Microglial exosomes facilitate α-synuclein transmission in Parkinson's disease

Accumulation of neuronal α-synuclein is a prominent feature in Parkinson's disease. More recently, such abnormal protein aggregation has been reported to spread from cell to cell and exosomes are considered as important mediators. The focus of such research, however, has been primarily in neuro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Brain (London, England : 1878) Ročník 143; číslo 5; s. 1476
Hlavní autoři: Guo, Min, Wang, Jian, Zhao, Yanxin, Feng, Yiwei, Han, Sida, Dong, Qiang, Cui, Mei, Tieu, Kim
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 01.05.2020
Témata:
ISSN:1460-2156, 1460-2156
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accumulation of neuronal α-synuclein is a prominent feature in Parkinson's disease. More recently, such abnormal protein aggregation has been reported to spread from cell to cell and exosomes are considered as important mediators. The focus of such research, however, has been primarily in neurons. Given the increasing recognition of the importance of non-cell autonomous-mediated neurotoxicity, it is critical to investigate the contribution of glia to α-synuclein aggregation and spread. Microglia are the primary phagocytes in the brain and have been well-documented as inducers of neuroinflammation. How and to what extent microglia and their exosomes impact α-synuclein pathology has not been well delineated. We report here that when treated with human α-synuclein preformed fibrils, exosomes containing α-synuclein released by microglia are fully capable of inducing protein aggregation in the recipient neurons. Additionally, when combined with microglial proinflammatory cytokines, these exosomes further increased protein aggregation in neurons. Inhibition of exosome synthesis in microglia reduced α-synuclein transmission. The in vivo significance of these exosomes was demonstrated by stereotaxic injection of exosomes isolated from α-synuclein preformed fibrils treated microglia into the mouse striatum. Phosphorylated α-synuclein was observed in multiple brain regions consistent with their neuronal connectivity. These animals also exhibited neurodegeneration in the nigrostriatal pathway in a time-dependent manner. Depleting microglia in vivo dramatically suppressed the transmission of α-synuclein after stereotaxic injection of preformed fibrils. Mechanistically, we report here that α-synuclein preformed fibrils impaired autophagy flux by upregulating PELI1, which in turn, resulted in degradation of LAMP2 in activated microglia. More importantly, by purifying microglia/macrophage derived exosomes in the CSF of Parkinson's disease patients, we confirmed the presence of α-synuclein oligomer in CD11b+ exosomes, which were able to induce α-synuclein aggregation in neurons, further supporting the translational aspect of this study. Taken together, our study supports the view that microglial exosomes contribute to the progression of α-synuclein pathology and therefore, they may serve as a promising therapeutic target for Parkinson's disease.
AbstractList Accumulation of neuronal α-synuclein is a prominent feature in Parkinson's disease. More recently, such abnormal protein aggregation has been reported to spread from cell to cell and exosomes are considered as important mediators. The focus of such research, however, has been primarily in neurons. Given the increasing recognition of the importance of non-cell autonomous-mediated neurotoxicity, it is critical to investigate the contribution of glia to α-synuclein aggregation and spread. Microglia are the primary phagocytes in the brain and have been well-documented as inducers of neuroinflammation. How and to what extent microglia and their exosomes impact α-synuclein pathology has not been well delineated. We report here that when treated with human α-synuclein preformed fibrils, exosomes containing α-synuclein released by microglia are fully capable of inducing protein aggregation in the recipient neurons. Additionally, when combined with microglial proinflammatory cytokines, these exosomes further increased protein aggregation in neurons. Inhibition of exosome synthesis in microglia reduced α-synuclein transmission. The in vivo significance of these exosomes was demonstrated by stereotaxic injection of exosomes isolated from α-synuclein preformed fibrils treated microglia into the mouse striatum. Phosphorylated α-synuclein was observed in multiple brain regions consistent with their neuronal connectivity. These animals also exhibited neurodegeneration in the nigrostriatal pathway in a time-dependent manner. Depleting microglia in vivo dramatically suppressed the transmission of α-synuclein after stereotaxic injection of preformed fibrils. Mechanistically, we report here that α-synuclein preformed fibrils impaired autophagy flux by upregulating PELI1, which in turn, resulted in degradation of LAMP2 in activated microglia. More importantly, by purifying microglia/macrophage derived exosomes in the CSF of Parkinson's disease patients, we confirmed the presence of α-synuclein oligomer in CD11b+ exosomes, which were able to induce α-synuclein aggregation in neurons, further supporting the translational aspect of this study. Taken together, our study supports the view that microglial exosomes contribute to the progression of α-synuclein pathology and therefore, they may serve as a promising therapeutic target for Parkinson's disease.
