Optimal EEG channels selection for alcoholism screening using EMD domain statistical features and harmony search algorithm

Alcoholism can be analyzed by Electroencephalogram (EEG) data. Finding an optimal subset of EEG channels for alcoholism detection is a challenging task. The paper reports a new methodology for the detection of optimal channels for alcoholism analysis using EEG data. The proposed technique employs th...

Full description

Saved in:
Bibliographic Details
Published in:Biocybernetics and biomedical engineering Vol. 41; no. 1; pp. 83 - 96
Main Authors: Bavkar, Sandeep, Iyer, Brijesh, Deosarkar, Shankar
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2021
Subjects:
ISSN:0208-5216
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Alcoholism can be analyzed by Electroencephalogram (EEG) data. Finding an optimal subset of EEG channels for alcoholism detection is a challenging task. The paper reports a new methodology for the detection of optimal channels for alcoholism analysis using EEG data. The proposed technique employs the Empirical Mode Decomposition (EMD) technique to extract the amplitude and frequency modulated bandwidth features from the Intrinsic Mode Function (IMF) and ensemble subspace K-NN as a classifier to classify alcoholics and normal. The optimum channels are selected, using a harmony search algorithm. The fitness value of discrete binary harmony search (DBHS) optimization algorithms is calculated using accuracy and sensitivity achieved by the ensemble subspace K-Nearest Neighbor classifier. Experimental outcomes indicate that the optimal channel selected by the harmony search algorithm has biological inference related to the alcoholic subject. The proposed approach reports a classification accuracy of 93.87%, with only 12 detected EEG channels.
AbstractList Alcoholism can be analyzed by Electroencephalogram (EEG) data. Finding an optimal subset of EEG channels for alcoholism detection is a challenging task. The paper reports a new methodology for the detection of optimal channels for alcoholism analysis using EEG data. The proposed technique employs the Empirical Mode Decomposition (EMD) technique to extract the amplitude and frequency modulated bandwidth features from the Intrinsic Mode Function (IMF) and ensemble subspace K-NN as a classifier to classify alcoholics and normal. The optimum channels are selected, using a harmony search algorithm. The fitness value of discrete binary harmony search (DBHS) optimization algorithms is calculated using accuracy and sensitivity achieved by the ensemble subspace K-Nearest Neighbor classifier. Experimental outcomes indicate that the optimal channel selected by the harmony search algorithm has biological inference related to the alcoholic subject. The proposed approach reports a classification accuracy of 93.87%, with only 12 detected EEG channels.
AbstractAlcoholism can be analyzed by Electroencephalogram (EEG) data. Finding an optimal subset of EEG channels for alcoholism detection is a challenging task. The paper reports a new methodology for the detection of optimal channels for alcoholism analysis using EEG data. The proposed technique employs the Empirical Mode Decomposition (EMD) technique to extract the amplitude and frequency modulated bandwidth features from the Intrinsic Mode Function (IMF) and ensemble subspace K-NN as a classifier to classify alcoholics and normal. The optimum channels are selected, using a harmony search algorithm. The fitness value of discrete binary harmony search (DBHS) optimization algorithms is calculated using accuracy and sensitivity achieved by the ensemble subspace K-Nearest Neighbor classifier. Experimental outcomes indicate that the optimal channel selected by the harmony search algorithm has biological inference related to the alcoholic subject. The proposed approach reports a classification accuracy of 93.87%, with only 12 detected EEG channels.
Author Iyer, Brijesh
Bavkar, Sandeep
Deosarkar, Shankar
Author_xml – sequence: 1
  givenname: Sandeep
  orcidid: 0000-0001-9692-853X
  surname: Bavkar
  fullname: Bavkar, Sandeep
  email: bavkar_ss@rediffmail.com
– sequence: 2
  givenname: Brijesh
