BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics
Inorganic nanomaterials that mimic enzymes are fascinating as they potentially have improved properties relative to native enzymes, such as greater resistance to extremes of pH and temperature and lower sensitivity to proteases. Although many artificial enzymes have been investigated, searching for...
Gespeichert in:
| Veröffentlicht in: | Analyst (London) Jg. 137; H. 19; S. 4552 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
07.10.2012
|
| Schlagworte: | |
| ISSN: | 1364-5528, 1364-5528 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Inorganic nanomaterials that mimic enzymes are fascinating as they potentially have improved properties relative to native enzymes, such as greater resistance to extremes of pH and temperature and lower sensitivity to proteases. Although many artificial enzymes have been investigated, searching for highly-efficient and stable catalysts is still of great interest. In this paper, we first demonstrated that bovine serum albumin (BSA)-stabilized MnO(2) nanoparticles (NPs) exhibited highly peroxidase-, oxidase-, and catalase-like activities. The activities of the BSA-MnO(2) NPs were evaluated using the typical horseradish peroxidase (HRP) substrates o-phenylenediamine (OPD) and 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of either hydrogen peroxide or dissolved oxygen. These small-sized BSA-MnO(2) NPs with good dispersion, solubility and biocompatibility exhibited typical Michaelis-Menten kinetics and high affinity for H(2)O(2), OPD and TMB, indicating that BSA-MnO(2) NPs can be used as satisfactory enzyme mimics. Based on these findings, BSA-MnO(2) NPs were used as colorimetric immunoassay tags for the detection of goat anti-human IgG in place of HRP. The colorimetric immunoassay using BSA-MnO(2) NPs has the advantages of being fast, robust, inexpensive, easily prepared and with no HRP and H(2)O(2) being needed. These water-soluble BSA-MnO(2) NPs may have promising potential applications in biotechnology, bioassays, and biomedicine. |
|---|---|
| AbstractList | Inorganic nanomaterials that mimic enzymes are fascinating as they potentially have improved properties relative to native enzymes, such as greater resistance to extremes of pH and temperature and lower sensitivity to proteases. Although many artificial enzymes have been investigated, searching for highly-efficient and stable catalysts is still of great interest. In this paper, we first demonstrated that bovine serum albumin (BSA)-stabilized MnO(2) nanoparticles (NPs) exhibited highly peroxidase-, oxidase-, and catalase-like activities. The activities of the BSA-MnO(2) NPs were evaluated using the typical horseradish peroxidase (HRP) substrates o-phenylenediamine (OPD) and 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of either hydrogen peroxide or dissolved oxygen. These small-sized BSA-MnO(2) NPs with good dispersion, solubility and biocompatibility exhibited typical Michaelis-Menten kinetics and high affinity for H(2)O(2), OPD and TMB, indicating that BSA-MnO(2) NPs can be used as satisfactory enzyme mimics. Based on these findings, BSA-MnO(2) NPs were used as colorimetric immunoassay tags for the detection of goat anti-human IgG in place of HRP. The colorimetric immunoassay using BSA-MnO(2) NPs has the advantages of being fast, robust, inexpensive, easily prepared and with no HRP and H(2)O(2) being needed. These water-soluble BSA-MnO(2) NPs may have promising potential applications in biotechnology, bioassays, and biomedicine. Inorganic nanomaterials that mimic enzymes are fascinating as they potentially have improved properties relative to native