BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics

Inorganic nanomaterials that mimic enzymes are fascinating as they potentially have improved properties relative to native enzymes, such as greater resistance to extremes of pH and temperature and lower sensitivity to proteases. Although many artificial enzymes have been investigated, searching for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) Jg. 137; H. 19; S. 4552
Hauptverfasser: Liu, Xing, Wang, Qi, Zhao, Huihui, Zhang, Lichun, Su, Yingying, Lv, Yi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 07.10.2012
Schlagworte:
ISSN:1364-5528, 1364-5528
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Inorganic nanomaterials that mimic enzymes are fascinating as they potentially have improved properties relative to native enzymes, such as greater resistance to extremes of pH and temperature and lower sensitivity to proteases. Although many artificial enzymes have been investigated, searching for highly-efficient and stable catalysts is still of great interest. In this paper, we first demonstrated that bovine serum albumin (BSA)-stabilized MnO(2) nanoparticles (NPs) exhibited highly peroxidase-, oxidase-, and catalase-like activities. The activities of the BSA-MnO(2) NPs were evaluated using the typical horseradish peroxidase (HRP) substrates o-phenylenediamine (OPD) and 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of either hydrogen peroxide or dissolved oxygen. These small-sized BSA-MnO(2) NPs with good dispersion, solubility and biocompatibility exhibited typical Michaelis-Menten kinetics and high affinity for H(2)O(2), OPD and TMB, indicating that BSA-MnO(2) NPs can be used as satisfactory enzyme mimics. Based on these findings, BSA-MnO(2) NPs were used as colorimetric immunoassay tags for the detection of goat anti-human IgG in place of HRP. The colorimetric immunoassay using BSA-MnO(2) NPs has the advantages of being fast, robust, inexpensive, easily prepared and with no HRP and H(2)O(2) being needed. These water-soluble BSA-MnO(2) NPs may have promising potential applications in biotechnology, bioassays, and biomedicine.
AbstractList Inorganic nanomaterials that mimic enzymes are fascinating as they potentially have improved properties relative to native enzymes, such as greater resistance to extremes of pH and temperature and lower sensitivity to proteases. Although many artificial enzymes have been investigated, searching for highly-efficient and stable catalysts is still of great interest. In this paper, we first demonstrated that bovine serum albumin (BSA)-stabilized MnO(2) nanoparticles (NPs) exhibited highly peroxidase-, oxidase-, and catalase-like activities. The activities of the BSA-MnO(2) NPs were evaluated using the typical horseradish peroxidase (HRP) substrates o-phenylenediamine (OPD) and 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of either hydrogen peroxide or dissolved oxygen. These small-sized BSA-MnO(2) NPs with good dispersion, solubility and biocompatibility exhibited typical Michaelis-Menten kinetics and high affinity for H(2)O(2), OPD and TMB, indicating that BSA-MnO(2) NPs can be used as satisfactory enzyme mimics. Based on these findings, BSA-MnO(2) NPs were used as colorimetric immunoassay tags for the detection of goat anti-human IgG in place of HRP. The colorimetric immunoassay using BSA-MnO(2) NPs has the advantages of being fast, robust, inexpensive, easily prepared and with no HRP and H(2)O(2) being needed. These water-soluble BSA-MnO(2) NPs may have promising potential applications in biotechnology, bioassays, and biomedicine.