  orcidid: 0000-0003-0152-3527
  surname: Iyer
  fullname: Iyer, Brijesh
  email: brijeshiyer@dbatu.ac.in
– sequence: 3
  givenname: Shankar
  surname: Deosarkar
  fullname: Deosarkar, Shankar
  email: sbdeosarkar@yahoo.com
BookMark eNqFkctKBDEQRbMYwfHxAe7yAzOm-pUWQRAdH6C4UNchXV1tZ-xOJMkI49ebRleCmkWFWtxT1Kk9NrPOEmNHIJYgoDpeL5uGlpnIUg9LIWDG5qmpF2UG1S47DGEt0qugrPJ8zj4e3qIZ9cBXq2uOvbaWhsADDYTROMs757ke0PVuMGHkAT2RNfaFb8JUV_eXvHWjNpaHqKMJ0WCCdaTjxlPg2ra81350dpug2mOfaC_Om9iPB2yn00Ogw-9_nz1frZ4ubhZ3D9e3F-d3C8xBxgVKXZGkAkUnywKqAouqqSFHEli2Td1K3WWyJVnUdNLlmJdCUl1DVwBi0dT5PoMvLnoXgqdOvfm0st8qEGpyptYqOVOTMwWgkrOUkT8yaKb9nI1em-HP5OlXMnmkd0NeBTRkkVrjk1PVOvNn-uxHGgdjJ6evtKWwdhtvkysFKmRKqMfpstNhM5ELyOoyAU5-B_wz_BPIGbR6
CitedBy_id crossref_primary_10_1016_j_bbe_2021_12_005
crossref_primary_10_1016_j_measurement_2024_115500
crossref_primary_10_3390_brainsci13091340
crossref_primary_10_1016_j_bspc_2024_106491
crossref_primary_10_1016_j_bbe_2021_12_009
crossref_primary_10_3390_brainsci12060778
crossref_primary_10_1007_s11814_022_1080_9
crossref_primary_10_1088_1741_2552_ad7f8e
crossref_primary_10_1016_j_compbiomed_2025_109826
crossref_primary_10_1088_1741_2552_ac7b4a
crossref_primary_10_1016_j_eswa_2023_119745
crossref_primary_10_3389_fninf_2021_808339
crossref_primary_10_1002_cpe_6912
crossref_primary_10_1016_j_swevo_2022_101126
crossref_primary_10_1088_1361_6501_adcce8
Cites_doi 10.1049/joe.2017.0878
10.1111/j.1530-0277.2009.01136.x
10.1016/j.patrec.2019.04.019
10.1016/j.clinph.2011.06.001
10.1016/j.neucom.2013.05.005
10.1177/003754970107600201
10.1007/s40708-014-0003-x
10.1007/s11571-017-9465-x
10.1113/jphysiol.2002.017673
10.1088/1361-6579/aa6b4c
10.1142/S0129065712500116
10.2174/15672026113109990004
10.1007/s40815-018-0455-x
10.1049/iet-smt.2017.0232
10.1038/s41598-017-01419-7
10.1007/s11633-019-1178-7
10.1111/adb.12481
10.1016/j.knosys.2016.04.026
10.1016/S0006-3223(96)00552-5
10.1098/rspa.1998.0193
10.1007/s11571-016-9416-y
10.20965/jaciii.2011.p1221
10.1007/s40708-017-0061-y
10.1038/s41598-017-18471-y
10.1109/ACCESS.2019.2927267
10.1109/72.991435
10.1016/j.artmed.2017.11.002
ContentType Journal Article
Copyright 2020 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
Copyright_xml – notice: 2020 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
– notice: Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
DBID AAYXX
CITATION
DOI 10.1016/j.bbe.2020.11.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 96
ExternalDocumentID 10_1016_j_bbe_2020_11_001
S0208521620301285
1_s2_0_S0208521620301285
GroupedDBID --M
.1-
.FO
.~1
0R~
1P~
1~.
23N
4.4
457
4G.
53G
5GY
7-5
8P~
AABXZ
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABAOU
ABJNI
ABMAC
ABMXE
ABUDA
ABXDB
ABXRA
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
AXJTR
BAWUL
BJAXD
BKOJK
BLXMC
DIK
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JJJVA
KOM
M41
MAGPM
MHUIS
MO0
MOBAO
O9-
O9.
OAUVE
OK~
P-8
P-9
PC.
ROL
SPC
SPCBC
SSG
SSM
SSN
SST
SSU
SSW
SSZ
T5K
Y2W
Z5R
~G-
AACTN
AFKWA
AJOXV
AMFUW
RIG
AADPK
AAIAV
ABYKQ
ACAZW
AJBFU
AAYXX
CITATION
ID FETCH-LOGICAL-c317t-c7a6e7e4c0f754164c46b813ce0c5db8d7af27de748e9f3c3507e881f41cc4b83
ISSN 0208-5216
IngestDate Thu Oct 09 00:29:26 EDT 2025
Tue Nov 18 22:39:59 EST 2025
Fri Feb 23 02:45:02 EST 2024
Tue Feb 25 19:53:34 EST 2025
Tue Oct 14 19:31:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ensemble subspace K NN
Harmony Search
EMD
EEG
Alcoholic
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-c7a6e7e4c0f754164c46b813ce0c5db8d7af27de748e9f3c3507e881f41cc4b83
ORCID 0000-0001-9692-853X
0000-0003-0152-3527
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_bbe_2020_11_001
crossref_citationtrail_10_1016_j_bbe_2020_11_001
elsevier_sciencedirect_doi_10_1016_j_bbe_2020_11_001
elsevier_clinicalkeyesjournals_1_s2_0_S0208521620301285
elsevier_clinicalkey_doi_10_1016_j_bbe_2020_11_001
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Biocybernetics and biomedical engineering
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shooshtari, Setarehdan (bib0145) 2010
Mumtaz, Vuong, Xia, Malik, Rashid (bib0055) 2017; 11
Geem, Kim, Loganathan (bib0185) 2001; 76
Bavkar, Iyer, Deosarkar (bib0200) 2019; 7
Bae, Yoo, Lee, Kim (bib0105) 2017; 38