Accumulation of neuronal α-synuclein is a prominent feature in Parkinson's disease. More recently, such abnormal protein aggregation has been reported to spread from cell to cell and exosomes are considered as important mediators. The focus of such research, however, has been primarily in neurons. Given the increasing recognition of the importance of non-cell autonomous-mediated neurotoxicity, it is critical to investigate the contribution of glia to α-synuclein aggregation and spread. Microglia are the primary phagocytes in the brain and have been well-documented as inducers of neuroinflammation. How and to what extent microglia and their exosomes impact α-synuclein pathology has not been well delineated. We report here that when treated with human α-synuclein preformed fibrils, exosomes containing α-synuclein released by microglia are fully capable of inducing protein aggregation in the recipient neurons. Additionally, when combined with microglial proinflammatory cytokines, these exosomes further increased protein aggregation in neurons. Inhibition of exosome synthesis in microglia reduced α-synuclein transmission. The in vivo significance of these exosomes was demonstrated by stereotaxic injection of exosomes isolated from α-synuclein preformed fibrils treated microglia into the mouse striatum. Phosphorylated α-synuclein was observed in multiple brain regions consistent with their neuronal connectivity. These animals also exhibited neurodegeneration in the nigrostriatal pathway in a time-dependent manner. Depleting microglia in vivo dramatically suppressed the transmission of α-synuclein after stereotaxic injection of preformed fibrils. Mechanistically, we report here that α-synuclein preformed fibrils impaired autophagy flux by upregulating PELI1, which in turn, resulted in degradation of LAMP2 in activated microglia. More importantly, by purifying microglia/macrophage derived exosomes in the CSF of Parkinson's disease patients, we confirmed the presence of α-synuclein oligomer in CD11b+ exosomes, which were able to induce α-synuclein aggregation in neurons, further supporting the translational aspect of this study. Taken together, our study supports the view that microglial exosomes contribute to the progression of α-synuclein pathology and therefore, they may serve as a promising therapeutic target for Parkinson's disease.Accumulation of neuronal α-synuclein is a prominent feature in Parkinson's disease. More recently, such abnormal protein aggregation has been reported to spread from cell to cell and exosomes are considered as important mediators. The focus of such research, however, has been primarily in neurons. Given the increasing recognition of the importance of non-cell autonomous-mediated neurotoxicity, it is critical to investigate the contribution of glia to α-synuclein aggregation and spread. Microglia are the primary phagocytes in the brain and have been well-documented as inducers of neuroinflammation. How and to what extent microglia and their exosomes impact α-synuclein pathology has not been well delineated. We report here that when treated with human α-synuclein preformed fibrils, exosomes containing α-synuclein released by microglia are fully capable of inducing protein aggregation in the recipient neurons. Additionally, when combined with microglial proinflammatory cytokines, these exosomes further increased protein aggregation in neurons. Inhibition of exosome synthesis in microglia reduced α-synuclein transmission. The in vivo significance of these exosomes was demonstrated by stereotaxic injection of exosomes isolated from α-synuclein preformed fibrils treated microglia into the mouse striatum. Phosphorylated α-synuclein was observed in multiple brain regions consistent with their neuronal connectivity. These animals also exhibited neurodegeneration in the nigrostriatal pathway in a time-dependent manner. Depleting microglia in vivo dramatically suppressed the transmission of α-synuclein after stereotaxic injection of preformed fibrils. Mechanistically, we report here that α-synuclein preformed fibrils impaired autophagy flux by upregulating PELI1, which in turn, resulted in degradation of LAMP2 in activated microglia. More importantly, by purifying microglia/macrophage derived exosomes in the CSF of Parkinson's disease patients, we confirmed the presence of α-synuclein oligomer in CD11b+ exosomes, which were able to induce α-synuclein aggregation in neurons, further supporting the translational aspect of this study. Taken together, our study supports the view that microglial exosomes contribute to the progression of α-synuclein pathology and therefore, they may serve as a promising therapeutic target for Parkinson's disease.