Inorganic nanomaterials that mimic enzymes are fascinating as they potentially have improved properties relative to native enzymes, such as greater resistance to extremes of pH and temperature and lower sensitivity to proteases. Although many artificial enzymes have been investigated, searching for highly-efficient and stable catalysts is still of great interest. In this paper, we first demonstrated that bovine serum albumin (BSA)-stabilized MnO(2) nanoparticles (NPs) exhibited highly peroxidase-, oxidase-, and catalase-like activities. The activities of the BSA-MnO(2) NPs were evaluated using the typical horseradish peroxidase (HRP) substrates o-phenylenediamine (OPD) and 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of either hydrogen peroxide or dissolved oxygen. These small-sized BSA-MnO(2) NPs with good dispersion, solubility and biocompatibility exhibited typical Michaelis-Menten kinetics and high affinity for H(2)O(2), OPD and TMB, indicating that BSA-MnO(2) NPs can be used as satisfactory enzyme mimics. Based on these findings, BSA-MnO(2) NPs were used as colorimetric immunoassay tags for the detection of goat anti-human IgG in place of HRP. The colorimetric immunoassay using BSA-MnO(2) NPs has the advantages of being fast, robust, inexpensive, easily prepared and with no HRP and H(2)O(2) being needed. These water-soluble BSA-MnO(2) NPs may have promising potential applications in biotechnology, bioassays, and biomedicine.Inorganic nanomaterials that mimic enzymes are fascinating as they potentially have improved properties relative to native enzymes, such as greater resistance to extremes of pH and temperature and lower sensitivity to proteases. Although many artificial enzymes have been investigated, searching for highly-efficient and stable catalysts is still of great interest. In this paper, we first demonstrated that bovine serum albumin (BSA)-stabilized MnO(2) nanoparticles (NPs) exhibited highly peroxidase-, oxidase-, and catalase-like activities. The activities of the BSA-MnO(2) NPs were evaluated using the typical horseradish peroxidase (HRP) substrates o-phenylenediamine (OPD) and 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of either hydrogen peroxide or dissolved oxygen. These small-sized BSA-MnO(2) NPs with good dispersion, solubility and biocompatibility exhibited typical Michaelis-Menten kinetics and high affinity for H(2)O(2), OPD and TMB, indicating that BSA-MnO(2) NPs can be used as satisfactory enzyme mimics. Based on these findings, BSA-MnO(2) NPs were used as colorimetric immunoassay tags for the detection of goat anti-human IgG in place of HRP. The colorimetric immunoassay using BSA-MnO(2) NPs has the advantages of being fast, robust, inexpensive, easily prepared and with no HRP and H(2)O(2) being needed. These water-soluble BSA-MnO(2) NPs may have promising potential applications in biotechnology, bioassays, and biomedicine.
Author Wang, Qi
Liu, Xing
Su, Yingying
Lv, Yi
Zhao, Huihui
Zhang, Lichun
Author_xml – sequence: 1
  givenname: Xing
  surname: Liu
  fullname: Liu, Xing
  organization: Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
– sequence: 2
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
– sequence: 3
  givenname: Huihui
  surname: Zhao
  fullname: Zhao, Huihui
– sequence: 4
  givenname: Lichun
  surname: Zhang
  fullname: Zhang, Lichun
– sequence: 5
  givenname: Yingying
  surname: Su
  fullname: Su, Yingying
– sequence: 6
  givenname: Yi
  surname: Lv
  fullname: Lv, Yi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22900262$$D View this record in MEDLINE/PubMed