Sharma, Deb, Acharya (bib0060) 2018; 48
Mumtaz, Vuong, Malik, Rashid (bib0015) 2018; 12
Palaniappan, Raveendran, Omatu (bib0150) 2002; 13
Acharya, Sree, Chattopadhyay, Suri (bib0030) 2012; 22
(bib0020) 2012
UCI KDD Database. Available from
Zhang, Begleiter, Porjesz, Litke (bib0125) 1997; 42
(bib0005) 2018
Muhammad, Handayani, Dini (bib0065) 2017
Rieg, Frick, Hitzler, Buettner (bib0095) 2019
Henriksen, Kjaer, Madsen, Remvig, Thomsen, Sorensen (bib0165) 2012; 123
Jun-Yeup, Seung-Min, Kwang, Kwee (bib0155) 2012; 208
Meyers, Zhang, Chorlian, Pandey, Kamarajan, Wang (bib0220) 2020
Taran, Bajaj (bib0050) 2018; 12
Ong, Thung, Chong, Paramesran (bib0140) 2005
MATLAB and Statistics and Machine Learning Toolbox 2017a, the Mathworks, Inc., Natick, Massachusetts, United States
Guohun, Yan, Peng (bib0025) 2011; 15
Harper, Malone, Iacono (bib0215) 2018; 23
Park, Lee, Kim, Lee, Jung, Sohn (bib0110) 2017; 7
Mumtaz, Vuong, Xia, Malik, Rashid (bib0085) 2016; 105
Bernice, Begleiter (bib0010) 2003; 27
Geem (bib0190) 2005
Siuly, Bajaj, Sengur, Zang (bib0210) 2019
Mumtaz, Saad, Kamel, Ali, Malik (bib0090) 2018; 84
Malar, Gauthaam (bib0205) 2020; 1
Padma, Sriraam (bib0045) 2017
Mukherjee (bib0130) 2013; 10
Padma, Sriraam (bib0035) 2012
Andrew, Fein (bib0115) 2010; 34
Jardel das C. Rodrigues, Pedro P. Rebouças Filho, Eugenio Peixoto, Arun Kumar N, Victor Hugo C. de Albuquerque. Classification of EEG signals to detect alcoholism using machine learning techniques. Pattern Recognition Letters, 2019;125,140-49.
Sharma, Sharma, Pachori, Acharya (bib0120) 2018; 20
Bavkar, Iyer, Deosarkar (bib0080) 2018; vol. 11319
Guohun, Yan, Wen, Wang (bib0040) 2014; 1
Huang, Mohan, De Ridder, Sunaert, Vanneste (bib0100) 2018; 8
Cohen, Lee (bib0180) 1990
Daskalakis, Christensen, Fitzgerald, Roshan, Chen (bib0135) 2002; 543
He, Hu, Li, Li (bib0160) 2013; 121
Huang, Shen, Long, Wu, Shih, Zheng (bib0175) 1998; 454
Priya, Yadav, Jain, Bajaj (bib0075) 2018; 2018
Sharma (10.1016/j.bbe.2020.11.001_bib0120) 2018; 20
Bae (10.1016/j.bbe.2020.11.001_bib0105) 2017; 38
Mumtaz (10.1016/j.bbe.2020.11.001_bib0015) 2018; 12
Priya (10.1016/j.bbe.2020.11.001_bib0075) 2018; 2018
Park (10.1016/j.bbe.2020.11.001_bib0110) 2017; 7
Cohen (10.1016/j.bbe.2020.11.001_bib0180) 1990
Palaniappan (10.1016/j.bbe.2020.11.001_bib0150) 2002; 13
Shooshtari (10.1016/j.bbe.2020.11.001_bib0145) 2010
Huang (10.1016/j.bbe.2020.11.001_bib0175) 1998; 454
Guohun (10.1016/j.bbe.2020.11.001_bib0025) 2011; 15
Sharma (10.1016/j.bbe.2020.11.001_bib0060) 2018; 48
Mumtaz (10.1016/j.bbe.2020.11.001_bib0055) 2017; 11
Andrew (10.1016/j.bbe.2020.11.001_bib0115) 2010; 34
Acharya (10.1016/j.bbe.2020.11.001_bib0030) 2012; 22
Ong (10.1016/j.bbe.2020.11.001_bib0140) 2005
He (10.1016/j.bbe.2020.11.001_bib0160) 2013; 121
(10.1016/j.bbe.2020.11.001_bib0020) 2012
Taran (10.1016/j.bbe.2020.11.001_bib0050) 2018; 12
Mukherjee (10.1016/j.bbe.2020.11.001_bib0130) 2013; 10
Bavkar (10.1016/j.bbe.2020.11.001_bib0200) 2019; 7
Muhammad (10.1016/j.bbe.2020.11.001_bib0065) 2017
Bavkar (10.1016/j.bbe.2020.11.001_bib0080) 2018; vol. 11319
Jun-Yeup (10.1016/j.bbe.2020.11.001_bib0155) 2012; 208
Daskalakis (10.1016/j.bbe.2020.11.001_bib0135) 2002; 543
Mumtaz (10.1016/j.bbe.2020.11.001_bib0090) 2018; 84
Huang (10.1016/j.bbe.2020.11.001_bib0100) 2018; 8
Geem (10.1016/j.bbe.2020.11.001_bib0185) 2001; 76
Mumtaz (10.1016/j.bbe.2020.11.001_bib0085) 2016; 105
Guohun (10.1016/j.bbe.2020.11.001_bib0040) 2014; 1
Malar (10.1016/j.bbe.2020.11.001_bib0205) 2020; 1
(10.1016/j.bbe.2020.11.001_bib0005) 2018
Zhang (10.1016/j.bbe.2020.11.001_bib0125) 1997; 42
Geem (10.1016/j.bbe.2020.11.001_bib0190) 2005
Padma (10.1016/j.bbe.2020.11.001_bib0035) 2012
Rieg (10.1016/j.bbe.2020.11.001_bib0095) 2019
Meyers (10.1016/j.bbe.2020.11.001_bib0220) 2020
Padma (10.1016/j.bbe.2020.11.001_bib0045) 2017
Siuly (10.1016/j.bbe.2020.11.001_bib0210) 2019
Harper (10.1016/j.bbe.2020.11.001_bib0215) 2018; 23
10.1016/j.bbe.2020.11.001_bib0170
10.1016/j.bbe.2020.11.001_bib0070
Henriksen (10.1016/j.bbe.2020.11.001_bib0165) 2012; 123
10.1016/j.bbe.2020.11.001_bib0195
Bernice (10.1016/j.bbe.2020.11.001_bib0010) 2003; 27
References_xml – volume: 23
  start-page: 256
  year: 2018
  end-page: 267