Author Wang, Jian
Tieu, Kim
Han, Sida
Zhao, Yanxin
Dong, Qiang
Cui, Mei
Feng, Yiwei
Guo, Min
Author_xml – sequence: 1
  givenname: Min
  surname: Guo
  fullname: Guo, Min
  organization: Department of Neurology, Huashan hospital, Fudan University, Shanghai, China
– sequence: 2
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan hospital, Fudan University, Shanghai, China
– sequence: 3
  givenname: Yanxin
  surname: Zhao
  fullname: Zhao, Yanxin
  organization: Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China
– sequence: 4
  givenname: Yiwei
  surname: Feng
  fullname: Feng, Yiwei
  organization: Department of Neurology, Huashan hospital, Fudan University, Shanghai, China
– sequence: 5
  givenname: Sida
  surname: Han
  fullname: Han, Sida
  organization: Department of Neurology, Huashan hospital, Fudan University, Shanghai, China
– sequence: 6
  givenname: Qiang
  surname: Dong
  fullname: Dong, Qiang
  organization: Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
– sequence: 7
  givenname: Mei
  surname: Cui
  fullname: Cui, Mei
  organization: Department of Neurology, Huashan hospital, Fudan University, Shanghai, China
– sequence: 8
  givenname: Kim
  surname: Tieu
  fullname: Tieu, Kim
  organization: Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32355963$$D View this record in MEDLINE/PubMed
BookMark eNpNUEtLw0AYXKRiH3r0KrnpJXYf2Wz3KMUXKPWg5_Bl80VWk92aL0H7s_wj_iYrVvA0MzAzDDNloxADMnYs-LngVs3LDnyYwzsAt3yPTUSW81QKnY_-8TGbEr1wLjIl8wM2VlJpbXM1Yat777r43HhoEvyIFFukpAbnG99Dj8nXZ0qbMLgGfUj6DgK1nsjHkGz1A3SvPlAMp5RUnhAID9l-DQ3h0Q5n7Onq8nF5k96trm-XF3epU8L0aV2B4ZqjFbWpBDiTqUyVCwtaglbGSZFbueDamVojiKqsSpAIytRS221WztjZb--6i28DUl9sdzlsGggYByqksibXNrM_1pOddShbrIp151voNsXfCfIbjqNjBw
CitedBy_id crossref_primary_10_3390_ph15010076
crossref_primary_10_1016_j_jbc_2024_107742
crossref_primary_10_1016_j_chemphyslip_2024_105422
crossref_primary_10_1007_s12017_024_08812_2
crossref_primary_10_1186_s12950_025_00443_z
crossref_primary_10_3389_fnins_2021_738442
crossref_primary_10_3389_fimmu_2024_1377409
crossref_primary_10_1177_0271678X251325039
crossref_primary_10_1186_s12974_023_02830_w
crossref_primary_10_1016_j_arr_2021_101321
crossref_primary_10_1038_s41582_022_00624_x
crossref_primary_10_1186_s12951_024_02556_8
crossref_primary_10_1186_s12964_023_01402_y
crossref_primary_10_1186_s40364_024_00661_2
crossref_primary_10_1016_j_mcn_2022_103784
crossref_primary_10_1038_s41420_022_00861_5
crossref_primary_10_3389_fnagi_2022_1049418
crossref_primary_10_1080_10717544_2024_2361165
crossref_primary_10_4252_wjsc_v16_i12_1002
crossref_primary_10_1038_s41597_024_03909_6
crossref_primary_10_1371_journal_ppat_1012517
crossref_primary_10_1007_s10753_024_02156_6
crossref_primary_10_3390_biom12070957
crossref_primary_10_3390_ijms26062491
crossref_primary_10_1016_j_nbd_2022_105804
crossref_primary_10_1002_advs_202503579
crossref_primary_10_1016_j_vesic_2025_100071
crossref_primary_10_3390_antiox11010008
crossref_primary_10_3390_cells12010063
crossref_primary_10_1016_j_bbadis_2025_167960
crossref_primary_10_1007_s00401_021_02268_5
crossref_primary_10_1016_j_bbr_2025_115703
crossref_primary_10_1039_D0MH01542C
crossref_primary_10_1186_s40478_020_00993_8
crossref_primary_10_31083_j_jin2311203
crossref_primary_10_1038_s41392_024_02071_0
crossref_primary_10_3390_biom13050873
