A GF-3 SAR Image Dataset of Road Segmentation
We constructed a GF-3 SAR image dataset based on road segmentation to boost the development of GF-3 synthetic aperture radar (SAR) image road segmentation technology and make GF-3 SAR images be applied to practice better. We selected 23 scenes of GF-3 SAR images in Shaanxi, China, cut them into road...
Gespeichert in:
| Veröffentlicht in: | Information technology and control Jg. 50; H. 1; S. 89 - 101 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Kaunas University of Technology
25.03.2021
|
| Schlagworte: | |
| ISSN: | 1392-124X, 2335-884X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We constructed a GF-3 SAR image dataset based on road segmentation to boost the development of GF-3 synthetic aperture radar (SAR) image road segmentation technology and make GF-3 SAR images be applied to practice better. We selected 23 scenes of GF-3 SAR images in Shaanxi, China, cut them into road chips with 512 × 512 pixels, and then labeled the dataset using LabelMe labeling tool. The dataset consists of 10026 road chips, and these road images are from different GF-3 imaging modes, so there is diversity in resolution and polarization. Three segmentation algorithms such as Multi-task Network Cascades (MNC), Fully Convolutional Instance-aware Semantic Segmentation (FCIS), and Mask Region Convolutional Neural Networks (Mask R-CNN) are trained by using the dataset. The experimental result measures including Average Precision (AP) and Intersection over Union (IoU) show that segmentation algorithms work well with this dataset, and the segmentation accuracy of Mask R-CNN is the best, which demonstrates the validity of the dataset we constructed. |
|---|---|
| AbstractList | We constructed a GF-3 SAR image dataset based on road segmentation to boost the development of GF-3 synthetic aperture radar (SAR) image road segmentation technology and make GF-3 SAR images be applied to practice better. We selected 23 scenes of GF-3 SAR images in Shaanxi, China, cut them into road chips with 512 × 512 pixels, and then labeled the dataset using LabelMe labeling tool. The dataset consists of 10026 road chips, and these road images are from different GF-3 imaging modes, so there is diversity in resolution and polarization. Three segmentation algorithms such as Multi-task Network Cascades (MNC), Fully Convolutional Instance-aware Semantic Segmentation (FCIS), and Mask Region Convolutional Neural Networks (Mask R-CNN) are trained by using the dataset. The experimental result measures including Average Precision (AP) and Intersection over Union (IoU) show that segmentation algorithms work well with this dataset, and the segmentation accuracy of Mask R-CNN is the best, which demonstrates the validity of the dataset we constructed. |
| Author | Zhao, Mingmin Jia, Bai Sun, Zengguo |
| Author_xml | – sequence: 1 givenname: Zengguo surname: Sun fullname: Sun, Zengguo organization: Shaanxi Normal University – sequence: 2 givenname: Mingmin surname: Zhao fullname: Zhao, Mingmin – sequence: 3 givenname: Bai surname: Jia fullname: Jia, Bai |
| BookMark | eNp9j8FOAjEURRuDiYj8gKv6AR1f2yntLAkKkpCYgCbsms6blgzCjOmUhX_vKKxcuHl3887NPbdk0LSNJ-SeQ6a0Uo974FmdMFOQ8UzowugrMhRSKmZMvh2QIZeFYFzk2xsy7ro9AAgFSuZ8SNiULuZM0s10TZdHt_P0ySXX-UTbQNetq-jG746-SS7VbXNHroM7dH58yRF5nz-_zV7Y6nWxnE1XDCXXiQVVTkBrDGiwNLkrNU5KpXlppPBSAyAihwIdeFUZ7E8oQ2EqEJWciAByRMy5F2PbddEHi_V5QYquPlgO9sfc9ua2N7cKLLe_5j0q_qCfsT66-PU_9HCGPtLJ7ttTbHo762Kq8eAvP98XqGnG |
| CitedBy_id | crossref_primary_10_1007_s11554_023_01329_0 crossref_primary_10_1080_01431161_2022_2142076 crossref_primary_10_3390_fi14100277 |
| ContentType | Journal Article |
| Copyright | Copyright (c) 2021 Information Technology and Control |
| Copyright_xml | – notice: Copyright (c) 2021 Information Technology and Control |