enzymes, such as greater resistance to extremes of pH and temperature and lower sensitivity to proteases. Although many artificial enzymes have been investigated, searching for highly-efficient and stable catalysts is still of great interest. In this paper, we first demonstrated that bovine serum albumin (BSA)-stabilized MnO(2) nanoparticles (NPs) exhibited highly peroxidase-, oxidase-, and catalase-like activities. The activities of the BSA-MnO(2) NPs were evaluated using the typical horseradish peroxidase (HRP) substrates o-phenylenediamine (OPD) and 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of either hydrogen peroxide or dissolved oxygen. These small-sized BSA-MnO(2) NPs with good dispersion, solubility and biocompatibility exhibited typical Michaelis-Menten kinetics and high affinity for H(2)O(2), OPD and TMB, indicating that BSA-MnO(2) NPs can be used as satisfactory enzyme mimics. Based on these findings, BSA-MnO(2) NPs were used as colorimetric immunoassay tags for the detection of goat anti-human IgG in place of HRP. The colorimetric immunoassay using BSA-MnO(2) NPs has the advantages of being fast, robust, inexpensive, easily prepared and with no HRP and H(2)O(2) being needed. These water-soluble BSA-MnO(2) NPs may have promising potential applications in biotechnology, bioassays, and biomedicine.Inorganic nanomaterials that mimic enzymes are fascinating as they potentially have improved properties relative to native enzymes, such as greater resistance to extremes of pH and temperature and lower sensitivity to proteases. Although many artificial enzymes have been investigated, searching for highly-efficient and stable catalysts is still of great interest. In this paper, we first demonstrated that bovine serum albumin (BSA)-stabilized MnO(2) nanoparticles (NPs) exhibited highly peroxidase-, oxidase-, and catalase-like activities. The activities of the BSA-MnO(2) NPs were evaluated using the typical horseradish peroxidase (HRP) substrates o-phenylenediamine (OPD) and 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of either hydrogen peroxide or dissolved oxygen. These small-sized BSA-MnO(2) NPs with good dispersion, solubility and biocompatibility exhibited typical Michaelis-Menten kinetics and high affinity for H(2)O(2), OPD and TMB, indicating that BSA-MnO(2) NPs can be used as satisfactory enzyme mimics. Based on these findings, BSA-MnO(2) NPs were used as colorimetric immunoassay tags for the detection of goat anti-human IgG in place of HRP. The colorimetric immunoassay using BSA-MnO(2) NPs has the advantages of being fast, robust, inexpensive, easily prepared and with no HRP and H(2)O(2) being needed. These water-soluble BSA-MnO(2) NPs may have promising potential applications in biotechnology, bioassays, and biomedicine. |
| Author | Wang, Qi Liu, Xing Su, Yingying Lv, Yi Zhao, Huihui Zhang, Lichun |
| Author_xml | – sequence: 1 givenname: Xing surname: Liu fullname: Liu, Xing organization: Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China – sequence: 2 givenname: Qi surname: Wang fullname: Wang, Qi – sequence: 3 givenname: Huihui surname: Zhao fullname: Zhao, Huihui – sequence: 4 givenname: Lichun surname: Zhang fullname: Zhang, Lichun – sequence: 5 givenname: Yingying surname: Su fullname: Su, Yingying – sequence: 6 givenname: Yi surname: Lv fullname: Lv, Yi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22900262$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkM9LwzAYhoNM3A-9-AdIjl6qX74kTXucY1NhsoN6LkmaYKVNa5OB_vcO3MDT-xweXnjfOZmEPjhCrhncMeDlvUUduFQA9ozMGM9FJiUWk388JfMYPwGAgYQLMkUsATDHGdk8vC6z5Lqh1cnV9CXskAYd-kGPqbGti1RHavr0QQc39t9NraOjOtT0xF3TNTZeknOv2-iujrkg75v12-op2-4en1fLbWY5UymzQpocdcE91F5wJpUpc-2UF0YyVeeeGwHSczSlL52ynmuJFooSuFLcFrggt3-9w9h_7V1MVddE69pWB9fvY3X4Q6HgAvlBvTmqe9O5uhrGptPjT3Xajr-MA1tQ |