  ident: bib0215
  article-title: Impact of alcohol use on EEG dynamics of response inhibition: a cotwin control analysis
  publication-title: Addict Biol
– volume: 7
  start-page: 99670
  year: 2019
  end-page: 99682
  ident: bib0200
  article-title: Rapid screening of alcoholism: an EEG based optimal channel selection approach
  publication-title: IEEE Access
– volume: 12
  start-page: 141
  year: 2018
  end-page: 156
  ident: bib0015
  article-title: A review on EEG-based methods for screening and diagnosing alcohol use disorder
  publication-title: Cogn Neurodyn
– volume: 13
  start-page: 486
  year: 2002
  end-page: 491
  ident: bib0150
  article-title: VEP optimal channel selection using a genetic algorithm for neural network classification of alcoholics
  publication-title: IEEE Trans Neural Netw
– volume: 123
  start-page: 84
  year: 2012
  end-page: 92
  ident: bib0165
  article-title: Channel selection for automatic seizure detection
  publication-title: Clin Neurophysiol
– volume: 15
  start-page: 1221
  year: 2011
  end-page: 1227
  ident: bib0025
  article-title: Evaluating functional connectivity in alcoholics based on maximal weight matching
  publication-title: J Adv Comput Intell Intell Inform
– volume: 2018
  start-page: 166
  year: 2018
  end-page: 172
  ident: bib0075
  article-title: Efficient method for classification of alcoholic and normal EEG signals using EMD
  publication-title: J Eng
– start-page: 2451
  year: 1990
  end-page: 2454
  ident: bib0180
  article-title: Instantaneous bandwidth for signals and spectrogram
  publication-title: International Conference on Acoustics, Speech, and Signal Processing, 5
– volume: 38
  start-page: 759
  year: 2017
  end-page: 773
  ident: bib0105
  article-title: Automated network analysis to measure brain effective connectivity estimated from EEG data of patients with alcoholism
  publication-title: Physiol Meas
– reference: MATLAB and Statistics and Machine Learning Toolbox 2017a, the Mathworks, Inc., Natick, Massachusetts, United States
– volume: 543
  start-page: 317
  year: 2002
  end-page: 326
  ident: bib0135
  article-title: The mechanisms of interhemispheric inhibition in the human motor cortex
  publication-title: J Physiol
– start-page: 751
  year: 2005
  end-page: 760
  ident: bib0190
  article-title: Harmony search in water pump switching problem. Advances in natural computation
– volume: 1
  year: 2020
  ident: bib0205
  article-title: Wavelet analysis of EEG for the identification of alcoholics using probabilistic classifiers and neural networks
  publication-title: Int J Intell Sustain Comput
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bib0175
  article-title: The empirical mode decomposition and the Hilbert spectrum for non-linear and non- stationary time series analysis
  publication-title: Proc R Soc Lond Ser A
– volume: 1
  start-page: 19
  year: 2014
  end-page: 25
  ident: bib0040
  article-title: Analysis of alcoholic EEG signals based on horizontal visibility graph entropy
  publication-title: Brain Inform
– year: 2020
  ident: bib0220
  article-title: A genome-wide association study of interhemispheric theta EEG coherence: implications for neural connectivity and alcohol use behavior
  publication-title: Mol Psychiatry
– volume: 121
  start-page: 423
  year: 2013
  end-page: 433
  ident: bib0160
  article-title: Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG
  publication-title: J Neurocomput
– start-page: 147
  year: 2017
  end-page: 158
  ident: bib0045
  article-title: Pattern recognition of spectral entropy features for detection of alcoholic and control visual ERP's in multichannel EEGs
  publication-title: Brain Inform
– volume: 34
  start-page: 669
  year: 2010
  end-page: 680
  ident: bib0115
  article-title: Event-related oscillations versus event-related potentials in a P300 task as biomarkers for alcoholism
  publication-title: Alcohol Clin Exp Res
– reference: Jardel das C. Rodrigues, Pedro P. Rebouças Filho, Eugenio Peixoto, Arun Kumar N, Victor Hugo C. de Albuquerque. Classification of EEG signals to detect alcoholism using machine learning techniques. Pattern Recognition Letters, 2019;125,140-49.