crossref_primary_10_1016_j_biomaterials_2025_123548
crossref_primary_10_3389_fnmol_2021_630808
crossref_primary_10_1155_2021_9965564
crossref_primary_10_1016_j_bioactmat_2023_03_002
crossref_primary_10_1016_j_parkreldis_2025_107851
crossref_primary_10_1080_17460441_2023_2160440
crossref_primary_10_1002_glia_24626
crossref_primary_10_1038_s41392_025_02124_y
crossref_primary_10_1016_j_intimp_2025_114089
crossref_primary_10_2147_JIR_S440377
crossref_primary_10_1016_j_envpol_2024_124035
crossref_primary_10_1016_j_nbd_2024_106663
crossref_primary_10_1186_s40035_023_00375_9
crossref_primary_10_1016_j_neuroscience_2024_06_024
crossref_primary_10_1016_j_prp_2024_155451
crossref_primary_10_3389_fneur_2022_852003
crossref_primary_10_1111_cns_70331
crossref_primary_10_1021_acschemneuro_5c00313
crossref_primary_10_1007_s00401_024_02781_3
crossref_primary_10_1186_s12951_023_02176_8
crossref_primary_10_1186_s40035_024_00459_0
crossref_primary_10_1016_j_jbc_2024_107603
crossref_primary_10_1093_brain_awab122
crossref_primary_10_1016_j_expneurol_2020_113525
crossref_primary_10_1016_j_neuroscience_2024_09_040
crossref_primary_10_1186_s40659_023_00458_x
crossref_primary_10_1002_glia_23880
crossref_primary_10_1186_s12974_024_03281_7
crossref_primary_10_1186_s12967_022_03493_6
crossref_primary_10_3390_ijms22094994
crossref_primary_10_3390_cells10020375
crossref_primary_10_3390_ijms23179739
crossref_primary_10_1038_s41531_024_00824_w
crossref_primary_10_3390_antiox14080963
crossref_primary_10_1016_j_vesic_2025_100089
crossref_primary_10_1038_s41419_023_05807_y
crossref_primary_10_1016_j_brainres_2024_149205
crossref_primary_10_1016_j_biocel_2023_106439
crossref_primary_10_1016_j_nantod_2023_101771
crossref_primary_10_1039_D5FO00422E
crossref_primary_10_1016_j_bcp_2021_114796
crossref_primary_10_1016_j_nantod_2023_101770
crossref_primary_10_3390_ijms24076363
crossref_primary_10_1016_j_bbamcr_2025_119905
crossref_primary_10_3389_fimmu_2025_1496304
crossref_primary_10_3390_ijms25031629
crossref_primary_10_1016_j_neuint_2021_105094
crossref_primary_10_4103_NRR_NRR_D_24_00462
crossref_primary_10_1002_bies_202100287
crossref_primary_10_1016_j_pnpbp_2025_111287
crossref_primary_10_1111_cns_13754
crossref_primary_10_1186_s13287_021_02326_5
crossref_primary_10_1016_j_heliyon_2023_e20595
crossref_primary_10_3389_fimmu_2021_611761
crossref_primary_10_3389_fncel_2025_1497555
crossref_primary_10_1186_s13287_025_04374_7
crossref_primary_10_1186_s12974_025_03336_3
crossref_primary_10_3389_fphar_2020_603575
crossref_primary_10_3390_ijms24032477
crossref_primary_10_1007_s12035_025_05026_w
crossref_primary_10_3390_cells9112485
crossref_primary_10_3390_pharmaceutics15020443
crossref_primary_10_1002_alz_70363
crossref_primary_10_1016_j_jneuroim_2025_578716
crossref_primary_10_1038_s41531_025_01114_9
crossref_primary_10_1111_jnc_15697
crossref_primary_10_1007_s12017_023_08755_0
crossref_primary_10_1038_s41419_022_05531_z
crossref_primary_10_1038_s41418_020_00667_x
crossref_primary_10_1111_cns_14738
crossref_primary_10_1073_pnas_2118819119
crossref_primary_10_1093_braincomms_fcaf087
crossref_primary_10_1002_wnan_1993
crossref_primary_10_1016_j_ijbiomac_2024_135826
crossref_primary_10_1186_s13578_021_00709_y
crossref_primary_10_1007_s12035_022_03119_4
crossref_primary_10_3389_fncel_2022_984690
crossref_primary_10_1016_j_brainresbull_2023_110762