BookMark eNpNkM9LwzAYhoNM3A-9-AdIjl6qX74kTXucY1NhsoN6LkmaYKVNa5OB_vcO3MDT-xweXnjfOZmEPjhCrhncMeDlvUUduFQA9ozMGM9FJiUWk388JfMYPwGAgYQLMkUsATDHGdk8vC6z5Lqh1cnV9CXskAYd-kGPqbGti1RHavr0QQc39t9NraOjOtT0xF3TNTZeknOv2-iujrkg75v12-op2-4en1fLbWY5UymzQpocdcE91F5wJpUpc-2UF0YyVeeeGwHSczSlL52ynmuJFooSuFLcFrggt3-9w9h_7V1MVddE69pWB9fvY3X4Q6HgAvlBvTmqe9O5uhrGptPjT3Xajr-MA1tQ
CitedBy_id crossref_primary_10_1111_1750_3841_14974
crossref_primary_10_1007_s12274_020_2680_5
crossref_primary_10_1016_j_talanta_2020_121299
crossref_primary_10_1002_adhm_202302391
crossref_primary_10_1016_j_snb_2017_05_069
crossref_primary_10_1016_j_mtcomm_2021_102237
crossref_primary_10_1016_j_saa_2020_118649
crossref_primary_10_1002_slct_201802236
crossref_primary_10_1002_smtd_202101576
crossref_primary_10_1016_j_actbio_2020_05_035
crossref_primary_10_3390_ijms26073284
crossref_primary_10_1002_adfm_201800018
crossref_primary_10_1039_C9RA10480A
crossref_primary_10_1186_s12951_018_0421_7
crossref_primary_10_3390_nano9030316
crossref_primary_10_1007_s10853_015_9716_3
crossref_primary_10_1016_j_ccr_2024_215937
crossref_primary_10_1016_j_cis_2025_103474
crossref_primary_10_1016_j_carbpol_2022_119821
crossref_primary_10_1007_s13205_019_2030_z
crossref_primary_10_1016_j_snb_2017_07_104
crossref_primary_10_1186_s12645_024_00262_6
crossref_primary_10_1016_j_jelechem_2020_114048
crossref_primary_10_1007_s00604_019_3624_1
crossref_primary_10_1016_j_ccr_2020_213751
crossref_primary_10_1002_adfm_201605926
crossref_primary_10_1016_j_cis_2022_102656
crossref_primary_10_1039_D0SC03082A
crossref_primary_10_1007_s00604_013_1068_6
crossref_primary_10_1007_s40242_024_3239_x
crossref_primary_10_1016_j_foodchem_2023_137272
crossref_primary_10_1016_j_procbio_2020_10_010
crossref_primary_10_1007_s00604_017_2303_3
crossref_primary_10_1007_s00604_015_1697_z
crossref_primary_10_1039_C9EN01089K
crossref_primary_10_1021_acsbiomaterials_9b00968
crossref_primary_10_3389_fmats_2022_857385
crossref_primary_10_1002_chem_201804419
crossref_primary_10_1016_j_poly_2024_117175
crossref_primary_10_1007_s00604_019_3613_4
crossref_primary_10_1002_slct_202101496
crossref_primary_10_3390_s17112521
crossref_primary_10_1007_s00216_021_03451_z
crossref_primary_10_1016_j_bios_2023_115419
crossref_primary_10_1080_03067319_2022_2039646
crossref_primary_10_1007_s00604_017_2523_6
crossref_primary_10_1002_anbr_202200093
crossref_primary_10_1007_s00604_021_05136_x
crossref_primary_10_1016_j_talanta_2019_05_034
crossref_primary_10_1016_j_aca_2022_340654
crossref_primary_10_1007_s11434_016_1193_9
crossref_primary_10_1016_j_cclet_2019_05_032
crossref_primary_10_1007_s11144_014_0756_5
crossref_primary_10_1016_j_lwt_2021_112821
crossref_primary_10_1016_j_microc_2024_111933
crossref_primary_10_1016_j_aca_2018_10_020
crossref_primary_10_1016_j_microc_2025_113588
crossref_primary_10_1016_j_matlet_2013_08_050
crossref_primary_10_1080_00032719_2016_1251447
crossref_primary_10_1007_s11051_018_4271_x
crossref_primary_10_1007_s42452_020_03407_5
crossref_primary_10_1007_s00216_020_02982_1
crossref_primary_10_1039_C5AN00884K
crossref_primary_10_1039_D2NR05276H
crossref_primary_10_1016_j_bbagen_2013_03_015
crossref_primary_10_1039_D1RA04877E
crossref_primary_10_1016_j_enzmictec_2022_110192
crossref_primary_10_2147_JIR_S383239
crossref_primary_10_1016_j_colsurfb_2019_03_012
crossref_primary_10_3390_molecules29061405
crossref_primary_10_1007_s10904_019_01359_x
crossref_primary_10_1016_j_snb_2016_09_049
crossref_primary_10_1002_cbic_201900595
crossref_primary_10_1039_C9NR06691H
crossref_primary_10_1016_j_matdes_2023_112063
crossref_primary_10_1002_ejic_202200202
crossref_primary_10_1016_j_biotechadv_2014_12_010
crossref_primary_10_1002_ange_201600868
crossref_primary_10_1155_2019_5416963