– start-page: 1
  year: 2010
  end-page: 4
  ident: bib0145
  article-title: Selection of optimal EEG channels for classification of signals correlated with alcohol abusers
  publication-title: Proceedings of the IEEE 10th International Conference on Signal Processing
– volume: 7
  start-page: 1333
  year: 2017
  ident: bib0110
  article-title: Neural connectivity in internet gaming disorder and alcohol use disorder: a resting-state EEG coherence study
  publication-title: Sci Rep
– volume: 20
  start-page: 1297
  year: 2018
  end-page: 1308
  ident: bib0120
  article-title: Dual-tree complex wavelet transform-based features for automated alcoholism identification
  publication-title: Int J Fuzzy Syst
– year: 2019
  ident: bib0210
  article-title: An advanced analysis system for identifying alcoholic brain state through EEG signals
  publication-title: Int J Autom Comput
– start-page: 4195
  year: 2005
  end-page: 4198
  ident: bib0140
  article-title: Selection of a subset of EEG channels using PCA to classify alcoholics and non-alcoholics
  publication-title: IEEE Engineering in Medicine and Biology 27th Annual Conference
– year: 2018
  ident: bib0005
  article-title: “Alcohol” global status report on alcohol and health
– volume: 42
  start-page: 1157
  year: 1997
  end-page: 1171
  ident: bib0125
  article-title: Electrophysiological evidence of memory impairment in alcoholic patients
  publication-title: Biol Psychiatry
– year: 2017
  ident: bib0065
  article-title: Classification of alcoholic EEG using wavelet packet decomposition, principal component analysis, and combination of Genetic Algorithm and Neural Network
  publication-title: International Conference on Information & Communication Technology and System (ICTS)
– volume: 8
  start-page: 923
  year: 2018
  ident: bib0100
  article-title: The neural correlates of the unified percept of alcohol-related craving: a fMRI and EEG study
  publication-title: Sci Rep
– year: 2012
  ident: bib0020
  article-title: “10/20 SYSTEM POSITIONING,” MANUAL
– volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: bib0185
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Simulation
– start-page: 3769
  year: 2019
  end-page: 3777
  ident: bib0095
  article-title: High-performance detection of alcoholism by unfolding the amalgamated EEG spectra using the Random Forests method
  publication-title: HICSS-52 Proc.