| CitedBy_id | crossref_primary_10_1111_1750_3841_14974 crossref_primary_10_1007_s12274_020_2680_5 crossref_primary_10_1016_j_talanta_2020_121299 crossref_primary_10_1002_adhm_202302391 crossref_primary_10_1016_j_snb_2017_05_069 crossref_primary_10_1016_j_mtcomm_2021_102237 crossref_primary_10_1016_j_saa_2020_118649 crossref_primary_10_1002_slct_201802236 crossref_primary_10_1002_smtd_202101576 crossref_primary_10_1016_j_actbio_2020_05_035 crossref_primary_10_3390_ijms26073284 crossref_primary_10_1002_adfm_201800018 crossref_primary_10_1039_C9RA10480A crossref_primary_10_1186_s12951_018_0421_7 crossref_primary_10_3390_nano9030316 crossref_primary_10_1007_s10853_015_9716_3 crossref_primary_10_1016_j_ccr_2024_215937 crossref_primary_10_1016_j_cis_2025_103474 crossref_primary_10_1016_j_carbpol_2022_119821 crossref_primary_10_1007_s13205_019_2030_z crossref_primary_10_1016_j_snb_2017_07_104 crossref_primary_10_1186_s12645_024_00262_6 crossref_primary_10_1016_j_jelechem_2020_114048 crossref_primary_10_1007_s00604_019_3624_1 crossref_primary_10_1016_j_ccr_2020_213751 crossref_primary_10_1002_adfm_201605926 crossref_primary_10_1016_j_cis_2022_102656 crossref_primary_10_1039_D0SC03082A crossref_primary_10_1007_s00604_013_1068_6 crossref_primary_10_1007_s40242_024_3239_x crossref_primary_10_1016_j_foodchem_2023_137272 crossref_primary_10_1016_j_procbio_2020_10_010 crossref_primary_10_1007_s00604_017_2303_3 crossref_primary_10_1007_s00604_015_1697_z crossref_primary_10_1039_C9EN01089K crossref_primary_10_1021_acsbiomaterials_9b00968 crossref_primary_10_3389_fmats_2022_857385 crossref_primary_10_1002_chem_201804419 crossref_primary_10_1016_j_poly_2024_117175 crossref_primary_10_1007_s00604_019_3613_4 crossref_primary_10_1002_slct_202101496 crossref_primary_10_3390_s17112521 crossref_primary_10_1007_s00216_021_03451_z crossref_primary_10_1016_j_bios_2023_115419 crossref_primary_10_1080_03067319_2022_2039646 crossref_primary_10_1007_s00604_017_2523_6 crossref_primary_10_1002_anbr_202200093 crossref_primary_10_1007_s00604_021_05136_x crossref_primary_10_1016_j_talanta_2019_05_034 crossref_primary_10_1016_j_aca_2022_340654 crossref_primary_10_1007_s11434_016_1193_9 crossref_primary_10_1016_j_cclet_2019_05_032 crossref_primary_10_1007_s11144_014_0756_5 crossref_primary_10_1016_j_lwt_2021_112821 crossref_primary_10_1016_j_microc_2024_111933 crossref_primary_10_1016_j_aca_2018_10_020 crossref_primary_10_1016_j_microc_2025_113588 crossref_primary_10_1016_j_matlet_2013_08_050 crossref_primary_10_1080_00032719_2016_1251447 crossref_primary_10_1007_s11051_018_4271_x crossref_primary_10_1007_s42452_020_03407_5 crossref_primary_10_1007_s00216_020_02982_1 crossref_primary_10_1039_C5AN00884K crossref_primary_10_1039_D2NR05276H crossref_primary_10_1016_j_bbagen_2013_03_015 crossref_primary_10_1039_D1RA04877E crossref_primary_10_1016_j_enzmictec_2022_110192 crossref_primary_10_2147_JIR_S383239 crossref_primary_10_1016_j_colsurfb_2019_03_012 crossref_primary_10_3390_molecules29061405 crossref_primary_10_1007_s10904_019_01359_x crossref_primary_10_1016_j_snb_2016_09_049 crossref_primary_10_1002_cbic_201900595 crossref_primary_10_1039_C9NR06691H crossref_primary_10_1016_j_matdes_2023_112063 crossref_primary_10_1002_ejic_202200202 crossref_primary_10_1016_j_biotechadv_2014_12_010 crossref_primary_10_1002_ange_201600868 crossref_primary_10_1155_2019_5416963 crossref_primary_10_1016_j_nanoms_2024_03_002 crossref_primary_10_1002_adhm_202001117 crossref_primary_10_1016_j_bios_2017_05_037 crossref_primary_10_1016_j_biomaterials_2015_04_039 