A GF-3 SAR Image Dataset of Road Segmentation

We constructed a GF-3 SAR image dataset based on road segmentation to boost the development of GF-3 synthetic aperture radar (SAR) image road segmentation technology and make GF-3 SAR images be applied to practice better. We selected 23 scenes of GF-3 SAR images in Shaanxi, China, cut them into road...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information technology and control Jg. 50; H. 1; S. 89 - 101
Hauptverfasser: Sun, Zengguo, Zhao, Mingmin, Jia, Bai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kaunas University of Technology 25.03.2021
Schlagworte:
ISSN:1392-124X, 2335-884X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We constructed a GF-3 SAR image dataset based on road segmentation to boost the development of GF-3 synthetic aperture radar (SAR) image road segmentation technology and make GF-3 SAR images be applied to practice better. We selected 23 scenes of GF-3 SAR images in Shaanxi, China, cut them into road chips with 512 × 512 pixels, and then labeled the dataset using LabelMe labeling tool. The dataset consists of 10026 road chips, and these road images are from different GF-3 imaging modes, so there is diversity in resolution and polarization. Three segmentation algorithms such as Multi-task Network Cascades (MNC), Fully Convolutional Instance-aware Semantic Segmentation (FCIS), and Mask Region Convolutional Neural Networks (Mask R-CNN) are trained by using the dataset. The experimental result measures including Average Precision (AP) and Intersection over Union (IoU) show that segmentation algorithms work well with this dataset, and the segmentation accuracy of Mask R-CNN is the best, which demonstrates the validity of the dataset we constructed.
AbstractList We constructed a GF-3 SAR image dataset based on road segmentation to boost the development of GF-3 synthetic aperture radar (SAR) image road segmentation technology and make GF-3 SAR images be applied to practice better. We selected 23 scenes of GF-3 SAR images in Shaanxi, China, cut them into road chips with 512 × 512 pixels, and then labeled the dataset using LabelMe labeling tool. The dataset consists of 10026 road chips, and these road images are from different GF-3 imaging modes, so there is diversity in resolution and polarization. Three segmentation algorithms such as Multi-task Network Cascades (MNC), Fully Convolutional Instance-aware Semantic Segmentation (FCIS), and Mask Region Convolutional Neural Networks (Mask R-CNN) are trained by using the dataset. The experimental result measures including Average Precision (AP) and Intersection over Union (IoU) show that segmentation algorithms work well with this dataset, and the segmentation accuracy of Mask R-CNN is the best, which demonstrates the validity of the dataset we constructed.
Author Zhao, Mingmin
Jia, Bai
Sun, Zengguo
Author_xml – sequence: 1
  givenname: Zengguo
  surname: Sun
  fullname: Sun, Zengguo
  organization: Shaanxi Normal University
– sequence: 2
  givenname: Mingmin
  surname: Zhao
  fullname: Zhao, Mingmin
– sequence: 3
  givenname: Bai
  surname: Jia
  fullname: Jia, Bai
BookMark eNp9j8FOAjEURRuDiYj8gKv6AR1f2yntLAkKkpCYgCbsms6blgzCjOmUhX_vKKxcuHl3887NPbdk0LSNJ-SeQ6a0Uo974FmdMFOQ8UzowugrMhRSKmZMvh2QIZeFYFzk2xsy7ro9AAgFSuZ8SNiULuZM0s10TZdHt_P0ySXX-UTbQNetq-jG746-SS7VbXNHroM7dH58yRF5nz-_zV7Y6nWxnE1XDCXXiQVVTkBrDGiwNLkrNU5KpXlppPBSAyAihwIdeFUZ7E8oQ2EqEJWciAByRMy5F2PbddEHi_V5QYquPlgO9sfc9ua2N7cKLLe_5j0q_qCfsT66-PU_9HCGPtLJ7ttTbHo762Kq8eAvP98XqGnG
CitedBy_id crossref_primary_10_1007_s11554_023_01329_0
crossref_primary_10_1080_01431161_2022_2142076
crossref_primary_10_3390_fi14100277
ContentType Journal Article
Copyright Copyright (c) 2021 Information Technology and Control