– volume: 208
  start-page: 231
  year: 2012
  end-page: 239
  ident: bib0155
  article-title: Optimal EEG channel selection for motor imagery BCI system using BPSO and GA
  publication-title: Robot Intell Technol Appl AISC
– volume: 27
  start-page: 153
  year: 2003
  end-page: 160
  ident: bib0010
  article-title: Alcoholism and human electrophysiology
  publication-title: Alcohol Res Health
– volume: 105
  start-page: 48
  year: 2016
  end-page: 59
  ident: bib0085
  article-title: Automatic diagnosis of alcohol use disorder using EEG features
  publication-title: Knowl-Based Syst
– volume: 22
  start-page: 1250011
  year: 2012
  ident: bib0030
  article-title: Automated diagnosis of control and alcoholic EEG signals
  publication-title: Int J Neural Syst
– volume: vol. 11319
  start-page: 161
  year: 2018
  end-page: 168
  ident: bib0080
  article-title: Detection of alcoholism: an EEG hybrid features and ensemble subspace K-NN based approach
  publication-title: Distributed Computing and Internet Technology. ICDCIT 2019. Lecture Notes in Computer Science
– reference: UCI KDD Database. Available from:
– volume: 11
  start-page: 161
  year: 2017
  end-page: 171
  ident: bib0055
  article-title: An EEG-based machine learning method to screen alcohol use disorder
  publication-title: Cogn Neurodyn
– volume: 10
  start-page: 256
  year: 2013
  end-page: 262
  ident: bib0130
  article-title: Alcoholism and its effects on the central nervous system
  publication-title: Curr Neurovasc Res
– volume: 48
  start-page: 1368
  year: 2018
  ident: bib0060
  article-title: A novel three-band orthogonal wavelet filter bank method for an automated identification of alcoholic EEG signals
  publication-title: Appl Intell
– start-page: 89
  year: 2012
  end-page: 93
  ident: bib0035
  article-title: EEG based detection of alcoholics using spectral entropy with neural network classifiers
  publication-title: International Conference on Biomedical Engineering (ICoBE))
– volume: 12
  start-page: 343
  year: 2018
  end-page: 349
  ident: bib0050
  article-title: Rhythm-based identification of alcohol EEG signals
  publication-title: IET Sci Meas Technol
– volume: 84
  start-page: 79
  year: 2018
  end-page: 89
  ident: bib0090
  article-title: An EEG-based functional connectivity measure for automatic detection of alcohol use disorder
  publication-title: Artif Intell Med
– volume: 2018
  start-page: 166
  issue: 3
  year: 2018
  ident: 10.1016/j.bbe.2020.11.001_bib0075
  article-title: Efficient method for classification of alcoholic and normal EEG signals using EMD
  publication-title: J Eng
  doi: 10.1049/joe.2017.0878
– volume: 34
  start-page: 669
  issue: 4
  year: 2010
  ident: 10.1016/j.bbe.2020.11.001_bib0115
  article-title: Event-related oscillations versus event-related potentials in a P300 task as biomarkers for alcoholism
  publication-title: Alcohol Clin Exp Res
  doi: 10.1111/j.1530-0277.2009.01136.x
– ident: 10.1016/j.bbe.2020.11.001_bib0070
  doi: 10.1016/j.patrec.2019.04.019
– volume: 123
  start-page: 84
  issue: 1
  year: 2012
  ident: 10.1016/j.bbe.2020.11.001_bib0165
  article-title: Channel selection for automatic seizure detection
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2011.06.001
– volume: 121
  start-page: 423
  year: 2013
  ident: 10.1016/j.bbe.2020.11.001_bib0160
  article-title: Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG
  publication-title: J Neurocomput
  doi: 10.1016/j.neucom.2013.05.005
– start-page: 1
  year: 2010
  ident: 10.1016/j.bbe.2020.11.001_bib0145
  article-title: Selection of optimal EEG channels for classification of signals correlated with alcohol abusers
  publication-title: Proceedings of the IEEE 10th International Conference on Signal Processing
– volume: 208
  start-page: 231
  year: 2012
  ident: 10.1016/j.bbe.2020.11.001_bib0155
  article-title: Optimal EEG channel selection for motor imagery BCI system using BPSO and GA
  publication-title: Robot Intell Technol Appl AISC
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 10.1016/j.bbe.2020.11.001_bib0185
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– volume: 1
  start-page: 19
  year: 2014
  ident: 10.1016/j.bbe.2020.11.001_bib0040
  article-title: Analysis of alcoholic EEG signals based on horizontal visibility graph entropy
  publication-title: Brain Inform
  doi: 10.1007/s40708-014-0003-x
– start-page: 89
  year: 2012
  ident: 10.1016/j.bbe.2020.11.001_bib0035
  article-title: EEG based detection of alcoholics using spectral entropy with neural network classifiers
– volume: 12
  start-page: 141
  issue: April (2)
  year: 2018
  ident: 10.1016/j.bbe.2020.11.001_bib0015
  article-title: A review on EEG-based methods for screening and diagnosing alcohol use disorder
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-017-9465-x
– start-page: 3769
  year: 2019
  ident: 10.1016/j.bbe.2020.11.001_bib0095
  article-title: High-performance detection of alcoholism by unfolding the amalgamated EEG spectra using the Random Forests method
  publication-title: HICSS-52 Proc.