crossref_primary_10_1016_j_jallcom_2023_173091 crossref_primary_10_1016_j_bios_2019_111704 crossref_primary_10_1016_j_snb_2014_12_052 crossref_primary_10_1002_adhm_202304141 crossref_primary_10_1016_j_talanta_2022_123825 crossref_primary_10_1016_j_saa_2020_118741 crossref_primary_10_1186_s12951_024_02501_9 crossref_primary_10_1016_j_nantod_2021_101076 crossref_primary_10_1016_j_apsusc_2017_06_018 crossref_primary_10_1016_j_procbio_2019_05_014 crossref_primary_10_1155_2021_9980127 crossref_primary_10_1002_smll_202206772 crossref_primary_10_1002_ange_201706910 crossref_primary_10_1038_srep04407 crossref_primary_10_1016_j_chemosphere_2023_140034 crossref_primary_10_1007_s44211_022_00115_5 crossref_primary_10_1016_j_snb_2021_129549 crossref_primary_10_1016_j_cej_2024_155897 crossref_primary_10_3390_antiox12101877 crossref_primary_10_1016_j_snb_2024_136195 crossref_primary_10_1016_j_microc_2023_109538 crossref_primary_10_1016_j_materresbull_2015_03_018 crossref_primary_10_1016_j_jcis_2025_01_081 crossref_primary_10_1039_C8AN00704G crossref_primary_10_1016_j_ccr_2023_215610 crossref_primary_10_1016_j_ijbiomac_2023_125028 crossref_primary_10_3389_fchem_2021_812503 crossref_primary_10_1016_j_aca_2023_342135 crossref_primary_10_1038_s41598_023_41598_0 crossref_primary_10_1016_j_aca_2020_03_021 crossref_primary_10_1016_j_biopha_2023_114833 crossref_primary_10_1080_26896583_2020_1814081 crossref_primary_10_1016_j_saa_2021_119678 crossref_primary_10_1186_s11671_019_3058_z crossref_primary_10_3390_toxics12120926 crossref_primary_10_1016_j_bios_2015_12_035 crossref_primary_10_1002_ejic_201501237 crossref_primary_10_1007_s10008_014_2498_8 crossref_primary_10_1038_s41551_024_01221_7 crossref_primary_10_1002_chem_201303051 crossref_primary_10_1016_j_clay_2016_05_028 crossref_primary_10_1039_D2BM00334A crossref_primary_10_1002_adfm_202001933 crossref_primary_10_1002_bab_1921 crossref_primary_10_1007_s00216_020_02712_7 crossref_primary_10_1039_D5TB00295H crossref_primary_10_1021_jacs_8b05223 crossref_primary_10_1016_j_jallcom_2015_03_176 crossref_primary_10_1002_smll_202401032 crossref_primary_10_1039_C7CC02049J crossref_primary_10_1002_anie_201706910 crossref_primary_10_1002_chem_201701353 crossref_primary_10_1016_j_inoche_2018_10_024 crossref_primary_10_1016_j_saa_2021_120845 crossref_primary_10_1039_c3an00080j crossref_primary_10_1007_s00216_015_9232_y crossref_primary_10_1016_j_microc_2023_108625 crossref_primary_10_1002_smll_202303057 crossref_primary_10_1002_cnma_201600268 crossref_primary_10_1038_s41598_020_66446_3 crossref_primary_10_1007_s10522_024_10095_w crossref_primary_10_1039_C8NH00274F crossref_primary_10_1080_09593330_2016_1146339 crossref_primary_10_1007_s00604_022_05363_w crossref_primary_10_1016_j_bios_2016_11_046 crossref_primary_10_1016_j_talanta_2020_121680 crossref_primary_10_1039_D5DT00822K crossref_primary_10_1038_s41596_018_0001_1 crossref_primary_10_1002_slct_202403369 crossref_primary_10_1016_j_snb_2017_09_013 crossref_primary_10_1016_j_aca_2019_05_037 crossref_primary_10_1016_j_jconrel_2024_11_072 crossref_primary_10_1016_j_ccr_2024_215771 crossref_primary_10_1039_D1NR04964J crossref_primary_10_1016_j_bios_2016_09_108 crossref_primary_10_1016_j_jallcom_2016_04_269 crossref_primary_10_1016_j_nantod_2019_05_008 crossref_primary_10_1016_j_jelechem_2021_115902 crossref_primary_10_1002_anie_201600868 crossref_primary_10_1007_s00604_015_1670_x crossref_primary_10_1016_j_bios_2015_08_056 crossref_primary_10_1007_s00216_021_03514_1 crossref_primary_10_1016_j_jbiotec_2017_01_010 crossref_primary_10_3390_bios15040239 crossref_primary_10_1007_s10934_016_0336_3 crossref_primary_10_1007_s11244_021_01523_z crossref_primary_10_1007_s13738_019_01787_z