Hybrid ASP-based Approach to Pattern Mining

Detecting small sets of relevant patterns from a given data set is a central challenge in data mining. The relevance of a pattern is based on user-provided criteria; typically, all patterns that satisfy certain criteria are considered relevant. Rule-based languages like answer set programming (ASP)...

Full description

Saved in:
Bibliographic Details
Published in:Theory and practice of logic programming Vol. 19; no. 4; pp. 505 - 535
Main Authors: PARAMONOV, SERGEY, STEPANOVA, DARIA, MIETTINEN, PAULI
Format: Journal Article
Language:English
Published: Cambridge, UK Cambridge University Press 01.07.2019
Subjects:
ISSN:1471-0684, 1475-3081
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Detecting small sets of relevant patterns from a given data set is a central challenge in data mining. The relevance of a pattern is based on user-provided criteria; typically, all patterns that satisfy certain criteria are considered relevant. Rule-based languages like answer set programming (ASP) seem well suited for specifying such criteria in a form of constraints. Although progress has been made, on the one hand, on solving individual mining problems and, on the other hand, developing generic mining systems, the existing methods focus either on scalability or on generality. In this paper, we make steps toward combining local (frequency, size, and cost) and global (various condensed representations like maximal, closed, and skyline) constraints in a generic and efficient way. We present a hybrid approach for itemset, sequence, and graph mining which exploits dedicated highly optimized mining systems to detect frequent patterns and then filters the results using declarative ASP. To further demonstrate the generic nature of our hybrid framework, we apply it to a problem of approximately tiling a database. Experiments on real-world data sets show the effectiveness of the proposed method and computational gains for itemset, sequence, and graph mining, as well as approximate tiling. Under consideration in Theory and Practice of Logic Programming.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1471-0684
1475-3081
DOI:10.1017/S1471068418000467