– volume: 543
  start-page: 317
  year: 2002
  ident: 10.1016/j.bbe.2020.11.001_bib0135
  article-title: The mechanisms of interhemispheric inhibition in the human motor cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2002.017673
– volume: 38
  start-page: 759
  issue: 5
  year: 2017
  ident: 10.1016/j.bbe.2020.11.001_bib0105
  article-title: Automated network analysis to measure brain effective connectivity estimated from EEG data of patients with alcoholism
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/aa6b4c
– ident: 10.1016/j.bbe.2020.11.001_bib0170
– ident: 10.1016/j.bbe.2020.11.001_bib0195
– volume: 22
  start-page: 1250011
  issue: 3
  year: 2012
  ident: 10.1016/j.bbe.2020.11.001_bib0030
  article-title: Automated diagnosis of control and alcoholic EEG signals
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065712500116
– volume: 48
  start-page: 1368
  year: 2018
  ident: 10.1016/j.bbe.2020.11.001_bib0060
  article-title: A novel three-band orthogonal wavelet filter bank method for an automated identification of alcoholic EEG signals
  publication-title: Appl Intell
– volume: 10
  start-page: 256
  year: 2013
  ident: 10.1016/j.bbe.2020.11.001_bib0130
  article-title: Alcoholism and its effects on the central nervous system
  publication-title: Curr Neurovasc Res
  doi: 10.2174/15672026113109990004
– volume: 20
  start-page: 1297
  issue: 4
  year: 2018
  ident: 10.1016/j.bbe.2020.11.001_bib0120
  article-title: Dual-tree complex wavelet transform-based features for automated alcoholism identification
  publication-title: Int J Fuzzy Syst
  doi: 10.1007/s40815-018-0455-x
– volume: 27
  start-page: 153
  issue: 2
  year: 2003
  ident: 10.1016/j.bbe.2020.11.001_bib0010
  article-title: Alcoholism and human electrophysiology
  publication-title: Alcohol Res Health
– year: 2017
  ident: 10.1016/j.bbe.2020.11.001_bib0065
  article-title: Classification of alcoholic EEG using wavelet packet decomposition, principal component analysis, and combination of Genetic Algorithm and Neural Network
  publication-title: International Conference on Information & Communication Technology and System (ICTS)
– volume: 12
  start-page: 343
  issue: 3
  year: 2018
  ident: 10.1016/j.bbe.2020.11.001_bib0050
  article-title: Rhythm-based identification of alcohol EEG signals
  publication-title: IET Sci Meas Technol
  doi: 10.1049/iet-smt.2017.0232
– year: 2020
  ident: 10.1016/j.bbe.2020.11.001_bib0220
  article-title: A genome-wide association study of interhemispheric theta EEG coherence: implications for neural connectivity and alcohol use behavior
  publication-title: Mol Psychiatry
– volume: 7
  start-page: 1333
  issue: 1
  year: 2017
  ident: 10.1016/j.bbe.2020.11.001_bib0110
  article-title: Neural connectivity in internet gaming disorder and alcohol use disorder: a resting-state EEG coherence study
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-01419-7
– year: 2019
  ident: 10.1016/j.bbe.2020.11.001_bib0210
  article-title: An advanced analysis system for identifying alcoholic brain state through EEG signals
  publication-title: Int J Autom Comput
  doi: 10.1007/s11633-019-1178-7
– volume: 23
  start-page: 256
  issue: 1
  year: 2018
  ident: 10.1016/j.bbe.2020.11.001_bib0215
  article-title: Impact of alcohol use on EEG dynamics of response inhibition: a cotwin control analysis
  publication-title: Addict Biol
  doi: 10.1111/adb.12481
– volume: vol. 11319
  start-page: 161
  year: 2018
  ident: 10.1016/j.bbe.2020.11.001_bib0080
  article-title: Detection of alcoholism: an EEG hybrid features and ensemble subspace K-NN based approach
– volume: 105
  start-page: 48
  year: 2016
  ident: 10.1016/j.bbe.2020.11.001_bib0085
  article-title: Automatic diagnosis of alcohol use disorder using EEG features
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2016.04.026
– start-page: 751
  year: 2005
  ident: 10.1016/j.bbe.2020.11.001_bib0190
– volume: 42
  start-page: 1157
  year: 1997
  ident: 10.1016/j.bbe.2020.11.001_bib0125
  article-title: Electrophysiological evidence of memory impairment in alcoholic patients
  publication-title: Biol Psychiatry
  doi: 10.1016/S0006-3223(96)00552-5
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.bbe.2020.11.001_bib0175
  article-title: The empirical mode decomposition and the Hilbert spectrum for non-linear and non- stationary time series analysis
  publication-title: Proc R Soc Lond Ser A
  doi: 10.1098/rspa.1998.0193
– year: 2018
  ident: 10.1016/j.bbe.2020.11.001_bib0005
– start-page: 4195
  year: 2005
  ident: 10.1016/j.bbe.2020.11.001_bib0140
  article-title: Selection of a subset of EEG channels using PCA to classify alcoholics and non-alcoholics
– volume: 11
  start-page: 161
  issue: 2
  year: 2017