crossref_primary_10_1016_j_addr_2022_114648 crossref_primary_10_1016_j_biopha_2025_117835 crossref_primary_10_1016_j_mssp_2014_12_054 crossref_primary_10_1016_j_dyepig_2021_109350 crossref_primary_10_1016_j_microc_2023_109174 crossref_primary_10_1016_j_psep_2023_11_049 crossref_primary_10_1016_j_snb_2022_131745 crossref_primary_10_1142_S1088424618500918 crossref_primary_10_1016_j_saa_2021_120742 crossref_primary_10_1038_s41467_018_05798_x crossref_primary_10_1007_s10876_023_02506_8 crossref_primary_10_1016_j_snb_2023_134736 crossref_primary_10_1016_j_aca_2016_11_035 crossref_primary_10_1039_C5AN01104C crossref_primary_10_1016_j_microc_2022_107939 crossref_primary_10_1007_s00604_017_2361_6 crossref_primary_10_1016_j_ccr_2022_214540 crossref_primary_10_1016_j_ccr_2024_215799 crossref_primary_10_1016_j_snb_2022_132381 crossref_primary_10_1039_C4CC08860C crossref_primary_10_1016_j_ultsonch_2020_105011 crossref_primary_10_1039_C8QI01196F crossref_primary_10_1002_adhm_201800322 crossref_primary_10_1007_s12274_018_2092_y crossref_primary_10_3389_fmicb_2019_00997 crossref_primary_10_1016_j_snb_2017_05_136 crossref_primary_10_1039_c2an36500f crossref_primary_10_1016_j_cej_2019_03_070 crossref_primary_10_1016_j_colsurfb_2019_110742 crossref_primary_10_1016_j_snb_2017_11_094 crossref_primary_10_1038_s41598_019_50539_9 crossref_primary_10_1002_advs_202002797 crossref_primary_10_1007_s00604_024_06801_7 crossref_primary_10_1002_smll_202104844 crossref_primary_10_1016_j_snb_2017_08_204 crossref_primary_10_3390_foods12020285 crossref_primary_10_1016_j_cep_2022_108971 crossref_primary_10_1002_adhm_202401309 crossref_primary_10_1016_j_reprotox_2022_09_003 crossref_primary_10_1002_adma_202206421 crossref_primary_10_1016_j_talanta_2019_120707 crossref_primary_10_1016_j_microc_2023_109596 crossref_primary_10_1016_j_materresbull_2013_12_036 crossref_primary_10_1002_cjoc_201600694 crossref_primary_10_1007_s13204_019_01118_x crossref_primary_10_1080_07391102_2019_1640131 crossref_primary_10_1016_j_cej_2024_152328 crossref_primary_10_1002_jbm_a_37626 crossref_primary_10_1021_acsbiomaterials_4c02093 crossref_primary_10_1088_1361_6463_aa5bf6 crossref_primary_10_1016_j_snb_2024_136325 crossref_primary_10_1016_j_snb_2023_133595 crossref_primary_10_1039_C7CC07149C crossref_primary_10_1016_j_scitotenv_2021_146578 crossref_primary_10_1142_S1793604719500619 crossref_primary_10_3389_fchem_2020_00654 crossref_primary_10_1016_j_bios_2020_112921 crossref_primary_10_1016_j_ccr_2024_216140 crossref_primary_10_1039_D4EN00053F crossref_primary_10_1016_j_bios_2025_117835 crossref_primary_10_3390_nano8070451 crossref_primary_10_3390_chemosensors10090359 crossref_primary_10_1002_chem_201800770 crossref_primary_10_1016_j_colsurfa_2023_131012 crossref_primary_10_1016_j_snb_2017_06_096 crossref_primary_10_1186_s11671_018_2679_y crossref_primary_10_1016_j_mattod_2017_09_001 crossref_primary_10_1016_j_microc_2024_111975 crossref_primary_10_1016_j_matlet_2019_04_007 crossref_primary_10_1007_s00604_017_2525_4 crossref_primary_10_1002_cctc_201400011 crossref_primary_10_1016_j_snb_2021_130494 crossref_primary_10_1016_j_reactfunctpolym_2020_104565 crossref_primary_10_1002_cbic_202000123 crossref_primary_10_1002_adma_201900401 crossref_primary_10_1016_j_microc_2019_104050 crossref_primary_10_1002_ppsc_201400043 crossref_primary_10_1016_j_ijbiomac_2021_03_124 crossref_primary_10_1039_C4CC05155F crossref_primary_10_1016_j_sbsr_2025_100812 crossref_primary_10_1016_j_bios_2019_01_026 crossref_primary_10_1016_j_chemosphere_2023_139312 crossref_primary_10_1016_j_microc_2017_08_009 crossref_primary_10_1002_smtd_202000566 crossref_primary_10_1039_D2RA05863D |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1039/c2an35700c |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1364-5528 |