crossref_primary_10_1021_jacs_4c08869
crossref_primary_10_1038_s41467_021_26519_x
crossref_primary_10_1002_psp4_13223
crossref_primary_10_1016_j_envint_2022_107512
crossref_primary_10_1016_j_ejphar_2025_177958
crossref_primary_10_3389_fphar_2022_961817
crossref_primary_10_3390_brainsci13040639
crossref_primary_10_1016_j_nbd_2023_106196
crossref_primary_10_1111_cns_14055
crossref_primary_10_1007_s12035_025_04788_7
crossref_primary_10_1007_s11064_025_04388_w
crossref_primary_10_1021_acsomega_5c00364
crossref_primary_10_1039_D5NR00892A
crossref_primary_10_3390_cimb46060358
crossref_primary_10_1007_s00281_022_00944_6
crossref_primary_10_1002_adma_202105711
crossref_primary_10_1038_s41583_023_00697_7
crossref_primary_10_3389_fimmu_2022_728794
crossref_primary_10_1523_JNEUROSCI_2350_23_2024
crossref_primary_10_3389_fnagi_2021_765395
crossref_primary_10_1002_jev2_12398
crossref_primary_10_1093_brain_awac261
crossref_primary_10_3389_fphar_2022_878058
crossref_primary_10_19161_etd_1581447
crossref_primary_10_1134_S1819712423040128
crossref_primary_10_3389_fimmu_2021_795036
crossref_primary_10_1038_s41598_023_41382_0
crossref_primary_10_3390_ijms24010264
crossref_primary_10_1038_s41531_023_00606_w
crossref_primary_10_1016_j_mad_2021_111473
crossref_primary_10_1016_j_ntt_2022_107124
crossref_primary_10_3389_fneur_2021_615802
crossref_primary_10_3389_fnmol_2021_788695
crossref_primary_10_3390_pharmaceutics15061738
crossref_primary_10_1002_jev2_12397
crossref_primary_10_1186_s40035_024_00453_6
crossref_primary_10_4103_1673_5374_320972
crossref_primary_10_1002_jev2_12394
crossref_primary_10_1016_j_bbi_2025_04_001
crossref_primary_10_1093_brain_awad341
crossref_primary_10_3389_fncel_2021_743353
crossref_primary_10_3389_fnins_2024_1426700
crossref_primary_10_1038_s41531_024_00640_2
crossref_primary_10_1177_1073858421991066
crossref_primary_10_1016_j_ejphar_2024_177199
crossref_primary_10_1016_j_neulet_2022_136734
crossref_primary_10_1186_s13024_025_00859_4
crossref_primary_10_1016_j_arr_2023_101915
crossref_primary_10_1111_cns_14752
crossref_primary_10_3390_ijms25010360
crossref_primary_10_1002_tox_24168
crossref_primary_10_1016_j_intimp_2023_110176
crossref_primary_10_7554_eLife_85837
crossref_primary_10_1016_j_neulet_2023_137562
crossref_primary_10_1016_j_heliyon_2024_e38959
crossref_primary_10_3389_fncel_2023_1105247
crossref_primary_10_3390_ijms22115818
crossref_primary_10_1007_s00018_023_04841_5
crossref_primary_10_1055_s_0043_1771464
crossref_primary_10_1002_advs_202413451
crossref_primary_10_3390_cells14030163
crossref_primary_10_1016_j_cca_2022_02_006
crossref_primary_10_1093_brain_awad332
crossref_primary_10_1186_s40035_022_00330_0
crossref_primary_10_1002_pmic_202300184
crossref_primary_10_1093_sleep_zsae217
crossref_primary_10_3390_jcm13237243
crossref_primary_10_1186_s40035_024_00418_9
crossref_primary_10_1007_s11064_025_04344_8
crossref_primary_10_1007_s00253_023_12410_w
crossref_primary_10_1111_ene_15537
crossref_primary_10_1080_14737175_2023_2196014
crossref_primary_10_1161_CIRCRESAHA_122_321939
crossref_primary_10_3390_biom11060770
crossref_primary_10_1186_s40001_023_01606_5
crossref_primary_10_1515_revneuro_2020_0144
crossref_primary_10_1016_j_fmre_2024_12_023
crossref_primary_10_3390_ijms251810068
crossref_primary_10_1111_jnc_16108
crossref_primary_10_1002_jev2_12175