Copyright_xml – notice: Copyright (c) 2021 Information Technology and Control
DBID AJMEP
AAYXX
CITATION
DOI 10.5755/j01.itc.50.1.27987
DatabaseName Kaunas University of Technology Press Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2335-884X
EndPage 101
ExternalDocumentID 10_5755_j01_itc_50_1_27987
27987
GroupedDBID 5GY
AAKPC
AENEX
AJMEP
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
OK1
TR2
AAYXX
CITATION
ID FETCH-LOGICAL-c317t-f5b6077cfc8cb84ab7c6b571b832e3700ccc109ca0e5d8ce5dfbf98d02d362f03
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709572400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1392-124X
IngestDate Sat Nov 29 03:56:43 EST 2025
Tue Nov 18 21:10:23 EST 2025
Tue Jul 08 22:49:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
IssueTitle Articles
Keywords deep learning
GF-3 SAR image dataset
road segmentation
Mask R-CNN
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-f5b6077cfc8cb84ab7c6b571b832e3700ccc109ca0e5d8ce5dfbf98d02d362f03
OpenAccessLink http://dx.doi.org/10.5755/j01.itc.50.1.27987
PageCount 13
ParticipantIDs crossref_citationtrail_10_5755_j01_itc_50_1_27987
crossref_primary_10_5755_j01_itc_50_1_27987
ktu_journals_article_27987
PublicationCentury 2000
PublicationDate 20210325
PublicationDateYYYYMMDD 2021-03-25
PublicationDate_xml – month: 03
  year: 2021
  text: 20210325
  day: 25
PublicationDecade 2020
PublicationTitle Information technology and control
PublicationTitleAbbrev ITC
PublicationYear 2021
Publisher Kaunas University of Technology
Publisher_xml – name: Kaunas University of Technology
SSID ssj0002505341
Score 2.2063146
Snippet We constructed a GF-3 SAR image dataset based on road segmentation to boost the development of GF-3 synthetic aperture radar (SAR) image road segmentation...
SourceID crossref
ktu
SourceType Enrichment Source
Index Database
Publisher
StartPage 89
Title A GF-3 SAR Image Dataset of Road Segmentation
URI https://itc.ktu.lt/index.php/ITC/article/view/27987
Volume 50
WOSCitedRecordID wos000709572400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2335-884X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002505341
  issn: 1392-124X
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0OoGD_CA-BQbH_IDb5WLEye181gGhSE0oVFQxUtkO05VaJ1pTaf9OH4c5491aZEmeECqLNd2LOfufL673J0ReiWkLnTFK5JnFQMFJRkSUMEMKVgF-jNVins75LdP_ORETKfF517v11UszMWCWysuL4uz_4pqaANku9DZf0D3ZlJogDogHUpAO5R_hfhR__2YsP6X0Wn_eOk8ct7KFo4q_8X_tJEgX5rZMkYc2a5sGiOTPEG0G4t7DHzzDu3XX5A8r_pu7Gy2bjq25yZ44tvZcr4huo_BHfeNnHctDKl3sQrRyMFfX66tXO04iuwY_gPzBFmLgLwwDWeLb0sZy4kQsS1y3JBqdouyAvsMtwnFgzgJVo5dHg_ypUuH8YMmg3mrBzlw_UHKi3hsbyXU9kQF2IHh8HOjf7brwaJ1f1wuSpeABOrHkyN3IgaEQa1y1xQ0boeN_cQ-JwEPt__sJOf2_XvoVsrzIuko9E4OcMIly4LGHwETorbcG7z-c_1bktEerLQj6Ezuo3tRQ8GjsNAHqGfsQ3S3k7fyESIj7GgMA41hT2M40hhuauxoDHdp7DH6On43OfpA4r0bRIM02ZI6V0PKua610EpkUnE9VDlPFHB_wzilWuuEFlpSk1dCQ1GruhAVTSsQh2rKnqB921jzFGHuoo-k4BwmyKgSQqohz3SRMFNzJfUBSq7eudQxKb27G2VRgnLq4FQCnEqAU5mDslp6OB2g_uaZs5CS5cbRhwDKMm7QVRnRHDoPb-p8hu5c74bnaL89X5sX6La-aOer85ce178BXJ6FIA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+GF-3+SAR+Image+Dataset+of+Road+Segmentation&rft.jtitle=Information+technology+and+control&rft.au=Sun%2C+Zengguo&rft.au=Zhao%2C+Mingmin&rft.au=Jia%2C+Bai&rft.date=2021-03-25&rft.pub=Kaunas+University+of+Technology&rft.issn=1392-124X&rft.eissn=2335-884X&rft.volume=50&rft.issue=1&rft.spage=89&rft.epage=101&rft_id=info:doi/10.5755%2Fj01.itc.50.1.27987&rft.externalDBID=https%3A%2F%2Fitc.ktu.lt%2Findex.php%2FITC%2Farticle%2Fdownload%2F27987%2F14768&rft.externalDocID=27987
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-124X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-124X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-124X&client=summon