crossref_primary_10_1016_j_nanoms_2024_03_002
crossref_primary_10_1002_adhm_202001117
crossref_primary_10_1016_j_bios_2017_05_037
crossref_primary_10_1016_j_biomaterials_2015_04_039
crossref_primary_10_1016_j_jallcom_2023_173091
crossref_primary_10_1016_j_bios_2019_111704
crossref_primary_10_1016_j_snb_2014_12_052
crossref_primary_10_1002_adhm_202304141
crossref_primary_10_1016_j_talanta_2022_123825
crossref_primary_10_1016_j_saa_2020_118741
crossref_primary_10_1186_s12951_024_02501_9
crossref_primary_10_1016_j_nantod_2021_101076
crossref_primary_10_1016_j_apsusc_2017_06_018
crossref_primary_10_1016_j_procbio_2019_05_014
crossref_primary_10_1155_2021_9980127
crossref_primary_10_1002_smll_202206772
crossref_primary_10_1002_ange_201706910
crossref_primary_10_1038_srep04407
crossref_primary_10_1016_j_chemosphere_2023_140034
crossref_primary_10_1007_s44211_022_00115_5
crossref_primary_10_1016_j_snb_2021_129549
crossref_primary_10_1016_j_cej_2024_155897
crossref_primary_10_3390_antiox12101877
crossref_primary_10_1016_j_snb_2024_136195
crossref_primary_10_1016_j_microc_2023_109538
crossref_primary_10_1016_j_materresbull_2015_03_018
crossref_primary_10_1016_j_jcis_2025_01_081
crossref_primary_10_1039_C8AN00704G
crossref_primary_10_1016_j_ccr_2023_215610
crossref_primary_10_1016_j_ijbiomac_2023_125028
crossref_primary_10_3389_fchem_2021_812503
crossref_primary_10_1016_j_aca_2023_342135
crossref_primary_10_1038_s41598_023_41598_0
crossref_primary_10_1016_j_aca_2020_03_021
crossref_primary_10_1016_j_biopha_2023_114833
crossref_primary_10_1080_26896583_2020_1814081
crossref_primary_10_1016_j_saa_2021_119678
crossref_primary_10_1186_s11671_019_3058_z
crossref_primary_10_3390_toxics12120926
crossref_primary_10_1016_j_bios_2015_12_035
crossref_primary_10_1002_ejic_201501237
crossref_primary_10_1007_s10008_014_2498_8
crossref_primary_10_1038_s41551_024_01221_7
crossref_primary_10_1002_chem_201303051
crossref_primary_10_1016_j_clay_2016_05_028
crossref_primary_10_1039_D2BM00334A
crossref_primary_10_1002_adfm_202001933
crossref_primary_10_1002_bab_1921
crossref_primary_10_1007_s00216_020_02712_7
crossref_primary_10_1039_D5TB00295H
crossref_primary_10_1021_jacs_8b05223
crossref_primary_10_1016_j_jallcom_2015_03_176
crossref_primary_10_1002_smll_202401032
crossref_primary_10_1039_C7CC02049J
crossref_primary_10_1002_anie_201706910
crossref_primary_10_1002_chem_201701353
crossref_primary_10_1016_j_inoche_2018_10_024
crossref_primary_10_1016_j_saa_2021_120845
crossref_primary_10_1039_c3an00080j
crossref_primary_10_1007_s00216_015_9232_y
crossref_primary_10_1016_j_microc_2023_108625
crossref_primary_10_1002_smll_202303057
crossref_primary_10_1002_cnma_201600268
crossref_primary_10_1038_s41598_020_66446_3
crossref_primary_10_1007_s10522_024_10095_w
crossref_primary_10_1039_C8NH00274F
crossref_primary_10_1080_09593330_2016_1146339
crossref_primary_10_1007_s00604_022_05363_w
crossref_primary_10_1016_j_bios_2016_11_046
crossref_primary_10_1016_j_talanta_2020_121680
crossref_primary_10_1039_D5DT00822K
crossref_primary_10_1038_s41596_018_0001_1
crossref_primary_10_1002_slct_202403369
crossref_primary_10_1016_j_snb_2017_09_013
crossref_primary_10_1016_j_aca_2019_05_037
crossref_primary_10_1016_j_jconrel_2024_11_072
crossref_primary_10_1016_j_ccr_2024_215771
crossref_primary_10_1039_D1NR04964J
crossref_primary_10_1016_j_bios_2016_09_108
crossref_primary_10_1016_j_jallcom_2016_04_269
crossref_primary_10_1016_j_nantod_2019_05_008
crossref_primary_10_1016_j_jelechem_2021_115902
crossref_primary_10_1002_anie_201600868
crossref_primary_10_1007_s00604_015_1670_x
crossref_primary_10_1016_j_bios_2015_08_056
crossref_primary_10_1007_s00216_021_03514_1