crossref_primary_10_1002_adbi_202400623
crossref_primary_10_1007_s11064_022_03701_1
crossref_primary_10_1084_jem_20221632
crossref_primary_10_1016_j_neuroscience_2023_09_001
crossref_primary_10_1016_j_neures_2020_11_009
crossref_primary_10_3389_fnmol_2023_1090556
crossref_primary_10_1021_acschemneuro_5c00008
crossref_primary_10_3389_fnagi_2025_1657349
crossref_primary_10_1038_s41531_022_00357_0
crossref_primary_10_1016_j_nbd_2025_106791
crossref_primary_10_1007_s12015_023_10592_4
crossref_primary_10_3390_genes13030513
crossref_primary_10_2147_JIR_S362865
crossref_primary_10_3233_JPD_223338
crossref_primary_10_3390_ijms26062644
crossref_primary_10_1007_s12264_022_00957_z
crossref_primary_10_1016_j_pharmthera_2023_108565
crossref_primary_10_1523_JNEUROSCI_1337_24_2025
crossref_primary_10_3389_fnins_2022_935869
crossref_primary_10_1016_j_ebiom_2022_103980
crossref_primary_10_3389_fnagi_2022_872134
crossref_primary_10_3390_ijms24043061
crossref_primary_10_3390_ijms21228645
crossref_primary_10_3389_fnagi_2022_975176
crossref_primary_10_1186_s40035_021_00265_y
crossref_primary_10_1126_science_adp3645
crossref_primary_10_3390_cells12151963
crossref_primary_10_1146_annurev_pathmechdis_031521_034145
crossref_primary_10_3390_ijms25105122
crossref_primary_10_1186_s40035_023_00372_y
crossref_primary_10_4103_REGENMED_REGENMED_D_24_00005
crossref_primary_10_1016_j_arr_2024_102319
crossref_primary_10_1016_j_nbd_2022_105651
crossref_primary_10_1016_j_neuropharm_2025_110439
crossref_primary_10_1186_s10020_024_00953_1
crossref_primary_10_1016_j_immuni_2024_03_010
crossref_primary_10_1186_s40035_022_00326_w
crossref_primary_10_1016_j_cej_2024_156028
crossref_primary_10_1016_j_clim_2024_109921
crossref_primary_10_1038_s41531_022_00394_9
crossref_primary_10_1016_j_intimp_2022_109417
crossref_primary_10_1016_j_neuroscience_2022_11_017
crossref_primary_10_1186_s12951_025_03354_6
crossref_primary_10_1016_j_jchemneu_2023_102249
crossref_primary_10_3389_fneur_2024_1479272
crossref_primary_10_1016_j_neuroscience_2024_07_039
crossref_primary_10_1038_s41392_023_01486_5
crossref_primary_10_1002_med_22035
crossref_primary_10_3390_biom14121519
crossref_primary_10_1186_s12974_024_03059_x
crossref_primary_10_3389_fcell_2024_1451988
crossref_primary_10_1016_j_colsurfb_2024_113938
crossref_primary_10_1016_j_jmb_2022_167930
crossref_primary_10_1111_cei_13649
crossref_primary_10_1186_s12987_023_00494_5
crossref_primary_10_37349_ent_2025_1004104
crossref_primary_10_3390_cells13080670
crossref_primary_10_1111_jnc_15288
crossref_primary_10_3390_ijms24087647
crossref_primary_10_1007_s12264_021_00651_6
crossref_primary_10_1016_j_jconrel_2021_12_024
crossref_primary_10_3390_v15030794
crossref_primary_10_1038_s41401_023_01153_z
crossref_primary_10_1002_adtp_202500124
crossref_primary_10_1016_j_biomaterials_2025_123345
crossref_primary_10_3390_cells11243956
crossref_primary_10_1016_j_pnpbp_2023_110873
crossref_primary_10_1016_j_neurol_2023_07_007
crossref_primary_10_1073_pnas_2119804119
crossref_primary_10_3390_ijms22094402
crossref_primary_10_1080_08820139_2024_2358446
crossref_primary_10_1016_j_cej_2025_163857
crossref_primary_10_26599_NBE_2025_9290117
crossref_primary_10_1038_s41531_024_00714_1
crossref_primary_10_3390_diagnostics13132192
crossref_primary_10_1007_s10522_025_10200_7
crossref_primary_10_3389_fnagi_2022_1039780
