389_fnagi_2022_819836 crossref_primary_10_1515_revneuro_2024_0043 crossref_primary_10_1016_j_apsb_2022_05_002 crossref_primary_10_1016_j_expneurol_2024_114887 |
| ContentType | Journal Article |
| Copyright | The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
| Copyright_xml | – notice: The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/brain/awaa090 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1460-2156 |
| ExternalDocumentID | 32355963 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R35 ES030523 – fundername: NIEHS NIH HHS grantid: R01 ES022274 |
| GroupedDBID | --- -E4 -~X .2P .I3 .XZ .ZR 0R~ 1TH 23N 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAIMJ AAJKP AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWTL ABDFA ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ABXZS ABZBJ ACGFS ACIWK ACPRK ACUFI ACUTJ ACUTO ACYHN ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFXAL AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM C45 CDBKE CGR COF CS3 CUY CVF CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS ECM EE~ EIF EMOBN ENERS F5P F9B FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MHKGH ML0 N9A NGC NLBLG NOMLY NOYVH NPM O9- OAUYM OAWHX OBOKY OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO TCURE TEORI TJX TLC TR2 VVN W8F WH7 WOQ X7H YAYTL YKOAZ YSK YXANX ZKX ~91 7X8 |
| ID | FETCH-LOGICAL-c317t-fda7050e91f7d1ac74343b89a52a537c21692805c7f5ea1dbdba2ea37f259da72 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 379 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541777000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1460-2156 |
| IngestDate | Wed Oct 01 14:54:27 EDT 2025 Mon Jul 21 05:48:28 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | transmission exosome microglia Parkinson’s disease α-synuclein |
| Language | English |
| License | The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c317t-fda7050e91f7d1ac74343b89a52a537c21692805c7f5ea1dbdba2ea37f259da72 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/brain/article-pdf/143/5/1476/33281811/awaa090.pdf |
| PMID | 32355963 |
| PQID | 2397659497 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2397659497 pubmed_primary_32355963 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-01 20200501 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Brain (London, England : 1878) |
| PublicationTitleAlternate | Brain |
| PublicationYear | 2020 |
| SSID | ssj0014326 |
| Score | 2.7012393 |
| Snippet | Accumulation of neuronal α-synuclein is a prominent feature in Parkinson's disease. More recently, such abnormal protein aggregation has been reported to... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1476 |
| SubjectTerms | alpha-Synuclein - metabolism Animals Brain - metabolism Brain - pathology Exosomes - metabolism Humans Mice Mice, Inbred C57BL Microglia - metabolism Neurons - metabolism Parkinson Disease - metabolism Parkinson Disease - pathology |
| Title | Microglial exosomes facilitate α-synuclein transmission in Parkinson's disease |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32355963 https://www.proquest.com/docview/2397659497 |
| Volume | 143 |
| WOSCitedRecordID | wos000541777000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qRbz4ftQXEQRPodnsZrM5iYjFS2sPCr2VSTaRgu5Wt75-ln_E32Sym9KTIHhZ2EMgDJN5fTPfIHRmtHMaKmWEWgskAaWJiv2wu-cGl9wmXNp62YTo97PhUA5Cwa0KbZUzm1gb6rzUvkbeYd5xcplIcTF5Jn5rlEdXwwqNRdSKXSjjW7rEcI4iJDEL00WUONeWBo5Nl8R3lF_A0IF3ACrp79Fl7WW66_-93wZaC_ElvmwUYhMtmGILrfQCgr6Nbnu-A-_h0akdNh9lVT6ZClvQDVm3wd9fpPosPMnxuMBT78icIviKGnb_fkS6nhY7r3BAdnbQfff67uqGhKUKRLtQYUpsDoJyamRkRR6BFn60VGUSOAMeC82iVLKMci0sNxDlKlfADMTCukTJnWW7aKkoC7OPMNMqpRIYaBonGnKlk4wrq7l74yq3URudzkQ1cnf1SAQUpnytRnNhtdFeI-_RpGHXGMXMhUDOLBz84fQhWmU-_60bEI9Qy7ona47Rsn6bjquXk1ob3Lc_6P0A47nDCg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microglial+exosomes+facilitate+%CE%B1-synuclein+transmission+in+Parkinson%27s+disease&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Guo%2C+Min&rft.au=Wang%2C+Jian&rft.au=Zhao%2C+Yanxin&rft.au=Feng%2C+Yiwei&rft.date=2020-05-01&rft.issn=1460-2156&rft.eissn=1460-2156&rft.volume=143&rft.issue=5&rft.spage=1476&rft_id=info:doi/10.1093%2Fbrain%2Fawaa090&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2156&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2156&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2156&client=summon |