| DBID | AJMEP AAYXX CITATION |
| DOI | 10.5755/j01.itc.50.1.27987 |
| DatabaseName | Kaunas University of Technology Press Journals CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2335-884X |
| EndPage | 101 |
| ExternalDocumentID | 10_5755_j01_itc_50_1_27987 27987 |
| GroupedDBID | 5GY AAKPC AENEX AJMEP ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ OK1 TR2 AAYXX CITATION |
| ID | FETCH-LOGICAL-c317t-f5b6077cfc8cb84ab7c6b571b832e3700ccc109ca0e5d8ce5dfbf98d02d362f03 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709572400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1392-124X |
| IngestDate | Sat Nov 29 03:56:43 EST 2025 Tue Nov 18 21:10:23 EST 2025 Tue Jul 08 22:49:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| IssueTitle | Articles |
| Keywords | deep learning GF-3 SAR image dataset road segmentation Mask R-CNN |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c317t-f5b6077cfc8cb84ab7c6b571b832e3700ccc109ca0e5d8ce5dfbf98d02d362f03 |
| OpenAccessLink | http://dx.doi.org/10.5755/j01.itc.50.1.27987 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_5755_j01_itc_50_1_27987 crossref_primary_10_5755_j01_itc_50_1_27987 ktu_journals_article_27987 |
| PublicationCentury | 2000 |
| PublicationDate | 20210325 |
| PublicationDateYYYYMMDD | 2021-03-25 |
| PublicationDate_xml | – month: 03 year: 2021 text: 20210325 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | Information technology and control |
| PublicationTitleAbbrev | ITC |
| PublicationYear | 2021 |
| Publisher | Kaunas University of Technology |
| Publisher_xml | – name: Kaunas University of Technology |
| SSID | ssj0002505341 |
| Score | 2.2063146 |
| Snippet | We constructed a GF-3 SAR image dataset based on road segmentation to boost the development of GF-3 synthetic aperture radar (SAR) image road segmentation... |
| SourceID | crossref ktu |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 89 |
| Title | A GF-3 SAR Image Dataset of Road Segmentation |
| URI | https://itc.ktu.lt/index.php/ITC/article/view/27987 |
| Volume | 50 |
| WOSCitedRecordID | wos000709572400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2335-884X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002505341 issn: 1392-124X databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0OoGD_CA-BQbH_IDb5WLEye181gGhSE0oVFQxUtkO05VaJ1pTaf9OH4c5491aZEmeECqLNd2LOfufL673J0ReiWkLnTFK5JnFQMFJRkSUMEMKVgF-jNVins75LdP_ORETKfF517v11UszMWCWysuL4uz_4pqaANku9DZf0D3ZlJogDogHUpAO5R_hfhR__2YsP6X0Wn_eOk8ct7KFo4q_8X_tJEgX5rZMkYc2a5sGiOTPEG0G4t7DHzzDu3XX5A8r_pu7Gy2bjq25yZ44tvZcr4huo_BHfeNnHctDKl3sQrRyMFfX66tXO04iuwY_gPzBFmLgLwwDWeLb0sZy4kQsS1y3JBqdouyAvsMtwnFgzgJVo5dHg_ypUuH8YMmg3mrBzlw_UHKi3hsbyXU9kQF2IHh8HOjf7brwaJ1f1wuSpeABOrHkyN3IgaEQa1y1xQ0boeN_cQ-JwEPt__sJOf2_XvoVsrzIuko9E4OcMIly4LGHwETorbcG7z-c_1bktEerLQj6Ezuo3tRQ8GjsNAHqGfsQ3S3k7fyESIj7GgMA41hT2M40hhuauxoDHdp7DH6On43OfpA4r0bRIM02ZI6V0PKua610EpkUnE9VDlPFHB_wzilWuuEFlpSk1dCQ1GruhAVTSsQh2rKnqB921jzFGHuoo-k4BwmyKgSQqohz3SRMFNzJfUBSq7eudQxKb27G2VRgnLq4FQCnEqAU5mDslp6OB2g_uaZs5CS5cbRhwDKMm7QVRnRHDoPb-p8hu5c74bnaL89X5sX6La-aOer85ce178BXJ6FIA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+GF-3+SAR+Image+Dataset+of+Road+Segmentation&rft.jtitle=Information+technology+and+control&rft.au=Sun%2C+Zengguo&rft.au=Zhao%2C+Mingmin&rft.au=Jia%2C+Bai&rft.date=2021-03-25&rft.pub=Kaunas+University+of+Technology&rft.issn=1392-124X&rft.eissn=2335-884X&rft.volume=50&rft.issue=1&rft.spage=89&rft.epage=101&rft_id=info:doi/10.5755%2Fj01.itc.50.1.27987&rft.externalDBID=https%3A%2F%2Fitc.ktu.lt%2Findex.php%2FITC%2Farticle%2Fdownload%2F27987%2F14768&rft.externalDocID=27987 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-124X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-124X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-124X&client=summon |