crossref_primary_10_1016_j_talanta_2022_123560
crossref_primary_10_1007_s12264_023_01115_9
crossref_primary_10_1167_iovs_66_5_12
crossref_primary_10_1002_advs_202104538
crossref_primary_10_1093_brain_awae177
crossref_primary_10_3390_biomedicines11041187
crossref_primary_10_1186_s12974_024_03243_z
crossref_primary_10_1146_annurev_cellbio_100818_125512
crossref_primary_10_3389_fncel_2021_720675
crossref_primary_10_3390_cells12202429
crossref_primary_10_4103_NRR_NRR_D_24_01262
crossref_primary_10_1002_jex2_55
crossref_primary_10_1172_JCI186591
crossref_primary_10_3389_fnint_2021_715190
crossref_primary_10_3390_biom12070994
crossref_primary_10_3390_biomedicines10092147
crossref_primary_10_1016_j_ymthe_2021_04_020
crossref_primary_10_1096_fj_202200277R
crossref_primary_10_1016_j_intimp_2024_113483
crossref_primary_10_3389_fimmu_2025_1634758
crossref_primary_10_1186_s40580_024_00426_5
crossref_primary_10_3389_fimmu_2023_1292022
crossref_primary_10_1111_cpr_13094
crossref_primary_10_1155_2021_6640836
crossref_primary_10_3390_ijms22158338
crossref_primary_10_1016_j_biomaterials_2022_121949
crossref_primary_10_3390_cells13221834
crossref_primary_10_3390_ijms24021436
crossref_primary_10_1111_acel_13522
crossref_primary_10_3389_fnmol_2022_805087
crossref_primary_10_3389_fimmu_2021_719807
crossref_primary_10_1038_s41392_024_01743_1
crossref_primary_10_3390_ijms232314753
crossref_primary_10_1016_j_taap_2021_115559
crossref_primary_10_1177_1073858421990001
crossref_primary_10_31083_j_fbl2811292
crossref_primary_10_1002_mas_21749
crossref_primary_10_1002_jev2_12439
crossref_primary_10_1016_j_neuint_2021_105271
crossref_primary_10_3389_fphar_2022_890698
crossref_primary_10_3390_biomedicines11061685
crossref_primary_10_3390_ijms24129805
crossref_primary_10_1016_j_yjmcc_2022_09_004
crossref_primary_10_1016_j_pneurobio_2022_102270
crossref_primary_10_4103_NRR_NRR_D_24_00720
crossref_primary_10_1186_s13062_023_00387_5
crossref_primary_10_3389_fncel_2022_903469
crossref_primary_10_4103_1673_5374_335143
crossref_primary_10_1016_j_phrs_2025_107908
crossref_primary_10_1007_s12035_024_03957_4
crossref_primary_10_1016_j_canlet_2023_216592
crossref_primary_10_3389_fnagi_2024_1411104
crossref_primary_10_3389_fphar_2025_1591469
crossref_primary_10_3389_fbioe_2022_980548
crossref_primary_10_3389_fncel_2022_920686
crossref_primary_10_1016_j_ecoenv_2023_115356
crossref_primary_10_3390_ijms22010440
crossref_primary_10_22159_ijap_2025v17i3_53756
crossref_primary_10_1186_s13024_025_00870_9
crossref_primary_10_1016_j_nano_2021_102375
crossref_primary_10_1289_EHP9505
crossref_primary_10_3389_fncel_2024_1355557
crossref_primary_10_3389_fimmu_2020_583647
crossref_primary_10_1093_nutrit_nuab024
crossref_primary_10_3389_fnagi_2022_819836
crossref_primary_10_1515_revneuro_2024_0043
crossref_primary_10_1016_j_apsb_2022_05_002
crossref_primary_10_1016_j_expneurol_2024_114887
ContentType Journal Article
Copyright The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/brain/awaa090
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
ExternalDocumentID 32355963
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R35 ES030523
– fundername: NIEHS NIH HHS
  grantid: R01 ES022274
GroupedDBID ---
-E4
-~X
.2P
.I3
.XZ
.ZR
0R~
1TH
23N
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWTL
ABDFA
ABEJV
ABEUO
ABGNP