crossref_primary_10_1016_j_jbiotec_2017_01_010
crossref_primary_10_3390_bios15040239
crossref_primary_10_1007_s10934_016_0336_3
crossref_primary_10_1007_s11244_021_01523_z
crossref_primary_10_1007_s13738_019_01787_z
crossref_primary_10_1016_j_addr_2022_114648
crossref_primary_10_1016_j_biopha_2025_117835
crossref_primary_10_1016_j_mssp_2014_12_054
crossref_primary_10_1016_j_dyepig_2021_109350
crossref_primary_10_1016_j_microc_2023_109174
crossref_primary_10_1016_j_psep_2023_11_049
crossref_primary_10_1016_j_snb_2022_131745
crossref_primary_10_1142_S1088424618500918
crossref_primary_10_1016_j_saa_2021_120742
crossref_primary_10_1038_s41467_018_05798_x
crossref_primary_10_1007_s10876_023_02506_8
crossref_primary_10_1016_j_snb_2023_134736
crossref_primary_10_1016_j_aca_2016_11_035
crossref_primary_10_1039_C5AN01104C
crossref_primary_10_1016_j_microc_2022_107939
crossref_primary_10_1007_s00604_017_2361_6
crossref_primary_10_1016_j_ccr_2022_214540
crossref_primary_10_1016_j_ccr_2024_215799
crossref_primary_10_1016_j_snb_2022_132381
crossref_primary_10_1039_C4CC08860C
crossref_primary_10_1016_j_ultsonch_2020_105011
crossref_primary_10_1039_C8QI01196F
crossref_primary_10_1002_adhm_201800322
crossref_primary_10_1007_s12274_018_2092_y
crossref_primary_10_3389_fmicb_2019_00997
crossref_primary_10_1016_j_snb_2017_05_136
crossref_primary_10_1039_c2an36500f
crossref_primary_10_1016_j_cej_2019_03_070
crossref_primary_10_1016_j_colsurfb_2019_110742
crossref_primary_10_1016_j_snb_2017_11_094
crossref_primary_10_1038_s41598_019_50539_9
crossref_primary_10_1002_advs_202002797
crossref_primary_10_1007_s00604_024_06801_7
crossref_primary_10_1002_smll_202104844
crossref_primary_10_1016_j_snb_2017_08_204
crossref_primary_10_3390_foods12020285
crossref_primary_10_1016_j_cep_2022_108971
crossref_primary_10_1002_adhm_202401309
crossref_primary_10_1016_j_reprotox_2022_09_003
crossref_primary_10_1002_adma_202206421
crossref_primary_10_1016_j_talanta_2019_120707
crossref_primary_10_1016_j_microc_2023_109596
crossref_primary_10_1016_j_materresbull_2013_12_036
crossref_primary_10_1002_cjoc_201600694
crossref_primary_10_1007_s13204_019_01118_x
crossref_primary_10_1080_07391102_2019_1640131
crossref_primary_10_1016_j_cej_2024_152328
crossref_primary_10_1002_jbm_a_37626
crossref_primary_10_1021_acsbiomaterials_4c02093
crossref_primary_10_1088_1361_6463_aa5bf6
crossref_primary_10_1016_j_snb_2024_136325
crossref_primary_10_1016_j_snb_2023_133595
crossref_primary_10_1039_C7CC07149C
crossref_primary_10_1016_j_scitotenv_2021_146578
crossref_primary_10_1142_S1793604719500619
crossref_primary_10_3389_fchem_2020_00654
crossref_primary_10_1016_j_bios_2020_112921
crossref_primary_10_1016_j_ccr_2024_216140
crossref_primary_10_1039_D4EN00053F
crossref_primary_10_1016_j_bios_2025_117835
crossref_primary_10_3390_nano8070451
crossref_primary_10_3390_chemosensors10090359
crossref_primary_10_1002_chem_201800770
crossref_primary_10_1016_j_colsurfa_2023_131012
crossref_primary_10_1016_j_snb_2017_06_096
crossref_primary_10_1186_s11671_018_2679_y
crossref_primary_10_1016_j_mattod_2017_09_001
crossref_primary_10_1016_j_microc_2024_111975
crossref_primary_10_1016_j_matlet_2019_04_007
crossref_primary_10_1007_s00604_017_2525_4
crossref_primary_10_1002_cctc_201400011
crossref_primary_10_1016_j_snb_2021_130494
crossref_primary_10_1016_j_reactfunctpolym_2020_104565
crossref_primary_10_1002_cbic_202000123
crossref_primary_10_1002_adma_201900401
crossref_primary_10_1016_j_microc_2019_104050
crossref_primary_10_1002_ppsc_201400043
crossref_primary_10_1016_j_ijbiomac_2021_03_124
crossref_primary_10_1039_C4CC05155F
crossref_primary_10_1016_j_sbsr_2025_100812
crossref_primary_10_1016_j_bios_2019_01_026