| ExternalDocumentID | 22900262 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .HR 0-7 0R~ 23M 2WC 4.4 5RE 705 70~ 7~J AAEMU AAFBY AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABOCM ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRZK AFVBQ AGEGJ AGMRB AGRSR AHGCF AIDUJ AKMSF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CGR COF CS3 CUY CVF EBS ECGLT ECM EE0 EF- EIF EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3H J3I M4U N9A NPM O9- P2P R56 R7B R7E RAOCF RCNCU ROL RPMJG RRA RRC RSCEA SC5 SKM SKR SKZ SLC SLF TN5 UPT VH6 WH7 ~02 7X8 |
| ID | FETCH-LOGICAL-c317t-c45b62a83f0df43157b96ae7f4b517d6f3b405f32b9f9e7cf3a52c08903773c82 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 380 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308099200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1364-5528 |
| IngestDate | Thu Oct 02 03:45:03 EDT 2025 Thu Dec 04 23:23:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c317t-c45b62a83f0df43157b96ae7f4b517d6f3b405f32b9f9e7cf3a52c08903773c82 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 22900262 |
| PQID | 1037243423 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1037243423 pubmed_primary_22900262 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-10-07 |
| PublicationDateYYYYMMDD | 2012-10-07 |
| PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Analyst (London) |
| PublicationTitleAlternate | Analyst |
| PublicationYear | 2012 |
| SSID | ssj0001050 |
| Score | 2.5502095 |
| Snippet | Inorganic nanomaterials that mimic enzymes are fascinating as they potentially have improved properties relative to native enzymes, such as greater resistance... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4552 |
| SubjectTerms | Animals Antibodies - analysis Biomimetic Materials - chemistry Biomimetic Materials - metabolism Catalysis Cattle Colorimetry Horseradish Peroxidase - chemistry Horseradish Peroxidase - metabolism Humans Hydrogen Peroxide - chemistry Hydrogen-Ion Concentration Immunoassay Immunoglobulin G - immunology Kinetics Manganese Compounds - chemistry Metal Nanoparticles - chemistry Oxides - chemistry Serum Albumin, Bovine - chemistry Temperature |
| Title | BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22900262 https://www.proquest.com/docview/1037243423 |
| Volume | 137 |
| WOSCitedRecordID | wos000308099200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qBb34ftQXEbyG1jw2yUlqsXiwteCD3pYkuwsLNq1uFX--k33QkyB4CbkEksljvpnMfIPQFZjGLJIMbhrVnHDQaUTZVBHbjYwIZDKsdGW_PsjRSE0melw73Io6rLJ5E8uHOpm54CPvhHw2ygNf3c38nYSqUeF3tS6hsYpa7JqpENIlJ0u2cMAOVZZwxIkQVDX0pEx3HDWeBW539zu0LFXMYPu_k9tBWzW4xL3qNOyildTvoY1-U9NtHw1un3oksFG9AcRM8NA_UuyNB8O5jo_DpsAWNg8H_vDvPAEdh41PcNOf5tPcFQfoZXD33L8ndSUF4gAfLIjjwkbUKJZ1kwwgg5BWRyaVGbfiWiZRxiwAt4xRqzOdSpcxI6jrKg3rkswpeojW_MynxwgnOqQtJNREjnNOu1oaZQCmWQtAUlPRRpeNiGJYXPh-MD6dfRbxUkhtdFTJOZ5XlBpxYJ0Ha5Ce_GH0KdoE1ELLiDp5hloZ3NP0HK27r0VefFyURwDa0Xj4A7HuuKw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BSA-templated+MnO2+nanoparticles+as+both+peroxidase+and+oxidase+mimics&rft.jtitle=Analyst+%28London%29&rft.au=Liu%2C+Xing&rft.au=Wang%2C+Qi&rft.au=Zhao%2C+Huihui&rft.au=Zhang%2C+Lichun&rft.date=2012-10-07&rft.eissn=1364-5528&rft.volume=137&rft.issue=19&rft.spage=4552&rft_id=info:doi/10.1039%2Fc2an35700c&rft_id=info%3Apmid%2F22900262&rft_id=info%3Apmid%2F22900262&rft.externalDocID=22900262 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5528&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5528&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5528&client=summon |