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXAL
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AIJHB
AJBYB
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
C45
CDBKE
CGR
COF
CS3
CUY
CVF
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
ECM
EE~
EIF
EMOBN
ENERS
F5P
F9B
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MHKGH
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NPM
O9-
OAUYM
OAWHX
OBOKY
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TLC
TR2
VVN
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YSK
YXANX
ZKX
~91
7X8
ID FETCH-LOGICAL-c317t-fda7050e91f7d1ac74343b89a52a537c21692805c7f5ea1dbdba2ea37f259da72
IEDL.DBID 7X8
ISICitedReferencesCount 379
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541777000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1460-2156
IngestDate Wed Oct 01 14:54:27 EDT 2025
Mon Jul 21 05:48:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords transmission
exosome
microglia
Parkinson’s disease
α-synuclein
Language English
License The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-fda7050e91f7d1ac74343b89a52a537c21692805c7f5ea1dbdba2ea37f259da72
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/brain/article-pdf/143/5/1476/33281811/awaa090.pdf
PMID 32355963
PQID 2397659497
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2397659497
pubmed_primary_32355963
PublicationCentury 2000
PublicationDate 2020-05-01
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2020
SSID ssj0014326
Score 2.701201
Snippet Accumulation of neuronal α-synuclein is a prominent feature in Parkinson's disease. More recently, such abnormal protein aggregation has been reported to...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1476
SubjectTerms alpha-Synuclein - metabolism
Animals
Brain - metabolism
Brain - pathology
Exosomes - metabolism
Humans
Mice
Mice, Inbred C57BL
Microglia - metabolism
Neurons - metabolism
Parkinson Disease - metabolism
Parkinson Disease - pathology
Title Microglial exosomes facilitate α-synuclein transmission in Parkinson's disease
URI https://www.ncbi.nlm.nih.gov/pubmed/32355963
https://www.proquest.com/docview/2397659497
Volume 143
WOSCitedRecordID wos000541777000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5qRby4L3UjguBpaCYz00xOImLx0tqDQm_DyzJS0Jnq1O1n-Uf8Tb7MpPQkCF4COQTCy8vbvrcQcgZKS4WaKggVGHRQhEI5yPBfJcqCNDJmka6HTYjBIB2N5NAH3CqfVjmTibWgNqV2MfIOd4ozkbEUF5PnwE2NcuiqH6GxSFoRmjIupUuM5ihCHHFfXcQCVG1d32MTnfiOcgMYOvAOwCT73bqstUxv_b_32yBr3r6klw1DbJIFW2yRlb5H0LfJbd9l4D08IttR-1FW5ZOtaA66adZt6fdXUH0WrsnxuKBTp8iQEVxEjeLelUjX1WLnFfXIzg65713fXd0EfqhCoNFUmAa5AcESZmWYCxOCFq60VKUSEg5JJDQPu5KnLNEiTyyERhkF3EIkcnSU8CzfJUtFWdh9QoXGBxUG3dw8jk2XKaN1ZFIZC6WElqZNTmekyvCuDomAwpavVTYnVpvsNfTOJk13jSziaAKhWDj4w-lDssqd_1snIB6RVo5f1h6TZf02HVcvJzU34DoY9n8AOarDHQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microglial+exosomes+facilitate+%CE%B1-synuclein+transmission+in+Parkinson%27s+disease&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Guo%2C+Min&rft.au=Wang%2C+Jian&rft.au=Zhao%2C+Yanxin&rft.au=Feng%2C+Yiwei&rft.date=2020-05-01&rft.eissn=1460-2156&rft.volume=143&rft.issue=5&rft.spage=1476&rft_id=info:doi/10.1093%2Fbrain%2Fawaa090&rft_id=info%3Apmid%2F32355963&rft_id=info%3Apmid%2F32355963&rft.externalDocID=32355963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2156&client=summon