crossref_primary_10_1016_j_chemosphere_2023_139312
crossref_primary_10_1016_j_microc_2017_08_009
crossref_primary_10_1002_smtd_202000566
crossref_primary_10_1039_D2RA05863D
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1039/c2an35700c
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-5528
ExternalDocumentID 22900262
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.HR
0-7
0R~
23M
2WC
4.4
5RE
705
70~
7~J
AAEMU
AAFBY
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABOCM
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AFVBQ
AGEGJ
AGMRB
AGRSR
AHGCF
AIDUJ
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CGR
COF
CS3
CUY
CVF
EBS
ECGLT
ECM
EE0
EF-
EIF
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
N9A
NPM
O9-
P2P
R56
R7B
R7E
RAOCF
RCNCU
ROL
RPMJG
RRA
RRC
RSCEA
SC5
SKM
SKR
SKZ
SLC
SLF
TN5
UPT
VH6
WH7
~02
7X8
ID FETCH-LOGICAL-c317t-c45b62a83f0df43157b96ae7f4b517d6f3b405f32b9f9e7cf3a52c08903773c82
IEDL.DBID 7X8
ISICitedReferencesCount 380
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308099200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1364-5528
IngestDate Thu Oct 02 03:45:03 EDT 2025
Thu Dec 04 23:23:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-c45b62a83f0df43157b96ae7f4b517d6f3b405f32b9f9e7cf3a52c08903773c82
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22900262
PQID 1037243423
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1037243423
pubmed_primary_22900262
PublicationCentury 2000
PublicationDate 2012-10-07
PublicationDateYYYYMMDD 2012-10-07
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Analyst (London)
PublicationTitleAlternate Analyst
PublicationYear 2012
SSID ssj0001050
Score 2.5502095
Snippet Inorganic nanomaterials that mimic enzymes are fascinating as they potentially have improved properties relative to native enzymes, such as greater resistance...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4552
SubjectTerms Animals
Antibodies - analysis
Biomimetic Materials - chemistry
Biomimetic Materials - metabolism
Catalysis
Cattle
Colorimetry
Horseradish Peroxidase - chemistry
Horseradish Peroxidase - metabolism
Humans
Hydrogen Peroxide - chemistry
Hydrogen-Ion Concentration
Immunoassay
Immunoglobulin G - immunology
Kinetics
Manganese Compounds - chemistry
Metal Nanoparticles - chemistry
Oxides - chemistry
Serum Albumin, Bovine - chemistry
Temperature
Title BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics
URI https://www.ncbi.nlm.nih.gov/pubmed/22900262
https://www.proquest.com/docview/1037243423
Volume 137
WOSCitedRecordID wos000308099200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qBb34ftQXEbyG1jw2yUlqsXiwteCD3pYkuwsLNq1uFX--k33QkyB4CbkEksljvpnMfIPQFZjGLJIMbhrVnHDQaUTZVBHbjYwIZDKsdGW_PsjRSE0melw73Io6rLJ5E8uHOpm54CPvhHw2ygNf3c38nYSqUeF3tS6hsYpa7JqpENIlJ0u2cMAOVZZwxIkQVDX0pEx3HDWeBW539zu0LFXMYPu_k9tBWzW4xL3qNOyildTvoY1-U9NtHw1un3oksFG9AcRM8NA_UuyNB8O5jo_DpsAWNg8H_vDvPAEdh41PcNOf5tPcFQfoZXD33L8ndSUF4gAfLIjjwkbUKJZ1kwwgg5BWRyaVGbfiWiZRxiwAt4xRqzOdSpcxI6jrKg3rkswpeojW_MynxwgnOqQtJNREjnNOu1oaZQCmWQtAUlPRRpeNiGJYXPh-MD6dfRbxUkhtdFTJOZ5XlBpxYJ0Ha5Ce_GH0KdoE1ELLiDp5hloZ3NP0HK27r0VefFyURwDa0Xj4A7HuuKw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BSA-templated+MnO2+nanoparticles+as+both+peroxidase+and+oxidase+mimics&rft.jtitle=Analyst+%28London%29&rft.au=Liu%2C+Xing&rft.au=Wang%2C+Qi&rft.au=Zhao%2C+Huihui&rft.au=Zhang%2C+Lichun&rft.date=2012-10-07&rft.eissn=1364-5528&rft.volume=137&rft.issue=19&rft.spage=4552&rft_id=info:doi/10.1039%2Fc2an35700c&rft_id=info%3Apmid%2F22900262&rft_id=info%3Apmid%2F22900262&rft.externalDocID=22900262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5528&client=summon