  ident: 10.1016/j.bbe.2020.11.001_bib0055
  article-title: An EEG-based machine learning method to screen alcohol use disorder
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-016-9416-y
– year: 2012
  ident: 10.1016/j.bbe.2020.11.001_bib0020
– start-page: 2451
  year: 1990
  ident: 10.1016/j.bbe.2020.11.001_bib0180
  article-title: Instantaneous bandwidth for signals and spectrogram
– volume: 15
  start-page: 1221
  issue: 9
  year: 2011
  ident: 10.1016/j.bbe.2020.11.001_bib0025
  article-title: Evaluating functional connectivity in alcoholics based on maximal weight matching
  publication-title: J Adv Comput Intell Intell Inform
  doi: 10.20965/jaciii.2011.p1221
– start-page: 147
  year: 2017
  ident: 10.1016/j.bbe.2020.11.001_bib0045
  article-title: Pattern recognition of spectral entropy features for detection of alcoholic and control visual ERP's in multichannel EEGs
  publication-title: Brain Inform
  doi: 10.1007/s40708-017-0061-y
– volume: 8
  start-page: 923
  year: 2018
  ident: 10.1016/j.bbe.2020.11.001_bib0100
  article-title: The neural correlates of the unified percept of alcohol-related craving: a fMRI and EEG study
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-18471-y
– volume: 7
  start-page: 99670
  year: 2019
  ident: 10.1016/j.bbe.2020.11.001_bib0200
  article-title: Rapid screening of alcoholism: an EEG based optimal channel selection approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927267
– volume: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.bbe.2020.11.001_bib0205
  article-title: Wavelet analysis of EEG for the identification of alcoholics using probabilistic classifiers and neural networks
  publication-title: Int J Intell Sustain Comput
– volume: 13
  start-page: 486
  issue: 2
  year: 2002
  ident: 10.1016/j.bbe.2020.11.001_bib0150
  article-title: VEP optimal channel selection using a genetic algorithm for neural network classification of alcoholics
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.991435
– volume: 84
  start-page: 79
  issue: Jan
  year: 2018
  ident: 10.1016/j.bbe.2020.11.001_bib0090
  article-title: An EEG-based functional connectivity measure for automatic detection of alcohol use disorder
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2017.11.002
SSID ssj0000615633
Score 2.1719398
Snippet Alcoholism can be analyzed by Electroencephalogram (EEG) data. Finding an optimal subset of EEG channels for alcoholism detection is a challenging task. The...
AbstractAlcoholism can be analyzed by Electroencephalogram (EEG) data. Finding an optimal subset of EEG channels for alcoholism detection is a challenging...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 83
SubjectTerms Advanced Basic Science
Alcoholic
EEG
EMD
Ensemble subspace K NN
Harmony Search
Internal Medicine
Title Optimal EEG channels selection for alcoholism screening using EMD domain statistical features and harmony search algorithm
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0208521620301285
https://www.clinicalkey.es/playcontent/1-s2.0-S0208521620301285
https://dx.doi.org/10.1016/j.bbe.2020.11.001
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0208-5216
  databaseCode: AIEXJ
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000615633
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE9RXvKBE1VQHk7sHBe2vAQL0i6ot8h2HWi3TaqkW235R_xLxnHslN2lYg9coiqq3bjzZWb8eR4IPRfBRLJExh74toluYRZ6Ik9zD7DDpfKpSJvjgm8f6eEhG4_TL73eL5sLs57TomBnZ-nyv4oa7oGwdersFcTtJoUb8BmEDlcQO1z_SfCfQQksdLXg0dsmrbcA6zesm3Y3NqyQm764uj8GaA3YyWq-4LRhDUafDoaTcsGnhWYZVk0ZZ53jqJoCoKags652XRabYcuY8Pn3spqufiz-OCCelnIjVFUoVwfaZPo306muCmJHpa5PTLD3kea11dKBdmNQ9aqazlTt2OsDVda8skNgnSe82qYwwmCLwjCaLvQZ7IhN0qVVyyS4AD-jY03jm9Zam3a4F-yAoSRmL4XQpVBDbRn0mVNn9OxB_zlb6CIUbfDbLIMpMj0F7JV0AOA1tBfSOGV9tLf_fjT-4Ag97RsmURPRYJdjT9GbeMJzj3K5H7Tl2xzfRrfaTQneN2C6g3qquItubpWqvId-trDCACtsYYUdrDDACnewwg5WuIEVBlhhAyu8BStsYYVB5LiFFTawwg5W99HXN6Pj1--8tm-HJ8EbXXmS8kRRRaSf0xgcfiJJIlgQwbsv44lgE8rzkE4UJUyleSQj2JMoxoKcBFISwaIHqF-UhXqIMOUkSXgqiE9zEuchS4NYpDGJwE3mPCAD5Nt_MZNtUXvdW2We_VWAA_TCDVmaii67vhxa0WQ2VRmMawY42zWIXjZI1a2WqLMgq8PMz46aDrkAlFATEyGLB4i4ka0HbDzb3T_46CpLeoxudO_gE9RfVafqKbou1yD76lmL6t_hmNT1
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+EEG+channels+selection+for+alcoholism+screening+using+EMD+domain+statistical+features+and+harmony+search+algorithm&rft.jtitle=Biocybernetics+and+biomedical+engineering&rft.au=Bavkar%2C+Sandeep&rft.au=Iyer%2C+Brijesh&rft.au=Deosarkar%2C+Shankar&rft.date=2021-01-01&rft.issn=0208-5216&rft.volume=41&rft.issue=1&rft.spage=83&rft.epage=96&rft_id=info:doi/10.1016%2Fj.bbe.2020.11.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbe_2020_11_001
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F02085216%2Fcov200h.gif